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The application of horizontal and hydraulically fractured wells for producing oil from low
permeability formations has changed the face of the North American oil industry. One
feature of the production profile of many such wells is a transition from transient linear oil
flow to boundary-dominated flow. The identification of the time of this transition is
important for the calibration of models that forecast the well’s future production and the
expected ultimate recovery. It is preferable that such models generally use data from the
boundary-dominated flow regime for parameter calibration. Accurate well production
forecasts are needed for operational decisions, long-term planning, commercial transactions,
regulatory proceedings, and asset valuation. Petroleum engineers frequently make the call
on the transition point based on subjective visual interpretations of log-log plots for indi-
vidual wells. This is time-consuming and is generally not repeatable by other analysts. This
note evaluates statistical approaches that can serve as alternatives to the subjective visual
interpretations. Specifically, the predictive performance of production models calibrated
with boundary-dominated data based on transition dates calculated with constrained non-
linear least squares and Bayesian regressions was very close to that obtained using the visual
method, suggesting that statistical approaches may indeed be constructed to replace less
objective visual approaches without loss of accuracy.

KEY WORDS: Linear transient flow, Boundary-dominated flow, Flow regime transition, Bayesian
regression, Constrained least squares.

INTRODUCTION

The application of horizontal and hydraulically
fractured wells to produce oil from low permeability
formations has changed the face of the North
American oil industry. For horizontal hydraulically
fractured Bakken wells, production commonly fol-
lows two general flow regimes (Kabir et al. 2011).
Early in the life of the well, production is dominated
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by linear flow as the reservoir fluids flow through the
induced fractures. Transient linear flow is assumed
to characterize infinite fracture conductivity with no
“skin” effect, i.e., formation damage that impedes
flow to the wellbore. After a period of transient flow,
a new flow regime, boundary-dominated flow, begins
as the flow reaches the boundaries (extent of the
well’s drainage area) where a constant reservoir
pressure can no longer be sustained for the fluids
driven through the fractures. The transient produc-
tion phase may last up to 3 years, but the boundary-
dominated flow regime characterizes the well’s pro-
duction behavior for the remainder of the well’s life.

Seidle and O’Connor (2016) recently presented
case studies where three production decline models
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that are commonly applied to forecasting fractured
horizontal well production were calibrated with
transient period data to predict future production. In
previous studies, these three techniques—the modi-
fied Arps model (Long and Davis 1988), the Duong
model (Duong 2011), and the stretched exponential
model (Yu et al. 2013), have been found to perform
reasonably well when data from the boundary-
dominated production phase are used for calibra-
tion. In their conclusions, Seidle and O’Connor
(2016) advise caution in the use of transient phase
data for calibration of these models because of the
inaccurate forecasts and estimated ultimate recovery
(EUR) predictions. This leads to the question of
how to best detect the change in the well’s flow re-
gimes.

Anderson and Mattar (2003) demonstrate a
graphical method using a log—log plot of production
versus time to identify well flow regimes. Figure 1
shows a variation of the log—log plot that captures
the flow regime change where only well production
data are available. The graph shows the inverse of
daily production (ordinate) versus time in number of
production days (abscissa). When plotted on log-log
paper, during the transient flow period the graph
follows a linear trend with a slope of %. At the
transition from linear to boundary-dominated flow,
the slope of the trend line increases to 1.0.

In applied situations the analyst may identify
the transition point visually by examining such plots
for each individual well in the suite of wells for
which production predictions or EURSs are required.
Once the transition date is identified, analysts use
the production data from the boundary-dominated
flow phase to calibrate a decline function in order to
predict production or well recovery. This approach
assumes the transition from transient to boundary-
dominated (pseudo-steady state) flow is character-
ized by an abrupt change. However, such an
assumption oversimplifies the physical situation. For
a perfectly circular reservoir, the transition between
transient and pseudo-steady state may, indeed, be a
near-discrete step change; but for reservoirs having
other shapes, the transition between flow regimes
may take longer (because more time is necessary to
reach all boundaries before boundary-dominated
flow takes over) resulting in a more gradual, nearly
continuous conversion. Because of the difficulty in
modeling such a continuous change, software used
by engineers to pick the change point (e.g., Har-
mony (IHSMarkit, n.d.)) typically assumes the
“abrupt change” formulation (Kelkar 2018).

Attanasi, Coburn, and Ran-McDonald

Visual identification of the transition point
(henceforth referred to as the visual method) is
subjective and may be different from one analyst to
the next, a situation which can contribute unneces-
sarily to the variability among well recovery values
for a suite of wells. Hence, a more rigorous approach
is needed that alleviates the subjectivity and is ver-
ifiable over time. This note reports on the perfor-
mance of several statistical procedures applied to
the detection of flow regime changes that may lead
to more consistent, reliable, and repeatable results.

STATISTICAL METHODS

The problem of detecting a change (or break-
point) in an underlying data generating process is
common to many business and operational settings,
including the identification of changes in financial
market trends, shifts in product manufacturing
quality, and monitoring of hospital emergency
admissions for early identification of epidemics. The
change point detection literature is vast. However,
the present setting has a physically based conceptual
structure that is absent in other applications. The
graphical characterization of the problem is shown
in Figure 1, which provides a framework for the
analysis. Embedded in that framework is the
assumption (previously noted) that in log space the
inverse of daily production versus the number of
days during the transient period follows the linear
path with a slope of 1/2 and that immediately fol-
lowing the change to boundary-dominated flow the
inverse of production follows a linear path (in log
space) with a slope of 1.0 (Kabir et al. 2011).

In this paper three different change point
regression approaches are proposed for purposes of
detecting the change in flow regimes. The presen-
tation of these techniques reflects an increasing de-
gree of structure in the methodology. The first
approach is an application of piecewise linear
regression (Toms and Lesperance 2003). A useful
tutorial on piecewise linear regression, also called
segmented or ‘broken stick’ regression, is given by
Ryan and Porth (2007). The model is specified as

yi = B, + Bixi + e x <t (1)
LB Buxi + Br(xi—t) e x>t
where y; is the logo of the inverse of the daily flow,
x; is the logyy of the production day number (see
Fig. 1) and r* is the logy of first day of boundary-
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Figure 1. Schematic of the change in oil well flow regimes for daily production (g) from transient
followed by boundary-dominated flow at 200 production days. The graph is in log-log scale, and the
label that identifies the particular day of production is on top of the graph..

dominated flow. The calculations involve estimation
of the spline function of degree 1 and 1 knot (Toms
and Lesperance 2003). No constraints are placed on
the parameters. The relationship between the in-
verse of daily production and days is linear (Fig. 1)
in log space, so values of the regression variables are
stated in logarithms.

A second approach is to estimate r* as in the
first formulation but to impose restrictions on the
feasible values of the parameters for ff; and f, that
constrain their values to roughly conform to the
production regimes presented in Figure 1. One
possible set of these restrictions could be to con-
strain the values of f; and 5, within some interval of
0.45-0.55. The imposition of such constraints re-
quires that a nonlinear algorithm be used to estimate
the parameter values, including the estimate of r*.
The solution to the resulting nonlinear regression
depends on the autocorrelation structure of the
production series so that the variance—covariance
matrix is invertible.

The third technique is based on the approach
developed by Bacon and Watts (1971) in which
Bayesian regression is used to estimate the statistical
distribution of the uncertain change point. Carlin
and others (1992) facilitated implementation of the
Bayesian approach by using a Gibbs sampler to
compute parameter posterior density functions, thus

avoiding any need for the higher dimensional
integration procedures. The Gibbs sampler is a
Markov chain Monte Carlo (MCMC) method for
calculating a sequence of observations which are
approximated from a specified multivariate distri-
bution and can be used to approximate a joint
distribution, a marginal distribution of one of the
variables or the distribution of a subset of variables
(Casella and George 1992). The change point
problem in this case is specified in (2) where the
change point is * This formulation follows
Spiegelhalter et al. (1996):

if x;<t*

‘ Normal (0 + 01 (x;—t*), 6°
Vi { E ifx>r @

Normal (0 + 0,(x;—t*), 6°

For the present investigation the following pri-
ors are used for illustrative purposes:

t* ~ Uniform(a, b);
61 ~ Uniform(0.45, 0.55);
6, ~ Uniform(0.90, 1.10);
0o ~ Normal(0, v = 100);
o ~ Uniform(0, 1000);
The variables y; and x; and the parameter ¢* are

defined as in (1), and distributions for the parame-
ters r* and 6; are defined in (2). The prior density
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function on the change point (¢*) assumes a uniform
distribution where the endpoints, a and b, are ex-
pressed in logo of days. For the current illustration
the original values of @ and b are taken to be 100 and
1000 days in real space, respectively. In theory, if
one has the point estimates of the reservoir param-
eters plus information about well spacing, then one
can estimate parameters for a prior distribution for
t* (Kabir et al. 2011; Ran 2016). The implementation
of the Bacon—Watts approach presented here, along
with the associated computations, follows the ap-
proach of the SAS Institute (2016).

In summary, the only restriction on the piece-
wise linear (spline-type) function (Method 1) is lin-
earity and that the linear segments meet at a single
point. For Method 2, the nonlinear least squares
places constraints on the slope coefficients; and for
the Bacon—Watts framework (Method 3), prior dis-
tributions are placed on the slope and intercept
coefficients, as well as on ¥, the uncertain change
point.

SIMULATION STUDIES OF CHANGE
POINT DETECTION METHODS

The synthetic data displayed in Figure 1 repre-
sent a 300-day daily production stream from a ficti-
tious well that exhibits a transient production phase
during the first 200 days. At that point (the change
point) production switches to a boundary-dominated
production phase. Using data from Figure 1 for the
initial 300 days of production, all three methods
described above return the exact 200-day change
point. To examine the robustness of the methods,
random variations in daily production were simu-
lated and added to the existing synthetic data
stream, as described below, to represent a more
realistic production setting. The three methods were
then subsequently applied to this “noisy” data.

Three sets of 100 production stream simulations
were prepared, each representing an increased
weight of the random component. Suppose p; is daily
production and is composed of deterministic and
random components as indicated in (3) below; i.e.,
Diq is the deterministic component of daily produc-
tion, p;., is a random variable (rv) increment (either
positive or negative) of daily production, and fac
represents the increasing noise levels at 5, 10, and
20% of the deterministic daily production volume.
The noisy production streams were generated as
follows:
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Pi = Pia + rv(picr) With p;, ~ Normal(0, fac  p;4)

with a different production stream for each noise
level (i.e., value of fac). Equation 3 shows that the
noise for each production day was generated with a
Normal distribution of mean zero and standard
deviation equivalent to the product fac * p,;. Fig-
ure 2 shows the original production curve, plus one
realization of the daily production streams for the 10
and 20% daily production variation levels (in log
space). Each of the three change point detection
algorithms was then applied to sets of 100 generated
production streams, resulting in an empirical prob-
ability distribution for the day at which the pro-
duction flow regime changed. The mean, 2.5
percentile and 97.5 percentile values of these dis-
tributions are presented in Table 1.

The constrained nonlinear least squares algo-
rithm (Method 2) and the Bayes algorithm (Method
3) generally returned mean values close to the day of
the flow change (see Table 1). Moreover, Table 1
indicates that the 95% confidence intervals are very
narrow. The performance of the piecewise linear
model (Method 1), however, deteriorated, compared
to the other algorithms, as the random noise became
more intense. Without constraints on the slope
coefficients, the transition days identified by the
piecewise linear model (Method 1) varied wildly. As
might be expected, increases in fac increase the
spread of the estimated change day distributions, as
evidenced by the widening gap between the 2.5
percentile and the 97.5 percentile values of the
change point.

Under the case of 20% daily production varia-
tion, the data series after the transition (at 200 days)
was truncated and each of the change point esti-
mation algorithms were applied. Table 1 shows that
the performance of the linear piecewise algorithm
continues to deteriorate. The calculated mean value
of the constrained nonlinear least squares method is
about 5% in error with a series length of 225 data
points. The estimated Bayes algorithm mean tran-
sition days remained very close to the actual value.
Because the Bayes formulation imposes a prior
distribution on f*, it seems to be more adapt-
able than the other methods to accommodating the
shorter data series. With respect to the Bayes
method, if the prior ranges for the slope coefficients
are increased to about 0.35-0.65 and 0.7-1.3, then
the confidence interval about #* shows about a 10%
increase but the change date estimate does not
change significantly.
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Figure 2. The representative well production data from Figure 1 (designated deterministic) and the
well with one realization of the introduction of random noise with a standard deviation of 10 and

20% of daily production (g)..

EMPIRICAL APPLICATION OF CHANGE
POINT DETECTION METHODS
TO BAKKEN PRODUCTION WELLS

Data Considerations

The simulation experiments described above
evaluated the predictive power of the three ap-
proaches when increasing levels of noise were
introduced into the behavior of the synthetic daily
well production stream. Unfortunately, daily pro-
duction records are usually only available to the well
operator and not to others. In most cases the only
production data available are monthly totals pro-
vided by state agencies or commercial entities, and
often such values are reported on a lease by-lease
basis rather than for a specific well. Some additional
pre-analysis processing of the actual well production
data is required before any of change point detec-
tion approaches can be applied (this is also true for
the traditional visual approach). The following de-
scribes the pre-analysis processing of actual pro-
duction data from the Bakken wells in North
Dakota.

For the part of the Bakken play located in
North Dakota, the North Dakota Industrial Com-

mission, Oil and Gas Division (NDIC/OGD) pub-
lishes well level monthly production data. These
data consist of the number of days the well was in
production and the total monthly production for oil,
gas, and water. Using data obtained from NDIC/
OGD, a daily production series was constructed for
each well by dividing the well’s monthly production
by the number of days the well operated and
assigning that quotient to the days the well was in
production for the month. This necessary procedure
obviously results in a distortion of the actual daily
production but it may convey sufficient information
to detect the change in flow regimes. Figure 3 shows
such monthly data plotted in log-log format. The
log—log graph derived from monthly data appears as
a series of step functions rather than a piecewise
linear function as shown in Figure 1 (Coburn and
Ran-McDonald 2017).

Estimating the Flow Regime Change Point
in Bakken Wells

Following generally accepted engineering
practice, the visual method was first employed to
estimate the change point in flow regimes for each of
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Table 1. Performance of the three statistical approaches in

simulation experiments based on a 300-day series of synthetic

production data with a change in flow regime set at 200 days and

where the increasing fac level represents an increasing variation
from the mean of daily production

fac level ~Mean  2.50%  97.50%  Length of data series

Distribution: production day of transition
Piecewise linear (No constraints)

5% 200 193 211 300
10% 186 155 219 300
20% 93 2 246 300
20% 45 2 227 275
20% 20 1 219 250
20% 17 1 155 225
Nonlinear constraint
5% 200 195 206 300
10% 200 190 210 300
20% 200 176 226 300
20% 201 176 230 275
20% 199 173 232 250
20% 191 171 212 225
Bayes (with priors)
5% 200 195 205 300
10% 200 190 210 300
20% 203 178 249 300
20% 203 179 234 275
20% 203 173 228 250
20% 197 176 210 225

Assume p; is daily production and is composed of deterministic
and random components; i.e., p;; is the deterministic component
of daily production and p;, is a random increment (either positive
or negative) of daily production. “Noisy production” was
generated using the following formulation: p;= p;y + rv(pi.,) with
Pier~ N(0, fac * p;;) where N is the Normal distribution of zero
mean and standard deviation equivalent to the product fac * p;;
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the 37 wells. A petroleum engineer was tasked
with visually fitting the linear trends (as in Fig. 3)
to the constructed daily production data for each
well (Coburn and Ran-McDonald 2017). Prior to
fitting the trends, the engineer employed the
common approach of censoring the data by
ignoring a number of consecutive production days
at the start of each well’s production stream for
which the values were deemed to be erratic and
uncharacteristic of normal well operations. As is
commonly observed, the number of days ignored
were different for each well. Of the three statis-
tical-change point estimation procedures originally
proposed, Methods 2 (constrained nonlinear least
squares) and Method 3 (Bayesian) were then ap-
plied to these same censored daily data streams.
Method 1 was eliminated from further considera-
tion based on results obtained on the synthetic
data.

Table 2 presents the number of production
days ignored for each well along with estimates
of the production day at which the flow regime
changed (change point) using the visual method,
Method 2, and Method 3. The values reported
for Methods 2 and 3 are the estimated expected
values based on the statistical assumptions
underlying the change point model, whereas the
values reported for the visual method represent
single-point estimates subjectively identified by
the engineer. Note that the visual estimates ap-
pear as approximations, being expressed as val-
ues rounded to hundreds or fifties of days,
whereas the estimates determined with Methods

1/g VS. Days

1 10

0.1

0.01

0.001

1/q, where q is barrels per day

0.0001

Production days

Figure 3. Identification of the flow regime change for a Bakken horizontal hydraulically fractured
oil well where daily production (g) is computed from monthly production divided by the number of

days the well was productive during the month..
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Table 2. Bakken production well case studies comparing the informed visual estimates for the day of flow regime change with the estimates
and the 95% confidence intervals of constrained nonlinear least squares and the Bayesian regressions

N. Dakota Permit No.  Well ID  Days ignored

Visual estimate

Nonlinear constrained least sq. Bayesian regression

Mean 2.50% 97.50% Mean 2.50%  97.50%
Production day of transition from transient to boundary-dominated flow
20802 2 30 400 299 276 324 301 279 324
22396 4 0 350 393 331 467 392 368 422
22795 5 10 350 87 52 146 428 385 482
22929 6 20 300 277 245 313 282 269 296
21213 7 60 400 309 282 340 340 326 356
22573 8 60 200 113 57 225 114 100 133
22158 9 30 300 306 255 368 330 311 351
21006 10 30 400 379 324 444 388 364 414
21045 11 30 500 536 481 597 544 528 559
21654 12 60 400 115 86 155 285 264 306
21034 13 20 150 170 139 208 174 157 191
22483 14 30 300 352 326 380 326 307 343
22572 15 60 200 120 99 146 123 113 138
19265 16 30 250 207 164 261 348 310 395
22990 17 30 400 461 440 483 459 442 472
22495 18 40 300 326 277 384 332 313 354
21106 19 20 300 295 254 343 299 283 316
22891 20 30 300 287 251 329 294 278 314
21860 23 20 600 563 529 599 564 550 576
22361 24 20 250 375 332 423 374 364 385
23467 25 0 300 176 157 197 177 169 185
23420 26 30 300 230 207 254 336 323 350
20394 28 50 600 374 305 459 394 354 446
19698 30 0 400 477 375 606 496 446 554
20831 31 80 500 119 90 157 123 109 142
23504 32 30 350 352 316 393 361 345 376
22285 33 7 300 228 191 271 240 215 276
22166 34 30 200 167 132 212 323 295 351
21728 36 0 350 379 348 412 364 339 388
22258 38 20 300 79 62 101 103 100 110
21402 39 80 300 168 149 189 187 176 201
22152 40 40 300 244 223 267 243 234 251
20917 41 40 300 417 371 469 443 402 483
22280 43 20 350 496 398 618 530 475 638
20476 44 40 400 243 220 268 431 398 464
21937 45 100 200 100 91 110 643 639 646
22769 46 0 250 233 214 254 236 226 248

2 and 3 are stated more strictly as exact numbers
of days.

On whole, the change point estimates obtained
using Methods 2 and 3 are generally closely aligned,
as shown in Figure 4, though not uniformly so. It is
likely that the nonlinear least squares algorithm
(Method 2) obtained a local rather than global
optimum value in cases where the corresponding
Method 2 and Method 3 estimates are considerably
different. Table 2 shows 37 cases, there were 8 other
cases where the constrained nonlinear least squares

algorithm failed because of singularity of the Hes-
sian matrix. For 29 of the 37 wells, the expected
values obtained with these two methods are within
10% of each other, with the expected value of the
change point obtained using Method 3 being the
higher value for 31 of the 37 wells. This close
alignment can also be observed by considering the
95% confidence intervals associated with the ex-
pected values of the change points obtained using
the two methods, also shown in Table 2. For 25 of
the 37 wells, the 95% confidence interval on the
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Figure 4. Display of the estimated transition dates from transient to boundary-dominated oil well flow for 37 hydraulically fractured
Bakken oil wells based on the visual method, constrained nonlinear least squares regression method and the Bayes regression method.
The 95% confidence bounds (2.5 and 97.5%) for the constrained nonlinear least squares estimate are shown. For 30 for 37 cases the Bayes
regression estimate of the transition day fall within that 95% confidence interval..

expected value of the change point obtained using
Method 3 encompasses the corresponding expected
value obtained using Method 2; and similarly, for 30
of the 37 wells, the 95% confidence interval on the
expected value change point obtained using Method
2 includes the expected value change point obtained
using Method 3 as shown in Figure 4. Hence, for at
least 2/3 of these wells, Methods 2 and 3 do not lead
to mean change point values that are significantly
different from a statistical standpoint. Still, the
confidence intervals with Method 2 are wider on,
average, than those associated with Method 3 sug-
gesting Method 2 (constrained nonlinear least
squares) may lead to somewhat more uncertainty
than Method 3 (Bayesian). No confidence intervals
are provided for estimates of the change point day
produced using the visual method because these are

single-point values subjectively produced by the
engineer that do not encompass uncertainty.

As previously described, the visual method and
Methods 2 (nonlinear least squares) and 3 (Baye-
sian) are quite different in nature, with the visual
approach being deterministic and Methods 2 and 3
being stochastic. Still, comparisons among the re-
sults associated with all three approaches are
instructive. For some wells, the estimates obtained
using the visual method are quite close to the cor-
responding estimates obtained using Methods 2 and
3, while for other wells this is not the case. In par-
ticular, for nearly half of the wells (16 out of 37) the
visual estimate was within the 95% confidence
interval around the mean change point estimated
using Method 2, whereas this was true for a smaller
percentage of the wells (9 out of 37) relative to
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Method 3 (an unsurprising result because, as noted
above, the confidence intervals associated with
Method 2 are, on average, wider than the corre-
sponding ones associated with Method 3).

Implications of Alternative Estimates
of the Transition Date for Predictions of Production

It is instructive to consider the short-term
implications of the change point estimates obtained
for the Bakken wells using the methods described
above. To do this, the daily production on the initial
(estimated) day of boundary-dominated flow plus
production for the next 179 production days (total
180 days, hereafter called the in-sample period) was
used to calibrate a hyperbolic decline function with
the “Arps Decline Curve Analysis in R package
(Turk 2017). The hyperbolic decline was applied as a
uniform method for projecting ahead relatively short
time periods. The wells represented in Table 2 had
relatively short production histories, and it was be-
yond scope of this study to fully address best mod-
eling practices for late well life production
forecasting. The decline model parameters were
chosen to minimize the sum of squared errors. This
model was then used to predict production for the
subsequent 180-day period (designated the out-of-
sample period). The criteria used for comparing the
out-of-sample performance was to find the differ-
ences in the sums of the actual and predicted well
production during the period and to divide by the
actual cumulative well production. The result of this
calculation is called the percent prediction error of
out-of-sample cumulative production.

Table 3 shows the root mean square errors
(RMS) of predicted production for the in-sample
period and for the out-of-sample period. RMS is
calculated by taking the square root of the sum of
the squared prediction errors divided by the number
of days of production. The RMS predictions may
not be strictly comparable because the estimated
change point is different for each well and, as a re-
sult, a different part of each well’s production history
is being addressed (i.e., the production decline
models used for calibration during the in-sample
period start at different production days which rep-
resent when boundary-dominated flow is estimated
to begin). However, the numbers in Table 3 do
provide an idea of the scale of the errors in daily
production rates.
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As expected, the RMS prediction errors are
generally larger for the out-of-sample period than
for the in-sample period. In almost two-thirds of the
cases the out-of-sample RMS prediction errors for
one of the proposed methods, as well as for the vi-
sual method, were within 10 barrels per day of each
other. However, for this set of wells the visual
method had the absolute lowest RMS prediction
errors for about two-thirds of the cases.

Table 4 shows the percent of prediction error of
cumulative production during the in-sample and out-
of-sample periods. The calibration method for the
hyperbolic function assured a near match during the
in-sample period of the predicted and actual volume
produced. The 180-day out-of-sample percent errors
are often much larger, but no method consistently
has the lowest percent error. For many of the cases
where the out-of-sample percent error was large, all
the methods had relatively large errors. For about
70% of the cases the difference between percent
error for the visual method and one of the statistical
methods is no more than 10%. Notwithstanding
these small differences, the visual method had the
smallest out-of-sample percent error in about 56%
of the cases.

The predictive performance of the models
based on a 90-day out-of-sample period was com-
pared to the performance for the 180-day out-of-
sample period. With only a few exceptions the RMS
for the 90-day period was lower than that of the 180-
day period. In about 60% of cases the cumulative
percent prediction errors were smaller for 90-day
period. For the 90-day out-of-sample period there
was a slightly better predictive performance for
Method 2 and Method 3 relative to the visual
method than observed in Tables 3 and 4.

DISCUSSION

Establishing the time or point at which pro-
duction from a hydraulically fractured horizontal
well transitions from transient flow to boundary-
dominated flow has significant implications for
forecasting the ultimate cumulative production of
the well. Engineers implicitly rely on the boundary-
dominated flow regime to establish production de-
cline, so the ability to identify this particular point in
time with some degree of precision is extremely
important from an economic perspective. In fact, as
noted earlier, Seidle and O’Conner (2016) caution
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Table 3. Bakken production well case studies comparing the root mean square error associated with different transition dates to boundary-
dominated flow (see Table 2): 180-day in-sample period for estimation of hyperbolic decline and 180-day out-of-sample forecasts*

North Well Root mean square error, in-sample Root mean square error out-of-sample
Dakota ID

Permit No Visual Nonlinear constrained Bayesian regres-  Visual Nonlinear constrained Bayesian regres-
no (boe/d) least squares (boe/d) sion (boe/d) (boe/d) least squares (boe/d) sion (boe/d)
20802 2 13 12 12 16 25 25
22396 4 6 6 6 19 25 25
22795 5 14 51 16 68 164 109
22929 6 12 13 13 18 17 20
21213 7 3 4 4 8 4 3
22573 8 12 17 17 23 48 48
22158 9 73 73 93 160 136 67
21006 10 38 32 35 43 73 58
21045 11 13 12 12 27 40 41
21654 12 4 16 10 11 17 11
21034 13 77 42 39 41 57 62
22483 14 3 2 3 7 8 8
22572 15 8 13 10 15 6 6
19265 16 11 11 6 8 9 8
22990 17 3 3 3 11 13 13
22495 18 25 28 27 148 124 129
21106 19 8 8 8 21 22 21
22891 20 51 50 51 68 59 65
21860 23 9 4 4 8 25 25
22361 24 122 27 28 119 137 138
23467 25 7 12 12 6 13 13
23420 26 26 32 10 13 25 20
20394 28 10 5 4 6 9 9
19698 30 4 5 5 5 3 3
20831 31 3 7 7 8 10 10
23504 32 8 8 8 15 15 16
22285 33 4 9 7 26 9 9
22166 34 3 3 3 5 6 6
21728 36 3 3 3 10 27 10
22258 38 0 7 6 2 3 7
21402 39 12 10 8 20 36 51
22152 40 12 20 20 26 20 21
20917 41 10 5 4 7 22 35
22280 43 25 7 5 28 19 13
20476 44 7 21 8 26 9 21
21937 45 3 7 2 4 5 6
22769 46 8 9 8 22 16 21

*The 180-day period following the transient flow period (in-sample data) was used to calibrate a hyperbolic decline curve, and out-of-
sample root mean squares (RMS) show prediction errors for the 180-day period following the data series used for calibration

against using the transient flow data to calibrate
common decline function models.

This situation necessitates the establishment of
a protocol to determine the point at which the flow
regime actually changes. Historically, engineers
have visually examined each individual well’s pro-
duction stream to identify the change point, a pro-
cess that can be tedious, time-consuming, and highly
subjective, particularly when multiple wells are in-
volved, even with the help of contemporary software

packages. The difficulty with this approach is that it
is not necessarily repeatable or reproducible; i.e., the
same engineer looking at the same data at some time
in the future might select a different transition point,
and a different engineer looking at the same data
certainly might pick a different point. Unfortu-
nately, small variations in the selection can have
substantial impacts on the forecast of cumulative
production because of the assumed nonlinear de-
cline after boundary-dominated flow is established.
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Table 4. Bakken production well case studies comparing the prediction of cumulative well production associated with different transition
dates to boundary-dominated flow (see Table 2): 180-day in-sample period to calibrate a hyperbolic decline and 180-day out-of-sample

forecasts*®
North Well Percent prediction error cumulative production
Dakota ID
180-day in sample 180-day out-of-sample
Permit no No Visual Nonlinear constrained least Bayesian Visual Nonlinear constrained least Bayesian
squares regression squares regression

20802 2 0.07 0.00 0.00 — 20.09 31.27 31.74
22396 4 0.01 0.00 0.00 — 28.80 —39.35 —39.40
22795 5 0.00 —0.39 0.17 - 11.71 — 75.86 — 63.10
22929 6 0.02 0.00 0.00 —15.14 — 1333 — 17.05
21213 7 — 0.01 0.02 0.00 33.28 —9.32 —0.55
22573 8 0.16 0.03 0.03 29.72 89.07 90.36
22158 9 — 0.01 0.00 0.11 58.75 48.14 — 475
21006 10 —0.04 - 0.02 0.03 — 18.92 —39.25 —29.57
21045 11 0.00 0.03 0.02 — 1443 — 26.09 — 2722
21654 12 0.00 —0.02 0.04 —5.69 10.16 4.59
21034 13 — 0.04 —0.10 0.09 - 071 22.67 27.53
22483 14 0.00 0.00 0.00 - 0.72 0.98 - 1.61
22572 15 — 0.01 0.08 0.12 —22.77 - 0.27 2.82
19265 16 0.01 0.01 0.00 16.61 18.01 —20.14
22990 17 0.00 0.00 0.00 —3.63 — 10.94 —10.93
22495 18 - 0.01 0.00 0.00 — 40.54 — 32.07 — 34.50
21106 19 0.00 0.00 0.00 - 151 —4.80 —2.32
22891 20 0.14 0.11 0.13 —30.29 — 23.67 —27.61
21860 23 0.02 0.00 0.00 4.86 31.61 32.11
22361 24 0.00 —0.01 0.02 9.63 —21.81 — 2220
23467 25 —0.01 0.01 0.01 0.79 8.49 8.30
23420 26 0.00 0.00 0.08 - 3.77 - 925 7.32
20394 28 1.19 0.00 0.00 — 1.08 —7.93 —1.82
19698 30 0.00 0.00 0.01 4.50 1.31 - 141
20831 31 —0.01 —0.02 0.02 — 16.47 —4.02 — 422
23504 32 0.01 0.00 0.00 —3.85 — 420 —0.12
22285 33 0.00 0.01 0.01 29.18 — 0.58 1.65
22166 34 0.00 — 0.06 0.01 1.46 21.14 — 1433
21728 36 0.00 0.00 0.00 — 7.46 —10.72 —8.11
22258 38 0.00 0.13 0.04 7.86 — 024 — 30.63
21402 39 0.00 0.00 0.00 - 623 18.27 30.50
22152 40 —0.02 — 0.05 0.06 17.90 — 13.05 — 14.10
20917 41 0.00 0.01 0.00 4.05 7.85 —7.14
22280 43 —0.02 —0.02 0.03 27.69 —17.39 —10.92
20476 44 —0.01 — 0.01 0.00 12.78 —2.00 11.16
21937 45 0.00 —0.01 0.00 2.17 —3.90 — 10.80
22769 46 0.00 0.00 0.00 — 11.57 — 5.96 —11.81

*The 180-day period following the transient flow period (in-sample data) was used to calibrate a hyperbolic decline curve and out-of-sample
percent prediction errors for the cumulative production for the 180-day period following the date series used for calibration

Consequently, there is a definitive need to develop
an alternative process—one that is objective, con-
sistent, reliable, repeatable, and verifiable—and that
might possibly be automated to promote overall
operational efficiency. The results reported herein
represent an attempt to achieve these goals.

It must be recognized that the change from
transient to boundary-dominated flow is not neces-
sarily an abrupt one. In fact, for many reservoirs, the

transition would be expected to occur more gradu-
ally over time. Unfortunately, a gradual transition is
often difficult to detect because the well production
data, often reported as monthly totals, are not suf-
ficiently granular to capture such small changes in
the flow regime. This is the situation faced by most
entities that are seeking to gain knowledge about a
producing area they do not already own because, at
best, the only data available is monthly data that can
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be obtained from state agencies or vendors. As
demonstrated in the present study, monthly data
totals must be disaggregated and allocated to indi-
vidual days if there is to be any hope for improving
the estimate of the change point from one flow re-
gime to the other. Still, disaggregation procedures
are not without limitations. The present study relies
on the use of one such procedure, and its limitations
and their potential impacts are described.

Three statistical approaches were proposed that
directly estimate the point (time) of change between
flow regimes: piecewise linear regression (Method
1), nonlinear least squares with parameter con-
straints (Method 2), and Bayesian regression
(Method 3). These methods were first evaluated
using synthetic production data (with and without
random variation added) and then applied to factual
production data from hydraulically fractured hori-
zontal Bakken oil wells in North Dakota.

Simulation experiments were designed to ini-
tially evaluate the performance of the three pro-
posed methods. A synthetic 300-day production
stream containing a pre-established change point at
the 200th day was constructed for use in these
experiments. When applied to this data, all three
methods exactly reproduced the established change
point, suggesting all three as possible change point
identification contenders.

Next, various amounts of random variation (up
to 20%) were added to the synthetic daily data (to
reasonably approximate factual, but noisy, daily
production data), and the three methods were re-
applied in a second round of simulation experi-
ments. The constrained nonlinear least squares ap-
proach (Method 2) and Bayesian regression
(Method 3), which permits inclusion of prior engi-
neering information about the parameters, again
nearly exactly reproduced the pre-established
change point—another encouraging finding. How-
ever, linear piecewise regression (Method 1) was
unable to do so when the amount of added random
noise exceeded 5%. The simulation experiments
were again repeated using the synthetic daily data
with 20% random variation added, but with the
series length truncated to 275, 250, and 225 pro-
duction days, respectively. The results for Methods 2
and 3 were similar but indicated a slight reduction in
performance as the data series was shortened. The
results for Method 1 were substantially worse.

From these experiments it can be concluded
that constrained nonlinear least squares (Method 2)
and Bayesian regression (Method 3) are likely viable
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candidate techniques with which to identify the
transition from transient to boundary-dominated
flow in daily production data, but that linear piece-
wise regression (Method 1) is not. Moreover,
Methods 2 and 3 seem to detect the transitions
within a reasonable time period of the occurrence of
the transition. These protocols, findings and results
were further evaluated using “live”” production data
from 37 hydraulically fractured horizontal Bakken
wells. Monthly data obtained from NDIC/OGD
were converted to daily data using a simple disag-
gregation procedure. After eliminating Method 1
from contention, Methods 2 and 3 were applied to
the data to estimate the expected value of the
change point, as well as the 95% confidence interval
about that estimate. Visual “picks” were determined
by an engineer.

For 28 of the 37 wells, the expected values of
the change points of Methods 2 and 3 were within
10% of each other, with the expected value of the
change point using Method 3 being higher than for
Method 2 for 31 of the 37 wells. For at least 2/3 of
these wells, Methods 2 and 3 yielded expected
change point values that were not significantly dif-
ferent, even though the estimates obtained with
Method 2 were observed to be somewhat more
variable than those obtained with Method 3. The
two different methods lead to similar results which
further underscores their viability as protocols for
determining the transition between transient and
boundary-dominated flow, thereby promoting the
possibility of achieving this goal using an objective,
quantitative, and at least semi-automated, approach.

As opposed to Methods 2 and 3 which are
stochastic in nature, the visual method of selecting
the change point is quite different. Being deter-
ministic (and somewhat subjective), it yields a sin-
gle-point estimate for which there is no measure of
associated uncertainty (i.e., there is no way to esti-
mate what the result might be if the process were to
be repeated). Nonetheless, comparing results ob-
tained with the visual method to those obtained with
Methods 2 and 3 can be instructive. For at least half
of the wells, the change points determined with the
visual method occurred later in the data series than
those determined with Methods 2 and 3. On the
other hand, for nearly half of the 37 wells investi-
gated, the visual estimate was encompassed by the
95% confidence interval around the expected value
of the change point obtained with Method 2,
whereas this was true for a smaller percentage of the
wells relative to Method 3. Even though the visual
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method is not positioned here as the ‘““gold stan-
dard” (because of its deterministic, subjective nat-
ure), and acknowledging that the relationship is not
yet fully understood, these findings do suggest there
is some degree of alignment of the visual method
with Methods 2 and 3.

The performance of all three methods was fur-
ther investigated in terms of what happens to pro-
duction beyond the estimated point of transition to
boundary-dominated flow. For each well, a hyper-
bolic decline curve was initially calibrated to the first
180 days of production data (estimated day of
transition obtained with each of the three methods,
plus the next 179 days). Once calibrated, the well
decline curves were then used to further project
production for the subsequent 180 days.

On average, all three methods almost exactly
reproduced cumulative production in the calibration
phase (first 180 days or in sample) of each well’s
data; but for at least two-thirds of the wells, all three
under-predicted cumulative production beyond that
point (the next 180 days or out-of-sample period).
For these 37 wells collectively, average percentages
underestimation are about 0.1% for the visual
method, about 1.8% for Method 2, and about 4.5%
for Method 3. As often observed in forecasting
scenarios, the average root mean square (RMS) er-
rors for the out-of-sample period were higher than
for the in-sample period, on a well-by-well basis, for
all three methods. With regard to all three methods
the average out-of-sample RMS improved when the
out-of-sample period was shortened to 90 days.

CONCLUSIONS

These results imply that (1) all three methods
are reasonable approaches for identifying transition
from transient to boundary-dominated flow, (2)
Methods 2 and 3, being purely statistical techniques,
are both reasonable alternatives to the more sub-
jective visual approach, and (3) the longer the pro-
duction forecast period, the less accurate all three
methods become (which is to be expected when
trying to forecast into the future). While further
improvements might be realized if the decline curve
calibration function could be optimized, or if actual
daily production data were available, the above re-
sults do suggest that statistical approaches may, in-
deed, be constructed to replace less objective and
repeatable visual approaches for determining the
flow regime transition point.
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With regard to the disaggregation issue previ-
ously discussed, there are various ways to handle the
situation (e.g., methods suggested in the financial or
hydrologic literature), but because production days
are not necessarily tied to calendar days, a discon-
nection still exists. Further, the performance of all
the change point detection methods described here
(including the visual method) depends on the sub-
jective choice of the number of days at the beginning
of production deemed to be unrepresentative. This
is both an engineering and data handling challenge
that is unlikely to be easily resolved with purely
statistical methods, but which may be treatable with
procedures that are more data-driven such as neural
networks.

The problem of detecting the change in pro-
duction flow regimes has an important bearing on
the estimated ultimate recovery of a well. The work
summarized here suggests that statistical approaches
can be developed that are consistent and repeatable,
and which possibly might be automated, to alleviate
the inherent variability and bias that accompanies
the more traditional and subjective approach, and
which may account, in part, for unexplained spatial
variation in the performance of horizontal,
hydraulically fractured wells.

APPENDIX

SI metric conversion factors

ft X | 3.048 m
stb x | 0.1589 m’
cf x | 0.0283 m’
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