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A new method to measure and quantify the 3D mineralogical composition of particulate
materials using X-ray computed micro-tomography (CT) is presented. The new method is
part of a workflow designed to standardize the analysis of particles based on their
microstructures without the need to segment the individual classes or grains. Classification
follows a decision tree with criteria derived from particle histogram parameters that are
specific to each microstructure, which in turn can be identified by 2D-based automated
quantitative mineralogy. The quantification of mineral abundances is implemented at the
particle level according to the complexity of the particle by taking into consideration the
partial volume effect at interphases. The new method was tested on two samples with
different particle size distributions from a carbonate rock containing various microstructures
and phases. The method allowed differentiation and quantification of more mineral classes
than traditional 3D image segmentation that uses only the grey-scale for mineral classifi-
cation. Nevertheless, due to lower spatial resolution and lack of chemical information, not all
phases identified in 2D could be distinguished. However, quantification of the mineral
classes that could be distinguished was more representative than their 2D quantification,
especially for coarser particle sizes and for minor phases. Therefore, the new 3D method
shows great potential as a complement to 2D-based methods and as an alternative to tra-
ditional phase segmentation analysis of 3D images. Particle-based quantification of miner-
alogical and 3D geometrical properties of particles opens new applications in the raw
materials and particle processing industries.

KEY WORDS: Computed tomography, Mineralogy, MSPaCMAn, Classification, Quantification, 3D
image.

INTRODUCTION

The use of X-ray computed tomography (CT)
for 3D visualization of microstructures in geological
materials has a variety of applications in the geo-
sciences (Cnudde & Boone 2013), for example, to
measure porosity (Zhang et al., 2019) and pore-scale
processes (Hasan Sharul et al., 2020; Anduix-Canto
et al., 2021), to determine the distribution of and
association among minerals (Reyes et al., 2017;
Guntoro et al., 2021; Da Ferraz Costa et al., 2022),
which are useful properties in ore geology, and to

1Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute

Freiberg for Resource Technology, Chemnitzer Straße 40, 09599

Freiberg, Germany.
2Department of Geoscience and Petroleum, Faculty of Engi-

neering, Norwegian University of Science and Technology, 7031

Trondheim, Norway.
3Maelgwyn Mineral Services Ltd, Ty Maelgwyn, 1A Gower Road,

Cathays, Cardiff CF24 4PA, UK.
4To whom correspondence should be addressed; e-mail: j.god-

inho@hzdr.de

� 2023 The Author(s)

Natural Resources Research (� 2023)

https://doi.org/10.1007/s11053-023-10169-5

http://orcid.org/0000-0003-0848-0662
http://crossmark.crossref.org/dialog/?doi=10.1007/s11053-023-10169-5&amp;domain=pdf


determine particle properties (Wang et al., 2017;
Miller & Lin 2018), which are important in the
mineral processing industry (Videla et al., 2007).

CT is based on the principle that each compo-
nent of a sample has a specific X-ray attenuation
that is proportional to its electron density and is
representative of its composition (Withers et al.,
2021). Thereafter, the component should be repre-
sented in a 3D image of the sample by voxels with a
grey-value that is proportional to its attenuation
coefficient (Dhaene et al., 2015). However, in prac-
tice, because of imaging artefacts and the lack of
chemical information, a direct mineral classification
based on the grey-scale of a 3D image is difficult
(Boas and Fleischmann 2012; Godinho et al., 2021b).
Therefore, it is not surprising that the wider appli-
cations of CT in Earth sciences are related to
imaging of pores because air is the least X-ray
attenuating component of a sample, and thus it is
easy to classify. Contrarily, the application of CT in
the fields of ore geology and minerals engineering
requires identification of the different phases in of-
ten-complex samples (Bam et al., 2016; Warlo et al.,
2021). To broaden the applicability of CT to such
fields, it is necessary to develop standardized and
automated methods that allow faster, yet reliable,
classification and quantification of mineral phases
from grey-scale 3D images.

According to the literature, different solutions
have been demonstrated to help phase classification
from grey-scale 3D images, for example, by direct
correlation of the same slice in 3D with 2D classified
images (Furat et al., 2018), by measuring chemical
information from transmitted X-rays (Godinho
et al., 2021b; Sittner et al., 2021), or by calculation of
attenuation coefficients from the grey-scale (Pan-
khurst et al., 2018; Bam et al., 2020). Additionally,
image processing methods are available to reduce
quantification deviations caused by imaging artefacts
(Lin et al., 2015; Godinho et al., 2019; Ketcham and
Mote 2019; Voigt et al., 2020). Nevertheless, the
complexity and variety of microstructures in natural
materials make it difficult and laborious to stan-
dardize the available methods as universal solutions
to every material.

In this research work, we present an alternative
solution to quantify the mineral composition of
particles based on a workflow that has the potential
to be standardized and semi-automated. The new
method consists of breaking the complexity of a
sample into smaller sub-volumes (individual parti-
cles) that are simpler to analyse. Based on prelimi-

nary mineralogical and microstructural information,
the individual particles can be classified using par-
ticle specific criteria (an approach also used in 2D
automated mineralogy) defined from particle his-
tograms. The results are compared to 2D automated
quantitative mineralogy, specifically using mineral
liberation analysis (MLA), which is also used as a
source of phase and microstructural information.
The advantages and limitations of the new method
relative to other 3D image segmentation methods
and to 2D-based characterization are discussed in
detail.

EXPERIMENTAL

Sample Preparation

The workflow applied in this study is schema-
tized in Figure 1. A rock sample (519 g), from the
Snowbird Mine, Montana, USA / Canada (Samson
et al., 2004), measuring approximately 7 9 7 9 8 cm
was scanned using CT. The rock was crushed to
particle sizes< 5 mm using a Retsch GmbH jaw
crusher (BB200 Mangan, Germany) and then milled
to< 1 mm. The milled particles were homogenized
and split using a rotary splitter. To evaluate the ef-
fect of particle size in the results, two sub-samples
were analysed: (1) the size fraction 710–1000 lm
(named ‘‘> 710 lm’’), as an example of a sample
with narrow size distribution; and (2) the size frac-
tion 63–1000 lm (named ‘‘AllSizes’’), as an example
of a sample with wider size distribution. The particle
size distribution based on equivalent spherical
diameter measured from the 3D images is given in
Supplementary Figure SI1. For each sub-sample,
one 30-mm-diameter grain mount was prepared for
MLA (named ‘‘GM> 710’’ or ‘‘GM-AllSizes’’).
GM> 710 was also scanned by CT to assess the
representativity of the surface analysed by MLA.

The particle dispersions were prepared using a
standardized procedure (Godinho et al., 2021a) that
uses sugar particles as spacer in the ratio of 7 g of
sugar and 1 g of sample particles. The resin used was
a fast-curing acrylic polymer, Paladur (Kulzer, Mit-
sui Chemical Group). The particles of the material
together with the sugar were mixed with methyl-
methacrylate-copolymer powder in the mass ratio
1:1. The methylmethacrylate liquid resin was added
to the solid mixture in the ratio 3 ml to 10 g forming
a paste saturated with particles. The final paste was
poured into a tube with 12-mm diameter and then
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left to dry for one hour. The grain mounts were
prepared by mixing 1 g of the sample with the same
amount of graphite and epoxy resin. To prevent bias
caused by settling, the so-called B-sections were
used for surface analysis (Schulz et al., 2020).

Imaging

The CT scanner used is a CoreTom from XRE–
Tescan (Ghent, Belgium). Reconstructions were
carried out using ‘‘XRE – recon’’ commercial soft-
ware (v1.1.0.14, XRE–Tescan, Ghent, Belgium).

The rock was scanned at a maximum X-ray energy
of 175 kV using 1-mm copper and 0.8-mm-thick
steel filters mounted at the source, with voxel size of
40 lm and beam current of 40 W. The two particle
dispersions were scanned at a maximum X-ray en-
ergy of 160 kV, using a 0.5-mm copper filter, 15 W,
10-lm voxel size, and the pixels of the detector were
binned in a 2 9 2 grid. The conditions of all scans
were optimized so that the resolution was limited by
geometrical factors and not by the spot size of the
beam. Reconstructed images were processed as 16-
bit image processing and visualization using Avizo
software (v9.3.0, Thermo Fisher Scientific, Waltham,

Figure 1. Overview of the work done in this paper. Red panel: 3D images generated by CT of the sample before and after milling. Green

panel: 2D SEM-based mineral analysis as source of preliminary mineralogical and microstructural information. Blue panel: preliminary

information is converted into classification criteria following a decision three. Yellow panel: individual particle histograms are quantified

according to the decision three.
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MA, USA) and Dragonfly software (v2021.1, Ob-
jects Research Systems, Montreal, Quebec, Cana-
da). Labelling of particles was performed using a
deep learning model with 3D sensor architecture as
implemented in Dragonfly that was trained using
245,610 voxels, of which 41,770 represented parti-
cles.

The SEM used was a FEI Quanta 650F field
emission SEM (FE-SEM) equipped with two Bruker
Quantax X-Flash 5030 energy dispersive X-ray
detectors. Quantitative mineralogical and textural
data were extracted from particle maps, which were
used to derive the modal mineralogy (Schulz et al.,
2020). The grain-based X-ray mapping (GXMAP)
mode was used with a resolution of 6 lm / pixel.
Backscattered electron (BSE) images were collected
with a resolution of 1 lm / pixel. Data were pro-
cessed using the software package MLA Suite
3.1.4.686.

METHOD DEVELOPMENT

Workflow Background

The grey-scale of voxelized images obtained by
CT are typically assumed proportional to the elec-
tron density of sample components (Bam et al.,
2020). However, the correlation between grey-scale
and phase composition can diverge due to image
reconstruction artefacts and the spatial distribution
of phases in the sample (Pankhurst et al., 2018). For
example, in denser sections of a sample, beam
hardening causes an artificial increase in the atten-
uation of a phase relative to lighter sections due to
the preferential attenuation of lower energy X-rays
(Godinho et al., 2021b). In practice, this broadens
the range of grey-values that represent one phase,
and it makes the grey-scale dependent on the loca-
tion of a voxel within a sample. Another example is
the boundary between two phases, which in the
physical world is sharp but in CT 3D images is
represented by a grey-scale gradient several voxels
across the interphase due to partial volume and cone
beam artefacts (Boas and Fleischmann 2012). In
practice, interphases appear to be blurred, which
means that it is impossible to define the real sharp
boundary that defines 100% of a phase on either side
of a boundary. The inaccuracy and bias of traditional
segmentation methods that do impose such bound-
aries to interphases increase as the size of
microstructures is close to the voxel size of an image

(Godinho et al., 2019; Ketcham and Mote 2019). For
instance, the smaller the grain is, the smaller is the
ratio of voxels representing the bulk of the grain to
voxels representing the interphase, down to a grain
size limit where the interphase is dominant relative
to the bulk. In this case, the grey-scale becomes
dependent not only on the composition, but also on
the grain size (Godinho et al., 2019, 2021b).

A workflow named mounted single-particle
characterization for mineralogical analyses
(MSPaCMAn) has been shown to reduce the CT
image artefacts described above (Godinho et al.,
2021a). First, the particles are dispersed throughout
a sample using a spacer to prevent particles from
touching each other and to reduce the effect of beam
hardening because all sections of a sample have
similar densities. Additionally, because the particles
are separated, the interphases between neighbour
particles are reduced, thus segmenting the particles
individually is facilitated. The second step is the la-
belling of the individual particles, which allows
processing of their sub-volumes independently. The
reduced complexity of each particle relative to the
whole sample simplifies the interpretation of the
grey-values, and it allows adding the geometrical
properties of a particle as classification criteria.
Importantly, the segmentation is done at the particle
level and not at the grain level (like traditional
segmentation methods (Wang et al., 2016; Guntoro
et al., 2019; Da Wang et al., 2020)), which reduces
the biased decision of defining boundaries at the
smaller grain level.

To summarize, the MSPaCMAn workflow
consists of (i) preparation of a particle dispersion
sample, (ii) segmentation of individual particles, and
(iii) phase classification using the histogram of
individual particles and preliminary knowledge
about the minerals present. In the next section, the
fundamental principles of phase quantification at the
particle level are described and appended as step
(iv) of the MSPaCMAn workflow.

Quantitative Particle Analysis

Class quantification is proposed to be done di-
rectly from individual particle histograms that result
from step (iii) of MSPaCMAn (as described in
Sect. 3.1). From the differences and similarities of
the histograms, the particles could be grouped based
on their complexity. By correlation of the different
groups that can be distinguished, with the prelimi-
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nary information about the sample, the different
classes can be identified. To differentiate classes,
various histogram parameters that are indicative of
different microstructures in a particle can be de-
rived. Gmax is the maximum grey-value of all voxels
in a particle that can be used as indicative of the
densest phase. Gmean is the mean grey-value of all
voxels, and it typically is close to the grey-value of
the most frequent grey-value if the particle is com-
posed of only one phase. Gmean/Gmax informs on
whether the particle is composed of one or more
phases, i.e. values closer to 1 imply only one phase.
GSD is the standard deviation of a histogram, and it
gives an idea of whether a particle contains sharp
peaks or if the peak frequencies are more distributed
through different grey-values, which indicate fine
microstructures without a dominant phase. Gpeak is
the most frequent grey-value within a specified
search range. For example, using the preliminary
knowledge about which phases are present in a
sample, their theoretical grey-value can be deter-
mined as the centre of the search range. It should be
noted that only some examples of histogram derived
parameters are presented; thus, other parameters
could be more adequate to other materials.

The second step is to use the histogram
parameters to create a sequence of logical condi-
tions that allow distinguishing each class. This can be
done following a decision tree, whereby each branch
contains a set of logical conditions based on mea-
surable properties, which could also include the
particle geometrical properties. To help organizing
the decision tree, five types of particles with differ-
ent complexities are explained: type (1) coarse par-
ticles composed of one phase; type (2) particles
composed of one phase with geometrical properties
that affect the grey-scale; type (3) particles com-
posed of two phases and large grains; type (4) par-
ticles composed of at least two phases distributed
into small grains; and type (5) particles with higher
complexity that do not fit the criteria of particle
types (1)–(4).

The new quantification method distinguishes
voxels representing interphases (affected by partial
volume) from voxels representing pure classes.
Thereafter, once a particle type and classes are
determined, all voxels in a particle histogram are
divided into two types: (1) Main peaks correspond to
voxels with 100% of a class that is identified using
the decision tree. Note that not all peaks necessarily
correspond to a class simply because it appears
within its expected range of grey-values. (2) Minor

peaks, which are all voxels that are not included into
the main peaks identified by the decision tree, are
assumed to be composed of two classes in a ratio
given by:

V1
fraction ¼ 1

Gpeak1 �Gpeak2
:Gi þ k ð1Þ

This equation assumes a linear regression be-
tween the grey-values of the two classes (Gpeak1 and
Gpeak2) so that the volume fraction of class 1
(V1

fraction) in a voxel with any grey-value (Gi) can be
calculated (Godinho et al., 2019; Ketcham & Mote
2019). The k is a constant for each pair Gpeak1 and
Gpeak2, and it can be measured assuming that
V1

fraction is 100% when Gi is equal to Gpeak1. In
practice, minor peaks represent voxels with a mixed
composition at interphases. The underlying hypoth-
esis of this method is that the quantification of the
partial volume at interphases, without defining the
boundaries between two classes, reduces the quan-
tification bias and reduces uncertainty.

Particle type 1: The simplest case refers to par-
ticles with high ratio particle size to voxel size
(ParVox), and they are composed of only one class.
The histogram of such particles exhibits a single
main peak that represents the central region of the
particle, whereby Gpeak appears within a narrow
range of grey-values that are specific to each class
(Fig. 2). The interphase between particle and back-
ground is always present, and it is proportional to
the surface area of the particle, e.g. note the red/blue
rims around particle 2 and the corresponding seg-
ment (same colour) in the histogram. The volume of
the interphase is represented by minor peaks on the
left side of the main peak, i.e. towards the grey-value
that is characteristic of the background. It is also
observed that the ratio of peak width to height in-
creases for more attenuating classes, e.g. the peak of
particle 2 is wider and shorter than the peak of
particle 1. This is expected due to intra-particle
beam hardening that is higher for denser particles.
To summarize, the quantification follows three steps:
(1) the class is identified based on the grey-value of
Gpeak; (2) the volume of the main peak corresponds
to 100% of the class; and (3) voxels at the interphase
are composed of some per cent of the phase in the
particle and some per cent of background, which are
calculated using Eq. 1 and the voxel�s grey-values.

Particle type 2: This refers to particles composed
of only one class and with geometric properties that
affect the characteristic Gpeak of the class. Two
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specific properties are exemplified in Figure 3,
namely shape (particles 3 and 4) and size (particles 5
and 6). This type of particles is characterized by a
high ratio of voxels at the interphase particle-back-
ground relative to the number of voxels in the bulk.
For example, one can note the reduction in the
yellow core relative to the blue/red rims in particles
5 and 6 (Fig. 3) relative to the coarse particle 2
(Fig. 2). Because the main peak in the histogram
corresponds to voxels in the bulk, the height of the
peak decreases with particle size. Thereafter, below
some particle size, the main peak is no longer dis-
tinguishable (yellow arrow, Fig. 3). Further decrease
in particle size causes a progressive decrease in Gmax

(orange arrow, Fig. 3). Similar to the effect of size
on Gpeak, the thickness of a particle may also affect
the ratio of the number of voxels at the interphase
relative to the bulk. If both size and shape are below
the thresholds affecting Gpeak, the ratio of surface
area to volume (Surf/Vol) can be used as a geo-
metric parameter to define specific classification
criteria.

The partial volume in type 2 particles could also
be calculated using Eq. 1 as long as the right class
has been identified. This might be misleading due to
the expected shift in histogram parameters, e.g.
Gpeak and Gmax. In this work, this type of particles
was excluded from the quantification. Nevertheless,
it is hypothesized that the shift of histogram
parameters may be correlated to geometrical prop-
erties affecting a specific class. It is worth noting that
by using traditional image segmentation methods,
type 2 particles would be misclassified due to the
shift in grey-values, and the quantification would be
strongly biased because the interphase with the
background is larger than the bulk of the particle.

Particle type 3: This refers to particles composed
of two classes and large grains. For example, in
Figure 4, class B (yellow in 3D and light grey in 2D)
is denser than class A (white in 3D and dark grey in
2D). In this type of particles, besides the interphase
with the background, another interphase is present
in the particle (red line), between classes A and B.
Consequently, the right side of the main peak of
class A broadens instead of the sharp decline noted
in Figure 2 for type 1 particles. The grey- scale range
at the interphase between class B and background
overlaps with the grey- scale range at the interphase
between classes A and B. Thus, in the histogram of
all voxels in a particle, it is impossible to know which
voxels correspond to each interphase, but this is
necessary in order to apply Eq. 1 with the right
Gpeak values (Fig. 5).

One solution is to simplify the particle his-
togram by dividing it into two: the histogram of
surface voxels and the histogram of bulk voxels
(Fig. 4). The bulk histogram can be retrieved easily
by eroding the voxels on the surface of the particle
that represent the gradient towards the background.
The bulk histogram in Figure 4 shows two main
peaks (100% classes A or B) separated by small
peaks that correspond to the interphase between
classes A and B. The surface histogram can be cal-
culated by subtracting the histogram of all voxels
from the histogram of the bulk. The result contains
information from the interphase between both
classes and the background. Consequently, two
types of gradients overlap to some degree, i.e. the
interphase A-background and B-background, which
if not corrected can lead to an overestimation of A
relative to B. In this work, as a first approach to
correct for that overlap, the total amount of surface

Figure 2. General example of 3D images of two type 1 particles composed of only one class each but with different densities. Each

particle�s bulk volume is represented by one peak in the histogram (white or yellow for particle 1 or 2, respectively), as well as a gradient

towards the background (only noticeable for particle 2 by red/blue rims and the corresponding segment colours in the histogram).
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at the interphase A-background and B-background
is assumed to be the same as the volume ratio A/B
measured in the bulk. Thus, splitting between bulk
and surface voxels allows to identify to which
interphase a voxel belongs to, which allows using
Eq. 1 to calculate the partial volume of each class. In
practice, the quantification is based on the segmen-
tation of surface and bulk of the particle instead of
the traditional CT methods that would segment

classes A and B, i.e. by defining a boundary at some
position along the red line.

Particle type 4: This refers to particles composed
of at least two classes associated as fine grains with
sizes close to or smaller than the voxel size. In this
case, Gpeak can appear at any grey-value between
the expected grey-scale ranges of the two classes,
depending on which class is dominant and the size of
the microstructures. In general, this type of particles

Figure 3. Examples of type 2 particles with geometrical properties that affect their histogram parameters: particles 3 and 4 have thin

shapes; particles 5 and 6 have small diameters. Particle 2 in the histogram corresponds to particle 2 in Figure 2 that has the same class as

particles 5 and 6.

Figure 4. Example of a type 3 particle composed of two grains that are sufficiently large to produce two identifiable peaks in the

histogram. Quantification requires differentiating the voxels at the surface from the voxels in the bulk.
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has low Gmean/Gmax and high GSD. Classifying these
types of particles requires preliminary knowledge,
e.g. from classified 2D images, about the typical
microstructures in the sample in order to derive
suitable histogram parameters that are specific to the
microstructure. Once the classes composing the
microstructure are identified, their theoretical grey-
values can be estimated and used as input to Eq. 1.
Note that separating surface and bulk histograms is
also necessary similar to the method followed for
type 3 particles.

Particle type 5: This refers to particles that do
not fit the criteria of any of the other particle types.

For example, particles with more than two classes or
particles that have two classes and also have a geo-
metrical property that affects their grey-scale. The
partial volume cannot be quantified in this type of
particles because Eq. 1 requires attributing one or
two classes to the composition of every voxel at an
interphase. Alternatively, in these cases the particle
can still be analysed using traditional segmentation
methods without the partial volume correction.
Possible future developments of the method to im-
prove quantification of these type of particles are
discussed later in the paper.

Figure 5. Example of a type 4 particle with at least two classes with microstructures of a size close to the voxel size. Note the high

variability of the histogram without clear main peaks at the grey-values expected for the pure classes.

Figure 6. Characterization of the rock specimen. (a) Photograph. (b) CT 3D image, whereby the rock matrix (i.e. less attenuating phases) is

set transparent and the other phases are coloured according to the colour scale of increasing attenuations from yellow to pink. (c) CT

vertical cross-section from b, whereby brighter colours correspond to more attenuating phases.
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Results and Discussion

The scan of the rock showed the spatial distri-
bution of some classes but it did not allow to identify
those classes (Fig. 6). The rock was crushed, and a
list of mineral phases present in it was obtained
using MLA (Table 1, Fig. 7). The composition of the
particulate material determined from MLA and CT

was compared for two particle size distributions
(Fig. 8) in order to evaluate which classes and
microstructures can be distinguished and quantified
using the new quantitative MSPaCMAn workflow.
The preliminary information collected by MLA was
used to define the type of particles and the classifi-
cation criteria used for the analysis of individual
particles in the 3D image (Figs. 9, 10).

Table 1. List of phases identified by MLA, their abundance in mass per cent, theoretical X-ray attenuation coefficient for the ideal mineral

formula (Bam et al. 2020) and expected grey-value for an average mineral composition at the effective energy of the scan (Eeff = 73 kV)

Figure 7. Electron backscattered images (grey) and MLA classified images (colour) of the most typical microstructures found in the

sample. The particles are grouped in colour boxes based on their complexity and dominant phases.
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Rock Analysis

The rock sample has two eye-distinguishable
regions, a white region composed of calcite that has
some sub-millimetre veins, and a brown region that
contains dark brown crystals (Fig. 6a). With a voxel
size of 40 lm (the best resolution possible in the
used scanner that included the entire sample in the
field of view), three main classes of microstructures
based on the grey-values could be distinguished: (1)
The lighter main sample matrix (set transparent in
Fig. 6b). Note that the white and brown regions
visible in Figure 6a are not distinguishable. (2)

Denser crystals dispersed throughout the matrix
(pink). (3) Regions with grey-values between classes
1 and 2 that are composed of more than one phase
(Fig. 6c, slightly different grey-values on top right of
Figure 6c and purple–green–orange–red in Fig-
ure 6b). The denser phases show irregular distribu-
tions of grey-values, which indicate imaging artefacts
(highlighted in Supplementary Figure SI2). For
example, grains are brighter at their edge, which
indicates beam hardening, and different grains have
grey-values that depend on their position in the
sample and the size of the grain. Thus, classification
directly from the grey-scale would misclassify grains

Figure 8. Overview of CT images of both samples. Sample> 710 lm: (a) 3D image and (c) 2D cross-section. Sample AllSizes: (b) 3D

image and (d) 2D cross-section. Both samples: (e) histograms. Colour regions in (e) represent the theoretical interval of grey-scale (grey-

value ± 750) of the phases identified by MLA (the same colours as in Figure 7). Letters identify the initial letter of the mineral name in

each range. The colour scale of (a) and (b) is shown in the x-axis of the histogram in (e).

Figure 9. (a) Heat map of 11,000 individual particle histograms organized from left to right based on ascending equivalent diameter

corresponding to sample AllSizes. Warmer colours correspond to higher frequency of voxels, i.e. analogous to a peak in a histogram. (b)
Variation of maximum grey-value of each particle as a function of equivalent diameter. Note the increasing trend below the red line. The

pink band is likely related to particles containing parisite, and the grey band is likely related to particles containing carbonate matrix.
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with different composition as the same class, and
grains with the same composition as different clas-
ses. To further characterize the mineralogy of the
observed 3D microstructures, the sample was cru-
shed and milled< 1 mm, and the particles were
analysed by MLA and CT.

Mineralogy and 2D Microstructures

MLA identified at least 11 minerals in the par-
ticulate material (Table 1), which appeared in the
most common microstructures shown in Figure 7.

The material was composed mainly of a carbonate
matrix (blue box), mostly calcite, dolomite and an-
kerite (93.9%). The three phases were typically
associated (particle 7) and 98% liberated. The
remaining 2% was associated with other phases, e.g.
parisite (particle 9) or thin veins of liebenbergite
(Ni2(SiO4), particle 8). Pyrite was the next most
common mineral. It can be liberated (about 36%,
particle 3) or in particles with veinlet structures
composed of magnetite (particle 1), gaspeite ((Ni,-
Fe)CO3, particle 2) and/or jamborite (Ni,Fe(OH)x,
particle 13). Veins containing gaspeite were barely
visible in backscattered images (grey-scale image of

Figure 10. (a) Heat map of 500 individual particle histograms from sample> 710 lm, whereby arrows of the same colour identify particles

with similar histogram characteristics. Warmer colours correspond to higher frequency of voxels, i.e. analogous to a peak in a histogram. (b)
Zoom of the heat map of eight particles (P1–P8). (c) Visualization of the non-liberated particles from (b). P2: carbonate matrix and

liebenbergite, similar to 8 in Figure 7; P4: pyrite, magnetite and gaspeite, similar to 1 in Figure 7; P5: millerite and jamborite, similar to 10

and 11 in Figure 7; P6: pyrite, jamborite and millerite (type 5), similar to 12 in Figure 7; and P8: carbonate matrix and parisite, similar to 9

in Figure 7.
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particle 2); thus, they were difficult to delineate
accurately by the MLA (e.g. compare BS and clas-
sified images of particles 1 or 2). Most of the mil-
lerite (NiS) appears associated with jamborite in
characteristic crosscut layered microstructures (or-
ange box) where most layers were thinner than
20 lm (particles 10–12). About 98% of these
microstructures were liberated. Two minerals con-
taining rare earth elements were identified as
synchysite (Ca(Ce,La)2(CO3)3F2) and parisite
(Ca1.1(Ce.9,La.5,Nd.3,Pr.1,Y.1,Sm.1)(CO3)3F1.7), of
which 96% were liberated (particle 4) and the
remaining were associated with the carbonate matrix
(particle 9). Liebenbergite appears either liberated
(particle 5) or associated with calcite (particle 8) or
with pyrite in more complex microstructures (parti-
cle 13).

Overview of Particle Mounts

The 3D images of the particle dispersions
showed an approximately homogeneous distribution
of particles throughout the sample (Figs. 8a, b),
which reduced the imaging artefacts relative to the
rock sample and simplified the segmentation of
individual particles. Nevertheless, for sample All-
Sizes, it was inevitable that some of the smaller
particles touched the larger ones (e.g. red circle,
Fig. 8d). Consequently, some segmented regions
may have actually contained more than one particle,
which may have added to the complexity of the
histogram. It should be noted that in most cases, the
difference in size of the touching particles was large,
thus the particle histogram was dominated by the
classes composing the larger particle, and the con-
tribution of the finer particle was imperceptible. For
the sample> 710 lm, which had a narrower size
fraction, real individual particle segmentation was
achieved. In general, the peaks of the histogram
were better defined for sample> 710 lm (Fig. 8e),
possibly because larger microstructures were pre-
served, thus the particles had a higher ratio of bulk
voxels relative to surface voxels, i.e. less voxels af-
fected by partial volume between particle and
background.

The attenuation coefficient of the 11 phases
identified by MLA were calculated assuming an
effective X-ray energy of 73 kV as measured using a
spectral detector (Godinho et al., 2021b; Sittner
et al., 2021). Because the grey-scale of the 16-bit
image (between 0 and 65,535) is directly propor-

tional to the attenuation coefficient, the approxi-
mate grey-value corresponding to each phase was
calculated (Table 1) and compared to the histogram
of the particle dispersions (colour regions, Fig-
ure 8e). Note that the attenuation coefficients of the
nickel–iron phases and the REE phases were
approximate values for the theoretical mineral for-
mula, which might differ from the actual formula of
the mineral found in the deposit and can also be
different between grains. Out of the 11 phases
identified by MLA, only six peaks were distin-
guishable in the whole sample histograms. Several
phases did not seem to be represented by any of the
six peaks based on their expected peak positions
(e.g. ankerite or gaspeite), other phases seemed to
have the peak overlapping with each other (e.g.
magnetite, liebenbergite and pyrite), and some
phases appeared to have the peak position shifted
(e.g. millerite and synchysite). The peak of parisite
was very broad, which suggests that different grains
may have variable element composition. The peaks
of millerite and synchysite appeared to be shifted
possibly due to a different elemental composition of
the phases relative to their theoretical value calcu-
lated.

In conclusion, traditional grey-scale-based
mineral classification strategies that were applied to
the entire 3D images would only result in a very
rough quantitative mineral analysis. From the 11
phases identified in the MLA, only millerite,
synchysite and parisite were represented by a dis-
tinct range of grey-values. The other phases would
require grouping according to the distinguishable
peaks in the whole sample histogram (Table 2).
Additional uncertainty would be expected because
voxels at interphases had grey-values that may be
out of the range of the corresponding class. Next, the
quantitative MSPaCMAn method described above
was applied to samples> 710 lm and AllSizes to
improve the accuracy of quantification and to in-
crease the number of phases that can be distin-
guished.

Particle Histograms vs 3D Microstructures

The first step of quantitative MSPaCMAn is the
assessment of similarities and differences between
individual particle histograms (Figs. 9, 10a). Ideally,
particles with similar compositions would have sim-
ilar histograms. However, type 2 particles, by defi-
nition, have histograms that are dependent not only
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on their composition and microstructure, but also on
their geometrical properties. These particles should
be identifiable, and so they can be processed
according to specific criteria (Fig. 9). The second
step is the grouping of similar histograms and their
corresponding microstructures using the 3D image
of the particles to confirm the similarity of
microstructures (Fig. 10). Third, the 3D
microstructures of each group are compared to the
known microstructures obtained by MLA (Figs. 7,
10c). Fourth, for each group, the characteristic his-
togram parameters are found, and the end member
values are used to define the classification criteria
that are specific of each class (Fig. 11).

Comparing many particle histograms together
can be achieved, for example, using heat maps
(Figs. 9a, 10a). Each vertical line corresponds to the
histogram of a particle, whereby brighter points
correspond to higher frequency of a given grey-value
in a particle, i.e. higher peaks in traditional his-
togram representations. By ordering the particles
from left to right based on particle size (or other
geometrical property), it is possible to also assess the
presence of type 2 particles. For example, the heat
map of sample AllSizes showed a gradual shift of the
histogram peaks towards higher grey-values for
coarser particles (white line in Figure 9a, pink band
in Figure 9b). This was the consequence of the be-
haviour described in Figure 3 for type 2 particles.
Thereafter, Gmax increased as a function of the
equivalent diameter of the particle up to approxi-
mately 110 lm (Fig. 9b). Interestingly, this thresh-
old diameter appeared to be higher for more
attenuating phases (note inclination of the red da-
shed line). Particles with equivalent diameters larger
than 110 lm have similar Gmax, which depends only
on the densest phase in the particle, e.g. grey and
pink regions in Figure 9b, each corresponding to one
class. In conclusion, particles< 110 lm have his-

togram parameters that depend not only on the
particle composition, but also on its size. In the
current work, these particles (about 20% by volume,
Supplementary Figure S1) were excluded from the
quantification described in the next section.

Because the particles in sample> 710 lm were
coarser than 110 lm (Supplementary Figure S1), the
histograms were independent of particle size as
shown by the lack of gradual variations of the his-
tograms from left to right in Figure 10a. Thereafter,
this sample was used to define the classification cri-
teria. The majority of particle histograms had a
single peak between 2300 and 5100 (white arrows,
Fig. 10b), which was within the range expected for
calcite and dolomite, the most abundant phases in
the sample. Note the slight variability of the peak
position and width (Fig. 10a and zoom of P1 and P2
in Figure 10b) was likely due to variable ratios of
ankerite, calcite and dolomite in microstructures
similar to particle 7 in Figure 7. The fine
microstructures between ankerite and dolomite im-
plied that the grey-values representing these
microstructures were between the values of the pure
phases, which coincided with the range expected for
calcite. Therefore, the three carbonate phases can-
not be distinguished at the scan resolution and was
grouped further in a class named carbonate matrix.

Several particle histograms had a peak between
13,000 and 14,000, which was expected for pyrite
(e.g. purple arrows, Fig. 10). These peaks can be
narrow for type 1 particles (e.g. particle 3, Fig. 7;
and P3, Fig. 10) or wider towards lower grey-values
for particles containing other phases. For instance, if
the veins containing magnetite or gaspeite are not
well-resolved (e.g. particle 2, Fig. 7), then a single
peak at a position between magnetite and pyrite is
observed. A second peak associated with particles
containing pyrite appeared typically at the range
expected for liebenbergite (e.g. P4, Fig. 10). How-

Table 2. Best possible classification of particle mounts using either only the grey-scale (traditional segmentation), or quantitative

MSPaCMAn. Phases identified by MLA are coloured as in Figure 7, and the classes defined by MSPaCMAn are coloured as in Figure 10.

The symbol marks the phases that can be identified without grouping
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ever, it is known from MLA that this phase is mostly
associated with the carbonate matrix or liberated
and rarely associated with pyrite. Therefore, the
second peak was interpreted as corresponding to the
typical assemblage of magnetite and gaspeite (e.g.
particle 1, Fig. 7), which are always associated with
pyrite and manifests as a peak between the grey-
values of magnetite and gaspeite. Because both
phases had a similar effect on particle histograms,
they were grouped as one class named Mag-Gasp.

A repeating histogram feature was identified by
orange / yellow arrows. These histograms showed a
wide range of grey-values between about 7,700 and
20,000, and the dominant peak appeared at variable
grey-values. Such features are typical of type 4 par-
ticles. Comparing the microstructures in these parti-

cles with MLA imaged an obvious similarity between
P5 can be seen in Figure 10c and particles 10 and 11 in
Figure 7. The microstructures were composed of the
typical jamborite–millerite association. Because the
ratio of both phases varied in different particles
(compare particle 10 and 11), it was not surprising
that the dominant peak can appear at any grey-value
between the expected range of jamborite and mil-
lerite depending on which phase was dominant. The
smaller the grain sizes, the less likely it is that a
dominant peak can even be distinguished. This would
be the case if all voxels corresponded to interphases
between grains inside the particle.

To summarize, by comparing the microstruc-
tural information from MLA and CT with the par-
ticle histograms, it is possible to distinguish six

Figure 11. Scheme of the decision tree used to distinguish the different classes. The boxes are coloured as in

Figure 10 according to the class identified in each branch.
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individual phases and eight classes following the
MSPaCMAn workflow (different colours in Ta-
ble 2). This is particularly relevant considering that
some phases had similar attenuation coefficients or
were present as microstructure assemblies repre-
sented by grey-values that overlapped with other
phases, e.g. jamborite/millerite and pyrite. Relative
to traditional classification based only on the grey-
scale of the whole image, quantitative MSPaCMAn
doubled the number of phases that can be quantified
individually in this particular mineral system (Ta-
ble 2). Next, the classification criteria that are
specific for the histograms of each class are defined.

Histogram Analysis

The first condition at the top of the decision
tree (Fig. 11) is to divide the dataset into particles
with equivalent diameters finer than 110 lm and
coarser than 110 lm. To prevent phase misclassifi-
cation when using particle histogram parameters, as
Gmax, Gpeak and Gmean depend on particle size, the
finer fraction was not analysed in the current work.
The coarser particle size fraction was passed to the
next branch of the decision tree. In sample AllSizes,
only 3377 particles (about 4% of the total number of
particles) obeyed to the size criteria, which corre-
sponded to about 81% of the total volume of par-
ticles segmented (Supplementary Figure S1). That
means any difference in composition between coar-
ser and finer size classes would be diluted about five
times in the uncertainty of the composition of the
sample if calculated only from the coarser particle
size fraction.

The second layer of the decision tree consists of
screening the Gpeak values. If only one peak is found
(type 1), then Gpeak should appear within the ex-

pected grey-scale range of a class (Table 2, Fig. 10).
In general, type 1 particles of the classes at the
lowest and highest attenuation could be classified
easily because they did not overlap with types 3–5
particles. In this particular mineral system, this cor-
responded to the carbonate matrix and to the par-
isite classes that were mostly liberated and
represented> 94% of the samples masses (Table 3).
In principle, other ranges of grey-values, if unique to
a class of liberated particles, could be defined, al-
though that was not the case in the studied material.
For instance, even though the grey-scale range of the
synchysite class was unique, the class did not occur
liberated; and the ranges of the other classes were
overlapping and required more selective criteria.

The third layer of the decision tree aims at
discriminating particles according to the complexity
of their microstructures. As defined above, the ratio
Gmean/Gmax can be used as an indicator of the
presence of more than one phase, i.e. type 1 particles
have Gmean/Gmax closer to 1. In this case, 0.8 was set
as the threshold of Gmean/Gmax, above which parti-
cles were observed to be of type 1. Most particles
obeying this criterion were liebenbergite or pyrite,
which appeared at close, yet distinguishable, grey-
ranges that were used to discriminate them (Fig. 11).
If Gmean/Gmax< 0.8, then particles have at least two
phases. The millerite–jamborite microstructures can
be distinguished using a Gmax threshold between
14,500 and 20,000, which indicates the presence of
millerite.

The particles that remain unclassified require
additional criteria that add specificity to the
microstructures expected from MLA analysis. The
typical liebenbergite–carbonate matrix association
(P2, Fig. 10c) was characterized by the presence of
the Gpeak of the carbonate matrix and a Gmax<

12,000 that corresponded to small grains of lieben-

Table 3. Mass per cent of the different classes as calculated from MLA and CT

Sample AllSizes > 710 lm

Class MLA CT (EqD> 110 lm) MLA CT

Carbonate matrix 94.0 95.1 96.5 93.9

Gaspeite and magnetite 1.0 0.7 0.1 1.2

Liebenbergite 0.6 0.7 0.4 0.8

Pyrite 2.7 2.1 0.7 1.4

Jamborite 0.4 0.3 0.6 0.7

Millerite 0.3 0.3 0.6 0.3

Synchysite 0.3 0.2 < 0.1 0.2

Parisite 0.6 0.6 0.7 0.6
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bergite without a well-defined Gpeak2. The typical
pyrite–magnetite–gaspeite association (P4, Fig. 10c)
was characterized by a broader peak or two narrow
peaks at grey-scale ranges lower than those expected
for pyrite. Other combinations of two classes (type
3) in a particle are possible and accounted for as
long as two peaks are distinguishable and appear
within a grey-scale range close to the range expected
for a specific class, e.g. large grains of carbonate
matrix and parisite in particle P8, Figure 10. It is also
possible that no Gpeak is found if the peaks are not
well-defined, which can happen for types 2 and 4
particles if the grain sizes were too small.

The selected conditions allowed to classify 1562
of the 1574 particles in sample> 710 lm, and 2668 of
the 3377 particles that passed the first size criterion for
the sample AllSizes. The particles that did not obey
the given classifiers can be either disregarded or seg-
mented using traditional thresholding methods. In
sample> 710 lm, the 12 particles that could not be
classified were of type 5 (e.g. P6, Fig. 10) and were
composed of more than two phases. The grains in
these particles were segmented manually by grey-
scale thresholding similar to traditional segmentation
of 3D images; thus, it is associated with the same
limitations already discussed above. Nevertheless,
because this was only applied to a smaller dataset, the
limitations have minor impact.

In sample AllSizes, a higher percentage of
particles was not classified because, as observed in
Figure 8d, fine particles were often touching the
coarse ones. Consequently, if the fine touching par-
ticles were composed of a class different from the
coarse particle, it added new degrees of complexity
that were not visible in the MLA microstructures.
For instance, new associations between phases could
result in histogram parameters outside the ranges
defined in the decision tree. Nevertheless, in most
cases, the difference in size of the touching particles
was so large that the histogram was dominated by
the classes composing the large particle, which in
most cases were liberated carbonate matrix. Thus,
the application of traditional threshold segmentation
to this case was reasonable because the contribution
of the fine particles was small.

Particle-based Phase Quantification

Once the classes in each particle were identified
using the decision tree, the quantification was done
according to the particle type, following the steps

described above. The mass content of the different
classes quantified from CT and MLA were com-
pared in Table 3 for the two samples. In general,
sample AllSizes showed better agreement between
the composition measured with CT and MLA (less
than 30% difference per class) than sam-
ple> 710 lm. To understand the differences, the
effect of particle size, resolution and the repre-
sentability of the data were analysed for both tech-
niques.

To assess the representativity of the surface of
the grain mount GM> 710 analysed by MLA, the
sample was also analysed by CT (Fig. 12a). One sub-
volume, two voxels thick (20 lm) that contained the
surface of the grain mount (V1), and two other sub-
volumes parallel to V1 but at different depths (V2
and V3) were compared (Figs. 12b, c). Because the
grain mounts were prepared without spacer, the
particles were touching each other; thus, quantita-
tive MSPaCMAn could not be used. Therefore, only
three classes could be segmented by applying grey-
scale thresholds. Note that this rough quantification

Figure 12. 3D image of sample GM> 710 used for MLA

analysis: a top view, b side view, c 2d section at different

heights (V1–V3). V1 corresponds to the surface, which was

analysed by MLA (see Supplementary Figure SI3). Note that

only few particles of each mineral were present in the grain

mount and not all were present in each cross-section.
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of three classes was sufficient to assess the variability
within the grain mount. Figure 12 shows asymme-
tries in the distribution of phases throughout the
grain mount, which resulted in significant variation
of composition at each cross section of the grain
mount (Table 4). The lack of representability of
each section was caused by the low number of par-
ticles carrying some of the phases (Blannin et al.,
2021). Based on the CT scan, it was calculated that
within a sub-volume 20-lm thick (assuming an
electron penetration beneath the surface of up to
20 lm), only about 4.8 mg of material was actually
considered in the MLA. This contrasts with a more
representative 52 mg of material measured in the
particle dispersion of sample> 710 lm with CT. In
conclusion, some of the discrepancies between MLA
and CT in Table 3 could be due to the lack of sta-
tistical representativity of minor phases on the sur-
face analysed by MLA.

In sample GM_AllSizes, the number of particles
on the cross section was much higher; thus, the results
fromMLA were more representative than those from
sample GM> 710. On the other hand, the CT scan
only measured 8.1 mg of material, about 6.4 time less
than sample> 710 lm.Thiswas due to thedifficulty to
disperse particles with awider particle size distribution
and because the size fraction< 110 lm was not ac-
counted for. Therefore, the new method is more suit-
able to analyse samples with narrower particle size
distributions and with sizes that are significantly larger
than the voxel size of the scan. Note that due to less
complexmicrostructure of fine particles, the sources of
uncertainty in the CT scan were expected to be re-
duced, which could also explain the better agreement
between CT and MLA for the sample AllSizes.

DISCUSSION

The new quantitative MSPaCMAn workflow
was tested to quantify the mineral composition of

two particulate samples from the same source rock,
but with different particle size distributions, and the
results were compared to MLA. First, the novelty
and the advantages of the method relative to tradi-
tional CT quantitative analysis are discussed below.
Second, the limitations of the method are analysed
and compared to 2D mineralogy. Third, further
developments of the MSPaCMAn workflow are
proposed.

Advantages Relative to Traditional CT
Quantification

The quantitative extension of the MSPaCMAn
workflow has two key differences relative to tradi-
tional quantitative 3D image analysis. (1) The clas-
sification is undertaken at the particle level, which
simplifies the interpretation of simpler particle his-
tograms, as opposed to assigning a uniform inter-
pretation to the more complex whole sample
histogram representing all microstructures. (2) The
classes are quantified without the need to segment
individual grains, which allows calculating the partial
volume of voxels at different interphases, thus
avoiding biased user input of hard boundaries be-
tween classes.

Individual particle classification allows to iden-
tify specific microstructures that have a grey-scale
signature that overlaps with the signature of other
classes or microstructures in the sample, e.g. differ-
ent classes represented by overlapping grey-ranges
that appear as one peak in the histogram of the
whole image. The refined classification is achieved
by identifying the unique set of histogram-based
criteria that are specific of a class or microstructure.
Because several parameters can be used, the criteria
are more selective than using simple threshold ran-
ges used in traditional segmentation. This improve-
ment is shown, in the analysed samples, to be
advantageous for the cases that (a) even though the

Table 4. Comparison of mass per cent calculated from three 20-lm-thin sub-volumes at different heights of the grain mount used for MLA

quantification. Note that V1 included the surface analysed by MLA. The variability was calculated as the maximum interval between V1

and V3 divided by the average of the three mass percentages

Class Grain mount> 710 lm

V 1 V 2 V 3 variability

Carbonate matrix 97.3 97.2 98.3 1%

Gaspeite Magnetite Liebenbergite Pyrite Jamborite Millerite 2.0 2.3 1.6 35%

Synchysite Parisite 0.7 0.5 0.1 140%
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peaks overlap, the Gpeak is slightly different (e.g.
liberated liebenbergite and pyrite), (b) the typical
association with other phases causes a characteristic
shift of Gpeak (e.g. Mag-Gasp association with pyr-
ite), and (c) specific microstructures that cannot be
resolved at the scan resolution, yet are represented
by a distinctive histogram pattern (e.g. millerite –
jamborite microstructures). In conclusion, the par-
ticle-based classification of this material allowed
quantification of jamborite, liebenbergite, pyrite,
millerite and the magnetite–gaspeite class, which
would not have been distinguishable nor reliably
quantified using traditional 3D image processing
methods.

It is important to consider that even for samples
prepared using the same material, the microstruc-
tures may be dependent on the particle size classes,
i.e. coarser particles are most likely to contain more
complex microstructures, while finer particles are
more likely to be liberated. Therefore, it is proposed
that narrower particle size distributions should be
used in order to narrow the type of microstructures
possible, thus improving the likelihood of a class to
be recognized by the classification criteria. Addi-
tionally, coarser particles are in principle easier to
segment. However, above some particle size, the
complexity of microstructures may increase to the
point where quantitative MSPaCMAn no longer
presents an advantage relative to traditional image
processing methods. In conclusion, the applicability
of the method should be assessed based on particle
size distribution, the grain sizes and the resolution of
the CT scan.

Another advantage of quantitative MSPaC-
MAn is that the volume of each class is quantified
directly from particle histograms without grain seg-
mentation. This allows calculating the partial vol-
ume of voxels at interphases using Eq. 1, which is
automatically applied to every particle according to
the classes present. In a different manner, traditional
3D quantitative analysis requires user-biased input
to define the boundary between grains, each con-
taining 100 per cent of a class, e.g. grey-scale
thresholds or ground truth mask used to train AI-
based segmentation models. The quantification bias
is also reduced because the segmentation of particles
is more accurate, and it generates less interphases
than segmentation of individual grains within a
particle. Importantly, the boundary of all particles
has a common neighbour phase (the sample matrix),
which has a constant Gpeak that is independent of
particle composition. This allows treating voxels at

the boundary separately from voxels inside the
sample, which reduces further the quantitative
uncertainty at boundaries. Additionally, avoiding
the segmentation of grains also enables the quan-
tification of phases that appear as small grains in
type 4 particles, which cannot be segmented accu-
rately by traditional methods.

Comparison between 2 and 3D Mineralogy

Deriving classification criteria from particle
histograms is shown to improve the ability to
quantify additional phases that would have not been
distinguishable from the grey-scale alone. However,
this approach also carries risks that must be evalu-
ated per material. To summarize, the accuracy of
MSPaCMAn to quantify mineral compositions is
affected by three general factors: (1) the contrast
between phases and the spatial resolution in relation
to the size of particles and grains; (2) the represen-
tativity of the preliminary mineralogical information
in relation to the material and to the volume actually
analysed by the CT; and (3) the complexity of
microstructures that may reduce the universality of
the classification criteria. Factors 1 and 2 are typi-
cally linked because, similar to other imaging tech-
niques, increasing sample representativity implies
larger scanning fields of view, worse resolutions and
longer scanning and analysis times.

Even though MSPaCMAn improves the capa-
bility to distinguish phases and increases the accu-
racy of quantification relative to other 3D image
analysis methods, it is clear that it lags behind 2D
MLA when it comes to the ability to identify mineral
phases. Depending on the complexity of the mate-
rial, it is reasonable to expect that techniques cap-
able of measuring direct chemical information or
have higher spatial resolution would be able to dis-
tinguish more phases than CT-based methods.
Nevertheless, this cannot be described as a limita-
tion of MSPaCMAn but rather contextualized in the
scope of each material. For example, the need to
group dolomite, calcite and ankerite is not due to a
physical limitation of the method but rather due to
the small grain size and association of dolomite and
ankerite. Note that the MLA uses a step size of 1 lm
to resolve grains. Arguably, if the CT scan was done
with a higher resolution, it could have been possible
to discriminate the three carbonate phases because
their attenuation coefficients are sufficiently differ-
ent. However, it would also be expected that due to
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the smaller fields of view required to increase the
resolution to 1 lm, the amount of material analysed
may have been less representative, similar to the
observations in Figure 12 for MLA.

The classification criteria are only as reliable as
the preliminary information used to interpret the
particle histograms. For instance, a wrong classifi-
cation of the MLA would be transferred to a mis-
classification in the CT. This could have been the
cases of synchysite and of millerite, for which the
observed Gpeak did not match the value expected
based on the theoretical attenuation coefficient. It is
possible that those deviations were due to variable
element composition within the same phase that
may be sufficient to affect the attenuation coefficient
and perhaps the density. Consequently, the value of
density used to convert volume into mass may also
contribute to some of the discrepancies observed
between CT and MLA. In this sample, this was not
expected to be significant for synchysite and mil-
lerite due to their relatively small amounts. Never-
theless, because some phases must be grouped into
classes for which an overall density must be as-
sumed, it is natural to have some differences in re-
sults from CT and MLA. For example, due to the
high weight of the carbonate matrix in the mineral-
ogy, even small variations of the ratio dolomite,
calcite and ankerite that were detectable by the
MLA but not by the CT could affect the overall
mass balance of all classes.

In conclusion, similar to 2D MLA, quantitative
MSPaCMAn is affected by the same sources of
uncertainty, e.g. spatial resolution versus field of
view and sample representativity, and classification-
biased input. However, the particle-based analysis
and the imposition of classification criteria are ex-
pected to minimize those sources of uncertainty. The
improved accuracy of quantitative 3D mineralogical
analysis is a necessary step to the acceptance of CT
as a suitable complementary technique to standard
2D automated mineralogy methods. This suitability
is of course subject to the adequacy of material and
the resolution of the CT scanner to the scientific
question to be answered.

Further Developments

This paper lays the ground to broaden the
applicability of quantitative 3D automated miner-
alogy. Further understanding of how the geometric
properties of particles affect their histogram

parameters may reduce the particle size threshold
that is excluded from the quantification. For exam-
ple, by establishing the function defining the pink
region in Figure 9b, along which the equivalent
diameter is proportional to Gmax, parisite could be
quantified for particles finer than 110 lm. Naturally,
there is a limit where the functions from the differ-
ent phases overlap, which signifies that the classes
cannot be distinguished. Nevertheless, determining
the size threshold below which the quantification is
expected to be wrong is crucial to any trustable an-
alytical technique, and it represents an additional
advantage relative to traditional CT quantification.

This method has the potential to perform better
than 2D image methods to analyse coarse particle
sizes, for which minor phases may not be represen-
tative. However, coarse particles of materials with
high complexity are more likely to contain more
than two classes per particle. Therefore, extending
the method to the quantification of multiple classes
per particle would boost its applicability to charac-
terize ore samples. The identification of various
Gpeak per particle is already possible. However,
recognizing voxels with partial volume correspond-
ing to each interphase is not yet possible without
segmenting the individual grains. The development
of spectra deconvolution methods specific to CT
particle histograms may solve this challenge.

The application of this method to increasingly
complex particulate materials may require decision
trees with more branches and possibly more robust
criteria to narrow the classification of very specific
microstructures. One possibility is to use statistical
analysis methods to automatically cluster particle
types based on a combination of both geometrical
properties and histogram derived parameters. This
would also contribute to define the end members of
a class, which would substitute the need to define the
ranges of a parameter for each class based on visual
observation. Therefore, this step is crucial to make
the method more automated and less input bias,
which are two key necessities on the path of
MSPaCMAn to become a standardized workflow
that is acceptable and broadly applicable in the raw
materials community.

CONCLUSION

The new quantitative extension of the
MSPaCMAn workflow consists of breaking the
complexity of a sample into smaller sub-volumes
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(individual particles). Because microstructures in a
particle are simpler than those in the whole sample,
the classification can be refined using histogram-
based particle properties instead of only grey-value
thresholds. Additionally, voxels that are affected by
partial volume can be distinguished in the particles
that contain a maximum of two classes without the
need to segment individual grains. Therefore, the
partial volume of each class can be quantified with
less uncertainty and without the biased definition of
boundaries between classes associated with 3D im-
age segmentation. This was demonstrated to be
possible using quantitative MSPaCMAn, even for
classes with overlapping grey-ranges and for grains
close to or below the voxel size of the scan.

Despite the improved ability to distinguish
minerals and the increased accuracy of volume
quantification relative to traditional quantitative 3D
image analysis, MSPaCMAn still does not bring CT
as a standalone mineral characterization technique
because preliminary 2D microstructural information
is necessary. Yet, it is shown that more statistically
relevant information can be obtained from a 3D
image of particle dispersion than from a cross sec-
tion of a grain mount analysed by MLA, especially if
particles are large and if some phases are present in
small amounts.

The overall balance between advantages and
limitations of the workflow must be judged case by
case based on the particle size, type of microstruc-
tures present, phase composition and the scientific
question to be answered. Nevertheless, the new
method shows potential as an alternative to tradi-
tional 3D analysis for particulate materials, and it
shows complementary advantages relative to well-
established 2D-based mineral quantification tech-
niques. In particular, considering that the 3D geo-
metrical properties and the 3D surface liberation of
the individual particles can also be measured in
addition to the mineralogy, quantitative MSPaC-
MAn may become an impactful tool in the raw
materials industry and particle technology.
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