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Backbreak (BB) is one of the serious adverse blasting consequences in open-pit mines,
because it frequently reduces economic benefits and seriously affects the safety of mines.
Therefore, rapid and accurate prediction of BB is of great significance to mine blasting
design and other production activities. For this purpose, six different swarm intelligence
optimization (SIO) algorithms were proposed to optimize the extreme learning machine
(ELM) model for BB prediction, i.e., ELM-based particle swarm optimization (ELM–PSO),
ELM-based fruit fly optimization (ELM–FOA), ELM-based whale optimization algorithm
(ELM–WOA), ELM-based lion swarm optimization (ELM–LOA), ELM-based seagull
optimization algorithm (ELM–SOA) and ELM-based sparrow search algorithm (ELM–
SSA). In total, 234 data records from blasting operations in the Sungun mine in Iran were
used in this study, including six input parameters (special drilling, spacing, burden, hole
length, stemming, powder factor) and one output parameter (i.e., BB). To evaluate the
predictive performance of the different optimization models and initial models, six perfor-
mance indicators including the root mean square error (RMSE), Pearson correlation coef-
ficient (R), determination coefficient (R2), variance accounted for (VAF), mean absolute
error (MAE) and sum of square error (SSE) were used to evaluate the models in the training
and testing phases. The results show that the ELM–LSO was the best model to predict BB
with RMSE of 0.1129 (R: 0.9991, R2: 0.9981, VAF: 99.8135%, MAE: 0.0706 and SSE: 2.0917)
in the training phase and 0.2441 in the testing phase (R: 0.9949, R2: 0.9891, VAF: 98.9806%,
MAE: 0.1669 and SSE: 4.1710). Hence, ELM techniques combined with SIO algorithms are
an effective method to predict BB.
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INTRODUCTION

Blasting has been regarded as the main effec-
tive technique for rock excavation in open pit and
underground mines (Bhandari 1997; Armaghani
et al. 2016; Wang et al., 2018a, b; Huo et al.,
2020; Du et al., 2022). Nevertheless, only a small
amount (20–30%) of the explosive energy is used to
break rock with current blasting techniques, and
most (70–80%) of the explosive energy is lost with
varying degrees of adverse consequences (Fig. 1)
such as flyrock, backbreak and air blast (Agrawal
and Mishra 2018; Uyar and Aksoy 2019; Fang et al.,
2020; Fattahi and Hasanipanah 2021; Ramesh et al.,
2021; Ye et al., 2021; Zhou et al., 2021a, b, c; Dai
et al., 2022). Among these unwanted consequences,
backbreak (BB) is one of the continuous and fo-
cused concerns of blasting engineers and scholars
(Khandelwal and Monjezi 2013; Shirani et al., 2016).
BB is defined as the damaged rocks beyond the
limits of the last row of holes (Konya and Walter
1991; Jimeno et al., 1995). Different studies have
investigated various parameters associated with BB,
including controllable blasting parameters and
uncontrollable blasting parameters (Konya and
Walter 1991; Bhandari 1997; Konya 2003; Monjezi
and Dehghani 2008; Monjezi et al., 2010a, b). Con-
trollable parameters include blast design parameters
and explosive properties such asburden (B), spacing
(S), stemming (ST), subdrilling (SU), blasthole
length (BL), blasthole diameter (BD), stiffness ratio
(SR), explosive type, explosive density, explosive
strength, powder factor (PF) and coupling ratio (Sari
et al., 2014; Ghasemi 2017). Konya (2003) found that
BB is positively correlated with ST and B. Monjezi
and Dehghani (2008) considered that ST/B, PF,
charge per delay and other parameters have the
greatest influence on BB. Monjezi et al., (2010a)
reported the different influences of ST, B, S and
depth of the hole (DH) on BB. Sari et al. (2014)
showed that reducing explosive strength and PF can
effectively reduce BB. Several researchers reported
the effects of different materials of explosive and
coupling ratio on BB (Wilson and Moxon 1988;
Firouzadj et al., 2006; Iverson et al., 2009; Enaya-
tollahi and AghajaniBazzazi 2010). Uncontrollable
blasting parameters refer to physical and mechanical
properties of rock masses such as rock density, rock
porosity, rock strength, discontinuities orientation,
and discontinuities strength (Ghasemi 2017). Bhan-
dari and Badal (1990) considered the relationship

between the orientation of discontinuities and BB.
Bhandari (1997) showed the effects characteristics of
rock mass on BB. Jia et al. (1998) believed that
joints with a dip angle were one of the main causes
of BB based on the numerical simulation results.

Because it is too difficult to evaluate and predict
BB quickly and correctly based on the various
influence parameters, several scholars proposed
some empirical models or regression models to
predict BB by considering different input variables
from controllable or uncontrollable blasting param-
eters (Lundborg 1974; Roth 1979; Monjezi et al.,
2010a, b; Esmaeili et al., 2014). Nevertheless, only
partial valid parameters were considered in empiri-
cal formulas, which lack updates to new data
(Saghatforoush et al., 2016; Kumar et al., 2021). In
recent years, artificial intelligence (AI) technologies
had been used widely in civil and mining engineering
to solve forecasting problems (Zhou et al., 2012,
2016, 2019, 2022a, b; Khandelwal and Singh,
2011; Khandelwal et al., 2017, 2018; Nguyen et al.,
2020; Armaghani et al., 2020, 2021; Wang et al.,
2021; Li et al., 2021a, b). Several researchers have
adopted different AI technologies to predict BB,
including, among others, artificial neural network
(ANN) (Monjezi et al., 2013, 2014; Esmaeili et al.,
2014), back propagation neural network (BPNN)
(Sayadi et al., 2013), support vector machine (SVM)
(Khandelwal and Monjezi 2013; Mohammadnejad
et al., 2013; Yu et al., 2021), adaptive neuro-fuzzy
inference system (ANFIS) (Esmaeili et al., 2014;
Ghasemi et al., 2016), and random forest (RF) (
Sharma et al., 2021; Zhou et al., 2021c; Dai et al.,
2022). Nonetheless, most single AI algorithms are
prone to falling into local minima with low learning
rates, particularly ANN, SVM, and ANFIS (Wang
et al., 2004; Moayedi and Jahed Armaghani 2018;
Ghaleini et al., 2019). The extreme learning machine
(ELM) proposed by Huang et al., (2006) was proved
to be superior to ANN and SVM in solving the
prediction problem (Shariati et al., 2020). Mean-
while, swarm intelligence optimization (SIO) algo-
rithms based on the biological behavior of natural
populations have been used widely to optimize sin-
gle AI algorithms to improve the performance of the
model for BB prediction (Ebrahimi et al., 2016;
Saghatforoush et al., 2016; Ghasemi 2017; Hasani-
panah et al., 2017; Eskandar et al., 2018; Zhou et al.,
2021c; Bhatawdekar et al., 2021; Dai et al., 2022;).

Therefore, this study aimed to develop novel
hybrid ELM models by using six SIO algorithms to
predict BB in an open pit, i.e., ELM-based particle
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swarm optimization (ELM–PSO), ELM-based fruit
fly optimization (ELM–FOA), ELM-based whale
optimization algorithm (ELM–WOA), ELM-based
lion swarm optimization (ELM–LSO), ELM-based
seagull optimization algorithm (ELM–SOA) and
ELM-based sparrow search algorithm (ELM–SSA).
The rest of this study is organized as follows. The
section ‘‘Methodology’’ introduces the ELM model
and six SIO algorithms. The section ‘‘Dataset and
Preparation’’ shows data sources and detailed data
analysis. The section ‘‘Performance Indicators’’
introduces six indicators to evaluate the perfor-
mance of different models. The section ‘‘Results and
Discussion’’ describes the development of all models
and displays the results of models for BB prediction.
The section ‘‘Conclusion and Summary’’ gives the
main conclusion remarks of this study and some
personal opinions.

METHODOLOGY

Extreme Learning Machine

Huang et al. (2006) proposed a special neural
network model, called the ELM, as one of the sin-
gle-layer feed-forward neural network (SLFN)
architectures. This model has one hidden layer,
which can easily handle optimization problems by
simply adjusting the number of neurons in the hid-
den layer (Zhang et al., 2021a, b). Assuming a
training set D that contains K-dimensional (

xi ¼ xi1; xi2; . . . ; xiK½ �T) input vectors and L-dimen-

sional output vectors ti = ti1; ti1; ::: :::;tiL½ �T , an
effective ELM model is built to simulate the internal

connection between input and output vectors
according to the following three steps.

� Step 1: Building an SLFN. The purpose of this
step is to establish preliminarily the input weights
Wq and bias Bq between the input layer and the
hidden layer, and the output weights bi between
the hidden layer and the output layer. Therefore,
an SLFN with M neurons in a hidden layer can
be written as:

XM

q¼1

big Wq � xi þ Bq

� �
¼ ti i ¼ 1; 2; 3; :::;D ð1Þ

where g(x) represents the activation function, wq

belongs to the set W: Wq1; Wq1; ::: :::;Wqn

� �T
, and Bq

belongs to B: Bq1; Bq1; ::: :::;Bqn

� �T
.

� Step 2: Selecting weights and biases. These have
an important effect on the output for a certain
number of neurons in the hidden layer. To min-

imize the output error
PP

i¼1 ti � ui ¼ 0, the SLFN
in step 1 can be transformed to:

XM

q¼1

big Wq � xi þ Bq

� �
¼ ui i ¼ 1; 2; 3; :::;D

ð2Þ

where ui = ui1; ui1; ::: :::;uiL½ �T represents the
target vector. Then, the output of hidden
layer neurons H and weights b can be ex-
pressed as:

Figure 1. Adverse consequences of blasting in an open-pit.
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HðW1; :::WM; B1; ::BM; x1; :::xMÞ

¼

gðW1 � x1 þ B1Þ � � � gðWP � x1 þ BMÞ
..
.

� � � ..
.

gðW1 � xD þ B1Þ � � � gðWM � xD þ BMÞ

2
664

3
775

D�M

b ¼
bT
1

..

.

bT
M

2
664

3
775

M�L

ð3Þ

� Step 3: Estimating the weights between the hid-
den and output layers. The optimal output weight
can be solved by an inverse hidden layer output
matrix (Shariati et al., 2019). It means that the
target vector Tv is closest to the real vector.
Therefore, the target vector Tv and the corre-

sponding output weights vector b̂ can be ex-
pressed as:

Tv ¼ H � b ¼
uT
1

..

.

uT
D

2
64

3
75

D�L

b̂ ¼ HyTv ð4Þ

where Hy is Moore–Penrose generalized in-
verse matrix.

Swarm Intelligence Optimization

Particle Swarm Optimization

Kennedy and Eberhart (1995) proposed a par-
ticle swarm optimization (PSO) algorithm to solve
the optimization problem inspired by the predation
behavior of birds. The core of PSO comprises
massless particles with velocity and position.
Velocity indicates how fast birds search for food,
and position affects the direction of birds. Each bird
(particle) is independent but shares the position of
the food at the same time. Throughout the search
space, the individual extremum is a position of food
for each bird. Birds aim to move toward the best
food location by comparing shared food positions.

The velocity and position of each bird in the n + 1th
iteration can be expressed by two mathematical
formulas, thus:

Vnþ1
i ¼ uVn

i þ c1r1ðPn
individual;i � Pn

i Þ þ c2r2ðPn
group;i

� Pn
i Þ i

¼ 1; 2; . . . ;N

ð5Þ

Pnþ1
i ¼ Vnþ1

i þ Pn
i ð6Þ

where N is the number of particles, u is a factor not
less than zero, c1 and c2 are individual and social
learning factors, where c1 = c2 = 2 in this study, r1

and r2 are random numbers between 0 and 1, and
Pn

individual;i and Pn
group;i are the optimal positions for

the individual and the group, respectively.

Fruit Fly Optimization Algorithm

Pan (2012) proposed a new algorithm based on
the foraging behavior of fruit flies to solve the global
optimization problem, named the fruit fly opti-
mization algorithm (FOA). The fruit fly is consid-
ered one of the best hunters in nature because of its
excellent sense of smell and vision. The illustration
of the body looks and foraging process of the fruit fly
is depicted in Figure 2. Within a certain range of
search space, the fruit fly first activates the olfactory
function to search for food. After approaching, it
uses keen vision to search for food precisely and
finally determine the position. Therefore, there are
two main steps in the FOA.

� Step 1: Osphresis search. Assume the position of
one fruit fly is (xi, yi), which randomly searches
for food in a certain space based on olfactory
feedback. However, the position of the food is
not known in advance. The smell concentration
(Smelli) is assumed to be inversely proportional
to the distance (Disti) of the ith fruit flies from the
starting point (0, 0). Then, the Osphresis foraging
can be expressed as:

xi ¼ x axisþ randomvalue

yi ¼ y axisþ randomvalue

(
ð7Þ

Disti ¼ ðx2
i þ y2

i Þ
0:5 ð8Þ

Smelli ¼ 1=Disti ð9Þ

3020 C. Li et al.



� Step 2: Vision search. Olfactory search aims to
determine the position of flies with the best smell
concentration (Smellbest) and moving toward the
position (x_axis, y_axis), which can be expressed
as:

Smellbest ¼ maxSmelli
x axis ¼ xðSmellbestÞ
y axis ¼ yðSmellbestÞ

(

ð10Þ

Whale Optimization Algorithm

Mirjalili and Lewis (2016) developed the whale
optimization algorithm (WOA) by mimicking the
predatory behavior of humpback whales in the
ocean. Whales are relatively intelligent creatures in
the ocean, thanks to having more than twice as many
spindle cells as humans, especially humpback whales
have even developed their own language (Hof et al.,
2007). The most interesting thing about humpback
whales is their foraging behavior, which is called
bubble-net hunting as shown in Figure 3a. This for-
aging is required such that humpback whales dive
12–15 m to the bottom of the shoal and then attack

by creating bubbles along a circle or �9�-shaped path
(Mirjalili and Lewis 2016; Fan et al., 2020; Zhou
et al. 2022c). Before hunting, humpback whales are
very good at locating and encircling prey, and this
behavior can be expressed mathematically as:

E ¼ C1 � X�
wðnÞ � XðnÞ

�� ��C1 ¼ 2f ð11Þ

Xðn þ 1Þ ¼ X�
wðnÞ � C2 � E C2 ¼ 2b � f � b ð12Þ

where C1 and C2 are coefficient vectors, respectively,
X�

w and X represent the best and current positions of
whales, respectively, in the nth iteration, E is the
absolute value of the distance between whales and
prey, and e is decreasing from 2 to 0 in the course of
iteration, and u is randomly changed in [0, 1].

After encircling their prey, humpback whales
shrink encircling and constantly reposition them-
selves to complete the bubble-net feeding behavior.
As shown in Figure 3b, the shrinking encircling
behavior is done by decreasing b in Eq. 11. Mean-
while, the positions of humpback whales (X, Y) are
also changing in a spiral as shown in Figure 3c. The
new position of the whale is expressed as:

Xðn þ 1Þ ¼
X�

wðnÞ � C2 � E if x \0:5

E � expsl �cos 2plð Þ þ X�
wðnÞ if x [0:5

�

ð13Þ

where x and l are changed randomly in [0, 1], and s is
a constant to define the spiral shape.

Figure 2. Foraging process of fruit flies.
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Lion Swarm Optimization

Liu et al. (2018) proposed the lion swarm opti-
mization (LSO) based on the hunting behavior of a
lion swarm in nature. There is a strict social hierar-
chy within a lion swarm. The first echelon is the king
lion, called a leader. A leader is responsible for
assigning tasks to the other lions, distributing food
and accepting status challenges. The second echelon
is the lioness, called a predator. The predator is
responsible for hunting, including searching for,
tracking, trapping, and attacking prey. In addition,
the predator is a direct communication link between
the leader and the other lions and is responsible for
giving instructions and feedback. The lion cubs are
at the bottom of the swarm, and their main job is to
learn how to hunt from a predator, a called follower.
Once in their adulthood, followers are driven out of
the group and trained to challenge the leader. As-
sume a lion swarm has N lions, where the ratio of
leaders is less than 0.5, the positions of the lions in
the different echelons are expressed as follows.

(a) The position of leader is near the food:

pkþ1
i ¼ gkð1þ c lk

i � gk
�� �� ð14Þ

(b) The predator often needs the help of another
lioness to move:

pkþ1
i ¼ lk

i þ lk
c

2
ð1þ af cÞ ð15Þ

(c) The positions of the cubs are determined by
the leader and the predator:

pkþ1
i ¼

lk
i
þgk

2 ð1þ accÞ; q � 1=3
lk
mþlk

i

2 ð1þ accÞ; 1=3 � q\2=3
lk
i
þgk

2 ð1þ accÞ; 2=3 � q � 1

8
>><

>>:
ð16Þ

where pkþ1
i represents the position of the ith

leader at the k + 1th iteration, gk and lk
i

represent the optimal and historical posi-
tion of the leader in the kth iteration,
respectively, c and q are changed randomly

in [0, 1], lk
c and lk

m represent the historical
position of the ith predator and follower at

the kth iteration, respectively, and gk rep-
resents the current position of followers.
The disturbance factors are defined as af

and ac in the movement range of predator
and follower.

Seagull Optimization Algorithm

Dhiman and Kumar (2019) proposed a new
algorithm, called the seagull optimization algorithm
(SOA), based on the migration and attacking
behavior of seagulls (Fig. 4) to solve the optimiza-
tion problem. Seagulls rely on unique intelligence to
catch prey, such as imitating the sound of rain to lure
fish to the surface (Dhiman and Kumar 2019). As a

Figure 3. The encircling and bubble-net hunting behavior of humpback whales.
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kind of seasonal migration, seagulls need to obtain
food to supplement energy in the process of migra-
tion to reach the destination (Avise 2017). However,
the population of seagulls is very large in migration
such that it is important to avoid colliding with each
other. Assume the movement behavior (U) of
seagulls, and this problem can be solved as:

~xs ¼ U � ~Ns tð Þ ð17Þ

U ¼ C � ðt � ð C

m iter
ÞÞ ð18Þ

where ~xs and ~Ns represent the updated and current
position of the seagulls, respectively, t represents the
iteration time, m_iter indicates the maximum itera-
tion, and C represents a control factor of U, which
can be decreased linearly from 2 to 0. To get enough
good food, seagulls need to constantly adjust their
position to keep moving toward the best food. This
behavior can be described as:

~Ds ¼ F � ~Nbs tð Þ � ~Ns tð Þ
	 


ð19Þ

~As ¼ ~xs þ ~Ds

���
��� ð20Þ

where ~Nbs tð Þ represents the current best position of a

seagull, ~Ds indicates the position where the current

seagull toward the best seagull, ~As represents the
distance between the updated seagull and the best

seagull, and F is a balance factor that can be esti-
mated as:

F ¼ 2U2 � h ð21Þ

where h is changed randomly in [0, 1]. The seagulls
maintain a spiral motion and change the angle and
speed through their wings and weight in the attack.
This attack pattern can be written in x, y, z planes,
thus:

x
_ ¼ r � cosK; y

_ ¼ r � sinK; z
_ ¼ r � K ð22Þ

r ¼ c1 � eKc2 ð23Þ

where r indicates the radius of the spiral in each
turn, K represents a random number in the range 0–
2p, c1 and c2 represent constants to describe the
shape of a spiral, and e is the base of the natural
logarithm. Therefore, the best position of seagulls is
calculated as:

~NsðtÞ ¼ ð~As � x
_ � y

_ � z
_Þ þ ~Nbs tð Þ ð24Þ

Sparrow Search Algorithm

Xue et al. (2020) developed a new SIO algorithm
that was inspired by the foraging behaviors of spar-
rows. The sparrows are common small social birds and
do not migrate seasonally. Meanwhile, sparrows have

Figure 4. Migration and attacking behavior of seagulls.
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powerful memories that help them better find food.
Note that the sparrows are mainly divided into two
types in this so-called sparrow search algorithm
(SSA). The producers are responsible for searching
for high-energy foods, and the food of the scroungers
comes from the producers. The interesting thing is the
flexible interchangeability of the producers and the
scroungers identities, but the ratio of producers to
scroungers is fixed in the sparrow swarm (Barta et al.,
2004; Xue et al., 2020). This means that the strategy is
useful for the producers and the scroungers to find
higher-energy foods (Liker and Barta 2002). The
natural curiosity of sparrows helps the producers, and
the scroungers evade attackers. When one or more
individuals spot attackers and sing, the entire swarm
flies away (Pulliam 1973).

Assuming that there are n sparrows, J repre-
sents the spatial distribution and setting of the
warning signal Ws. In the SSA, the producers are not
only responsible for finding the food, but also for
feeding the scroungers. Therefore, the producers can
search a wider area for energy-dense foods, and the
position of the producers can be written as:

Skþ1
i;j ¼

Sk
i;jþQ � L;R2 	 Ws

Sk
i;j � exp �i

a�itermax

	 

; R2\Ws

(
ð25Þ

where Skþ1
i;j represents the position of the ith pro-

ducer in the jth dimension at the k + 1th iteration, Q
represents a random number that follows a normal
distribution, L represents a matrix ( 1� d) where
each element is 1, and the maximum number of
columns (d) is the maximum dimension of J; a and
R2 are random numbers that vary in ð0; 1Þ, and
itermax indicates the maximum time of iteration. As
shown in Eq. 25, when R2>Ws it means that indi-
viduals detect the attackers, the producers and the
scroungers quickly fly to safe places. Inversely, the
producers continue to search for food. The positions
of the scroungers are related to the producers. The
scroungers grab the producers of higher energy
foods and update their positions according to:

Skþ1
i;j ¼

Q � expðSk
worst�Sk

i;j

i2
Þ;i[n

2

Skþ1
b þ Sk

i;j � Skþ1
b

���
��� � Aþ � L; i � n

2

8
<

: ð26Þ

where Skþ1
b and Sk

worst represent the current best

position of the producers and the global worst
position, A represents a matrix ( 1� d) where each
element is 1 or -1 and the maximum number of

columns (d) also is the maximum dimension of J,

and Aþ ¼ ATðAATÞ�1. However, if i> n/2, then the
ith scrounger is most likely the starving sparrow. As
soon as one or more individuals spot attackers, the
sparrows move to safety. The mathematical expres-
sion for this behavior is:

Skþ1
i;j ¼

Sk
best þ b � Sk

i;j � Sk
best

���
���; fi[fb

Sk
i;j þ j � Sk

i;j�Sk
worstj j

ðfi�fwÞþe

� �
; fi ¼ fb

8
><

>:
ð27Þ

where Sk
best represents the current global best posi-

tion at iteration k, b shows a control factor of step
size that corresponds to a normal distribution with a
mean of 0 and a variance of 1, j represents a random
number in [-1, 1]. Here, fi, fb and fw are values of a
present sparrow, the current global best and worst,
respectively. e is a constant to avoid fi= fw. To put it
simply, fi> fb indicates that sparrows in this position
are highly vulnerable to attacker assail, while fi = fb

indicates that sparrows in the center of the group are
also aware of the presence of an attacker and begin
to approach others to reduce the risk.

Dataset and Preparation

The Sungun mine is one of the large open-pit
mines in Iran (Fig. 5). Investigations have shown
that the maximum BB in this mine was 10 m. In
total, 234 blasting operations recorded by Khandel-
wal and Monjezi (2013) in the Sungun mine were
used as a dataset in this study. Before a blasting
operation, controllable blasting parameters can be
set and recorded by blasting engineers actively.
Therefore, B, HL, ST, S, PF and special drilling
(SD) were used as input parameters to predict BB.
Figure 6 shows details of the six input parameters in
boxplots, and the correlations between different
parameters and BB are shown in Figure 7. The da-
taset was divided randomly into two groups: The
training set (70%) was responsible for constructing
the prediction model with certain precision, and the
testing set (30%) was responsible for evaluating the
prediction performance of the model.

Performance Indicators

In order to obtain accurately the prediction
performance of ELM and six novel ELM–SIO
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Figure 5. Location of the Sungun mine in Iran, which used as case study for forecasting BB ( modified from Khandelwal and Monjezi

(2013)).

Figure 6. Boxplots of input parameters.
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models, the root mean square error (RMSE), Pear-
son correlation coefficient (R), determination coef-
ficient (R2), mean absolute error (MAE), variance
accounted for (VAF) and sum of square error (SSE)
were used to evaluate these models in the training
and testing phase. This was performed not only to
verify the optimization effect of the swarm intelli-
gence algorithm but also to select the best model for
application in practical engineering. Therefore, six
performance indicators were defined as follows
(Hasanipanah et al., 2016; Zhou et al., 2020a, b,
2021a, b;; Jahed et al., 2021; Li et al., 2021a, b, c; Xie
et al., 2021a, b):

R ¼
N �

PN

i¼1

ðyi � tiÞ �
PN

i¼1

yi �
PN

i¼1

ti
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N �
PN

i¼1

y2
i �

PN

i¼1

yi

� �2
" #

� N �
PN

i¼1

t2i �
PN

i¼1

ti

� �2
" #vuut

ð28Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

yi � tið Þ2
vuut ð29Þ

R2 ¼

PN

i¼1

ðyi � yÞ � ðti � tÞ
� �2

PN

i¼1

ðyi � yÞ �
PN

i¼1

ðti � tiÞ
ð30Þ

MAE ¼ 1

N

XN

i¼1

yi � tij j ð31Þ

VAF ¼ 1� varðyi � tiÞ
varðyiÞ

� �
� 100% ð32Þ

SSE ¼
XN

i¼1

yi � tið Þ2 ð33Þ

where N represents the number of samples, yi and y
indicate the observed and mean observed BB,
respectively, and ti and t indicate the predicted and
mean predicted BB, respectively.

RESULTS AND DISCUSSION

In total, seven models were considered for BB
prediction. Figure 8 depicts the entire prediction
process, including input data, model development,

Figure 7. Correlations between input and output parameters.
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and performance evaluation. In addition to stability
analysis, model development and performance
evaluation were emphasized.

Models Development

ELM Model

Six swarm intelligence models were developed
based on ELM. Therefore, it was necessary to
determine the optimal ELM structure. ELM is a
special neural network structure with a single hidden
layer, and the number of neurons in the hidden layer
determines the performance of prediction. In this
study, the RMSE index was used to evaluate the
performance of ELM in the training and testing
phases. The initial number of neurons was 10, and
the next experiment increased by increments of 10
and was stopped until 150. Table 1 shows the pre-

diction performance and corresponding RMSE val-
ues of the considered model with different numbers
of neurons in 15 experiments. As shown in this table,
the lowest RMSE occurred in the hidden layer with
60 neurons in both the training and testing phases.
Therefore, an ELM model with 60 neurons in the
single-layer feed-forward neural network (SLFN)
architecture was developed (Fig. 9).

ELM–SIO Models

Six ELM–SIO models were developed with the
same architecture as the ELM (i.e., a hidden layer
with 60 neurons in the SLFN). Thus, the optimiza-
tion problem was to obtain the best input weights
and biases value. SIO is a relatively new idea, and it
was proposed by imitating the behavior of insects
and animals (Saghatforoush et al., 2016). Different
from other methods, SIO only needs to train the

Figure 8. Flowchart of predicting BB.
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most appropriate population to solve an optimiza-
tion problem. For example, Shariati et al. (2020)
considered 75 wolves in the ELM–GWO model to
predict the compressive strength of concrete with
partial replacements for cement. For a similar pur-
pose, six ELM–SIO models (ELM–PSO, ELM–
FOA, ELM–WOA, ELM–LSO, ELM–SOA, ELM–
SSA) were used here to obtain the optimal number
of the population in a certain number of iterations.
The RMSE index was also used here to evaluate the
model performance, and the calculation time of each
iteration was also recorded. The result of the fitness
value in a different numbers of the population is
shown in Figure 10. This illustrates that the fitness
value was not affected by the number of the popu-
lation that exceeded 400 iterations in the ELM–PSO
model, the rest were 500 in FOA (Fig. 10b), 300 in
WOA (Fig. 10c), 500 in LSO (Fig. 10d), 400 in SOA
(Fig. 10e) and 500 in SSA (Fig. 10f). As shown in
Figure 11, the lowest RMSE and the corresponding
iteration time are shown per ELM–SIO model each

with a different number of populations. As can be
realized, 60 birds were considered in the ELM–PSO
model, the rest were 50 fruit flies in FOA (Fig. 11b),
50 whales in WOA (Fig. 11c), 50 lions in LSO
(Fig. 11d), 70 seagulls in SOA (Fig. 11e) and 40
(Fig. 11f) sparrows in SSA.

Comparison of Results

As discussed earlier, the numbers of neurons
and population in six ELM–SIO models were
turned, and these hybrid models were used to pre-
dict BB. The prediction performances of the six
models were compared by comparing the predicted
values with the observed values in regression dia-
grams, and six evaluation indices (RMSE, R, R2,
VAF, MAE, SSE) were calculated. The regression
diagrams of the six ELM–SIO models in the training
phase are shown in Figure 12. The vertical and
horizontal axes represent predicted and observed

Figure 9. Structure of ELM with 60 neurons in hidden layer.

Table 1. Results of determining the number of neurons in the ELM model

Model no RMSE Model no RMSE

Training phase Testing phase Training phase Testing phase

1 1.6315 1.9389 9 0.2814 1.1283

2 1.1712 1.3027 10 0.2122 1.1633

3 0.8126 1.0407 11 0.2089 1.4753

4 0.6235 0.8463 12 0.2147 0.8934

5 0.5346 0.8552 13 0.1535 1.5293

6 0.4746 0.8268 14 0.1412 0.9314

7 0.3333 0.9198 15 0.1419 1.1068

8 0.3125 0.9287

*Bold is the best model
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values of BB, respectively. The diagonal (solid line)
is responsible for separating the predicted value
from the observed value. If the predicted value is
greater than the observed value, it falls on the per-
fect fitting line and, on the contrary, falls below.
Only when the predicted value is equal to the ob-

served value can it appear on the line, and the model
with more targets on the line has higher predictive
performance. At the same time, a boundary of 10%
off the perfect fitting line was set to cover more
points to compare performance. As can be realized,
the points distributed on the perfect fitting line were

Figure 10. Impact of the number of the population on the fitness value in the development of ELM–SIO models: (a) ELM–

PSO; (b) ELM–FOA; (c) ELM–WOA; (d) ELM–LSO; (e) ELM–SOA; (f) ELM–SSA.
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Figure 11. Iteration time and the best fitness value in the development of ELM–SIO models: (a) ELM–PSO; (b) ELM–FOA; (c) ELM–

WOA; (d) ELM–LSO; (e) ELM–SOA; (f) ELM–SSA.

Figure 12. Regression diagrams of the models in the training phase: (a) ELM–PSO (b) ELM–FOA; (c) ELM–WOA; (d) ELM–LSO; (e)

ELM–SOA; (f) ELM–SSA.
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the least in the ELM–FOA model, and some pre-
dicted values even exceeded the 10% range. The
prediction performances of the other five models
were obviously better than that of ELM–FOA, but it
was difficult to distinguish the optimal model by the
naked eye. Table 2 records the performance evalu-
ation indicators per model. As shown in this table,
the ELM–FOA model had the worst performance
indicators of all SIO models (RMSE: 0.4055, R:
0.9879, R2: 0.9760, VAF: 97.5956%, MAE: 0.3023

and SSE: 26.9645) and the same is depicted in the
regression diagrams. Among the other five models,
the ELM–LSO model had the best performance
indicators (RMSE: 0.1129, R: 0.9991, R2: 0.9981,
VAF: 99.8135%, MAE: 0.0706 and SSE: 2.0917)
even though the differences among them were not
significant.

The result of training does not represent the
final predictive ability of the model (Shariati et al.,
2020). Conversely, models that perform well in the

Table 2. Performance evaluation indicators of the EML–SIO models in the training phase

Models Performance indicators

RMSE R R2 VAF % MAE SSE

ELM 0.4746 0.9834 0.9671 96.7094 0.3574 36.9431

ELM–PSO 0.1240 0.9989 0.9978 99.7750 0.0812 2.5229

ELM–FOA 0.4055 0.9879 0.9760 97.5956 0.3023 26.9645

ELM–WOA 0.1577 0.9982 0.9964 99.6365 0.1075 4.0766

ELM–LSO 0.1129 0.9991 0.9981 99.8135 0.0706 2.0917

ELM–SOA 0.1862 0.9975 0.9949 99.4929 0.1266 5.6872

ELM–SSA 0.1417 0.9985 0.9971 99.7063 0.0991 3.2942

*Bold is the best model

Figure 13. Regression diagrams of the models in the testing phase: (a) ELM–PSO; (b) ELM–FOA; (c) ELM–WOA; (d) ELM–LSO; (e)

ELM–SOA; (f) ELM–SSA.
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training may perform poorly in the testing phase. To
avoid misevaluation, a boundary of 30% off the
perfect fitting line was increased based on the orig-
inal 10%. Figure 13 illustrates regression diagrams
of the six ELM–SIO models in the testing phase.
Compared with the training phase, the predictive
performance of each model in the testing phase
decreased. As shown in this figure, five models all
had the phenomenon that the prediction point was
outside the boundary line of 30%, except the ELM–
LSO model. Table 3 records the performance eval-
uation indicators per model in the testing phase. As
can be observed in this table, the RMSE (0.2441),
MAE (0.1669) and SSE (4.1710) of the ELM–LSO
model were higher than those in the training phase,
but still the lowest among the six models in the
testing phase. The R (0.9949), R2 (0.9891) and VAF
(98.9806%) of ELM–LSO were the highest. As
mentioned earlier, the ELM–SOA model performed
second only to ELM–LSO, while the ELM–FOA
model also had the worst predictive performance in
the testing phase.

Furthermore, the ranking scores of the six
ELM-SLO models were obtained to offer more

intuition as to their performance indicators, as
shown in Figure 14. In terms of ranking scores, the
ELM–LSO model was the best in both the training
(36) and the testing (36) phases. To further verify
the model performance, Figure 15 depicts the pre-
dicted curve versus the observed curve per model in
the testing phase for BB prediction. Overall, the
predicted curve of each model was consistent with
the observed curve. However, some local details are
very important to evaluate the predictive perfor-
mance of each model. As shown in this figure, the
ELM–PSO model had obvious prediction errors for
sample numbers 6, 37 and 63; the ELM–FOA model
had obvious prediction errors for sample numbers
33–35, 42, 46–49 and 65–66; the ELM–WOA model
had obvious prediction errors for sample numbers
18, 37 and 63; the ELM–SOA model had obvious
prediction errors for sample numbers 9 and 49; the
ELM–SSA model had obvious prediction errors for
sample numbers 9, 15, 42 and 63. However, the
ELM–LSO model was not obviously wrong in the
details. Therefore, the results indicate that the
ELM–LSO was the best model for BB prediction.

Table 3. Performance evaluation indicators of the EML–SIO models in the testing phase

Models Performance indicators

RMSE R R2 VAF % MAE SSE

ELM 0.8268 0.9383 0.8754 87.5394 0.5589 47.8475

ELM–PSO 0.4123 0.9849 0.9690 96.8908 0.2321 11.8969

ELM–FOA 0.4402 0.9841 0.9647 96.4701 0.3480 13.5642

ELM–WOA 0.4230 0.9845 0.9674 96.7935 0.2562 12.5279

ELM–LSO 0.2441 0.9949 0.9891 98.9806 0.1669 4.1710

ELM–SOA 0.3584 0.9884 0.9766 97.6969 0.1851 8.9938

ELM–SSA 0.4258 0.9848 0.9669 96.8010 0.2460 12.6943

*Bold is the best model

Figure 14. Intuitive comprehensive ranking of the six ELM–SIO models: (a) Training phase; (b) testing phase.
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Figure 16 clearly shows the difference between
the ELM model and the ELM–LSO model. In this
figure, the abscissa is the number of samples, and the
ordinate is the ratio of predicted value to observed
value. A ratio of 1 indicates that the predicted value
is equal to the observed value, and the closer it is to
1, the better the prediction performance is. Fig-
ure 16a and c shows the prediction results in the
training phase. The ELM–LSO model significantly
improved the prediction performance of the ELM
model and made the predicted value closer to the
observed value. Also, in the testing phase, there
were more targets close to 1 in the ELM–LSO
model. While this model is not perfect, the outliers
were not very far away.

The research results not only show that the
performance of the ELM model can be improved by
using SIO algorithms for BB prediction, but that
ELM–LSO was the best model. Therefore, the
comparison between the six hybrid models proposed
in this study and previous studies is shown in Ta-
ble 4. As can be seen in this table, the performance
of the ELM–LSO model was the best among all
models, especially based on the same dataset pro-
posed and used by Khandelwal and Monjezi (2013),
Zhou et al., (2021c) and Dai et al., (2022).

Relative Importance of Influence Variables

Sensitivity analysis is of great help to judge the
prediction effect of influence variables on BB.
According to the comparison results of different SIO
models, the importance of variables was extracted
from the ELM–LSO model in this study. The vari-
able importance test mechanism is reflected in the
amount of impurity reduction after changing ran-
domly the values of the variables (Qi et al., 2018).
Therefore, a new global sensitivity analysis method
called PAWN, introduced by Pianosi and Wagener
(2015, 2018), was used in this study. Different from
the total local sensitivity analysis method based on
square difference, the importance score (S) calcu-
lation expression is:

S ¼ stat~u¼1;:::;n max
y

F̂y yð Þ � F̂y xij ðy xij 2 I~uÞ
�� �� ð34Þ

where stat is a statistic (e.g., maximum, mean or
median), and maximum was selected in this study.

F̂y yð Þ and F̂y xij are unconditional and conditional

cumulative distribution functions (CDFs) of the
output variable y, respectively. I~u is equally spaced

Figure 15. BB prediction in the testing phase by different ELM–SIO models.
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subintervals of input important variable xi. ~u is
usually set to the default value, 10 (Xue et al., 2021).

Figure 17 shows the results of the variable
importance scores. B and ST were the most sensitive
variable for BB, with the highest importance score
of 0.8717. The variable with the lowest score was SD
(0.4817). However, there are no definitive studies to
show that SD is necessarily the least important
variable, especially given the amount of data cov-
ered in this study. In contrast, Faradonbeh et al.,
(2016) imposed that the PF and B are the most
influential variables on BB. Some research sug-
gested that HL and ST have greater effects on BB
(Zhou et al., 2021a, b, c; Dai et al., 2022). Without
further discussion, it is believed that the order of

importance of influence variables to BB is the B and
ST fi HL and S fi PF fi SD.

CONCLUSIONS AND SUMMARY

Predicting BB is an interesting and productive
exercise. In this study, 234 cases of BB were in-
volved, with six input variables (hole length, spacing,
burden, stemming, powder factor and specific dril-
ling) and unique output (BB). Under the unique
advantages of the ELM algorithm combined with
SIO, six hybrid models were developed to predict
BB. It is concluded that the performance of ELM–
LSO was the best model in the prediction of BB
compared to the other five ELM–SIO models

Figure 16. Comparison of the ELM model with the ELM–LSO model: (a) and (b) Training and testing phases of ELM; (c)

and (d) training and testing phases of ELM–LSO.
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(ELM–PSO, ELM–FOA, ELM–WOA, ELM–SOA
and ELM–SSA). For the ELM–LSO model, RMSE
was 0.1129 (R: 0.9991, R2: 0.9981, VAF: 99.8135%,
MAE: 0.0706 and SSE: 2.0917) in training phase and
0.2441 in testing phase (R: 0.9949, R2: 0.9891, VAF:
98.9806%, MAE: 0.1669 and SSE: 4.1710). There-
fore, SIO can be a very effective solution in
improving the performance of the ELM model. It is

worth noting that the burden and the stemming
(0.8717) were the most influential input variable,
followed by hole length and spacing (0.8205), pow-
der factor (0.5575) and specific drilling (0.4871). This
only represents the conclusion supported by the data
in this study, which can be used as a reference but is
not immutable. Moreover, more valid parameters
such as rock quality designation (RQD), geological

Table 4. Comparison among the current and previous works for BB prediction

References AI models Input parameters No. of data Performance

Monjezi et al. (2013) ANN UCS, SD, WC, B, S, ST, HD, BH, PF, CPD 97 R2 = 0.90

Monjezi et al. (2014) ANN B, S, ST, NOR, PF, DPM, SD, RF – R2 = 0.87

Esmaeili et al. (2014) ANN SR, ST, SC, RD, NOR, CLR, S/B 42 R2 = 0.92

Sayadi et al. (2013) BPNN B, S, HH, ST, SC, SD 103 R2 = 0.87

Esmaeili et al. (2014) ANFIS SR, ST, SC, RD, NOR, CLR, S/B 42 R2 = 0.92

Ghasemi et al. (2016) ANFIS B, S, ST, PF, GS 175 RMSE = 0.08

Mohammadnejad et al. (2013) SVM B, S, HD, SD, ST, PF 193 RMSE = 0.34

Khandelwal and Monjezi (2013) SVM HL, S, B, ST, PF, SD 234 R2 = 0.987

Yu et al. (2021) SVM–MFO PF, B, S/B, NOR, CPD, LCT, ST/B, JC, UCS, W/B 85 R2 = 0.985

RMSE = 0.629

Zhou et al. (2021c) SCA–RF HL, B, S, ST, SD, PF 234 R2
SCA = 0.9829

HHO–RF HL, B, S, ST, SD, PF 234 R2
HHO = 0.9817

Dai et al. (2022) PSO–RF HL, B, S, ST, SD, PF 234 R2 = 0.9961

Sharma et al. (2021) RF B, S, ST, PF, SR 26 R2 = 0.8792

This study ELM HL, B, S, ST, SD, PF 234 R2
ELM = 0.8754

ELM–PSO HL, B, S, ST, SD, PF 234 R2
ELM–PSO = 0.9690

ELM–FOA HL, B, S, ST, SD, PF 234 R2
ELM–FOA = 0.9647

ELM–

WOA

HL, B, S, ST, SD, PF 234 R2
ELM–WOA = 0.9674

ELM–LSO HL, B, S, ST, SD, PF 234 R2
ELM–LSO = 0.9891

ELM–SOA HL, B, S, ST, SD, PF 234 R2
ELM–SOA = 0.9766

ELM–SSA HL, B, S, ST, SD, PF 234 R2
ELM–SSA = 0.9669

UCS Uniaxial compressive strength (MPa), BH Bench height (m), CPD Charge per delay (kg), NOR No. of rows, DPM Delay per meter

(ms/m), RF Rock factor, HH Hole height (m), SC Specific charge (kg/m3), SR Stiffness ratio, RD Rock density (t/m3), CLR Charge last row

(kg), S/B Spacing to burden ratio, GS Geometric stiffness, LCT Last row charge to total charge ratio, ST/B Stemming to burden ratio, JC

Joint condition, W/B Water height to burden ratio, MFO Moth flame optimization, SCA Sine cosine algorithm, HHO Harris hawks

optimizer, PSO Particle swarm optimization

Figure 17. Sensitivity analysis of different variables obtained by the ELM–LSO model.
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strength index (GSI) and weathering index (WI)
could be taken into account in future BB prediction
tasks, even if these parameters are difficult to obtain
in actual blasting investigations. Meanwhile, ad-
vanced and effective optimization algorithms need
to be developed to improve the BB prediction
accuracy as much as possible, which has always been
the difficulty of this kind of work.
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