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This contribution discusses the usage of blind tests, BT, to cross-validate and interpret the
results of predictions by statistical models applied to spatial databases. Models such as
Bayesian probability, empirical likelihood ratio, fuzzy sets, or neural networks were and are
being applied to identify areas likely to contain events such as undiscovered mineral
resources, zones of high natural hazard, or sites with high potential environmental impact.
By processing the information in a spatial database, the models establish the relationships
between the distribution of known events and their contextual settings, described by both
thematic and continuous data layers. The relationships are to locate situations where similar
events are likely to occur. Maps of predicted relative resource potential or of relative hazard/
impact levels are generated. They consist of relative values that need careful quantitative
scrutiny to be interpreted for taking decisions on further action in exploration or on hazard/
impact mitigation and avoidance. The only meaning of such relative values is their rank.
Obviously, to assess the reliability of the predicted ranks, tests are indispensable. This is also
a consequence of the impracticality of waiting for the future to reveal the goodness of our
prediction. During the past decade only a few attempts have been made by some researchers
to cross-validate the results of spatial predictions. Furthermore, assumptions and applica-
tions of cross-validations differ considerably in a number of recent case studies. A per-
spective for all such experiments is provided using two specific examples, one in mineral
exploration and the other in landslide hazard, to answer the fundamental question: how good
is my prediction?
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INTRODUCTION

Constructing a map is an exercise to capture the
distribution of observed objects or measurements, in
conveniently simplified terms, to comprehend and
communicate their spatial significance. In the geo-
sciences such objects are considered as indicators
of processes of concern, either physical or social, or

combined. During the past half a century, mapped
objects have become more factual, i.e., less inter-
pretative, they comprise increasingly less manually-
captured information with the development of
remote sensors, and their representation has turned
from analog to digital. The latter is a fact that has
encouraged the practice of overlaying different types
of maps covering a same study area to derive specific
themes with combined features of varying spatial
continuity, connectivity, and other desirable spatial
properties.

For example, the spatial setting of an observed
distribution of mineral occurrences could be recog-
nised as a ‘‘non-random’’ distribution over preferred
combinations of mapping units, thereby partly
revealing their environment of deposition. This was
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the starting point of many applications of statistical
models to predict future discoveries in mineral
exploration.

Some of the drawbacks of such experiments,
however, have been that: (1) the established rela-
tionships are limited to the study area selected and
its assumed time relevance, thus providing only
relative characterization; (2) several quantitative
models and associated assumptions can be used to
express the spatial relationships in different ways;
and (3) the quality of the prediction results is diffi-
cult or sometime impossible to assess.

Similar considerations can be made for the
spatial prediction of natural hazards and of envi-
ronmental impacts. There, too, map data layers of
thematic units and continuous values are overlaid
and the resulting aggregated values are transformed
and modeled to express the likelihood of hazard or
of impact occurrence, so that study areas can indi-
cate priority locations for detailed inspection in view
of hazard prevention, avoidance, or mitigation.

This contribution discusses how empirical mea-
sures of relative quality, termed cross-validation, can
be and should be obtained through blind tests, BT, of
spatial predicted values from map overlays. Such
measures require specific assumptions, scenarios,
and analytical strategies. For simplicity we will use
the term event occurrence to refer equally to resource
discovery or hazard-impact, even if the former
implies a process already occurred (deposition) while
the latter a process to occur in the future.

SPATIAL PREDICTION MODELS
AND ASSOCIATED ASSUMPTIONS

Various statistical models can be used to estab-
lish spatial relationships between the distribution of
point-like or patch-like events, and the mapping units
in which they tend to occur. The latter can be cate-
gorical, such as lithologies or land uses, or can express
continuous values, such as geophysical anomalies or
terrain slope values. The events are preferably
instances of a specific type so that consistency of origin
and context can be expected when relating them to the
categorical units and continuous value maps.

Commonly used spatial prediction models are
based on: (1) Bayesian Probability Theory�s Joint
Conditional Probability function and the Likelihood
Ratio function, and its derived monotonic functions
such as the Certainty Factor, and the Weights of
Evidence; (2) Zadeh�s Fuzzy Set membership

function; and (3) Dempster–Shafer Evidential
Theory�s Belief Function. A mathematical unified
framework for these models has been provided by
Chung and Fabbri (1993), together with criteria to
construct them and to estimate predicted values.
One main assumption of the above spatial prediction
models is that each map data layer provides ‘‘inde-
pendent’’ evidence of favorable setting. A general
term used for the models is Favorability Functions.

An additional assumption that support the
application of the models to predict further discov-
eries or future hazards is a degree of similarity
between the observed-constructed settings of the
known event occurrences and those of the future
ones. It is that ‘‘degree of similarity’’ that allows
extrapolation in space and possibly in time.

Another set of inherent assumptions is the
causal relationships between the mapping units
and the events. Such relationships are the result of
expert knowledge, i.e., of the opinion of scientists
specialized on the commodities or the hazards. The
experts are to provide guidance for the construction
of the spatial databases and for their interpretation.
Another general assumption is that the spatial
database constructed for a study area sufficiently
documents the above relationships so that the sta-
tistics obtained from it can be used to support the
spatial prediction. Inherent to this assumption is a
degree of uniformity of detail and consistency or
‘‘granularity’’ between the map data layers. Such
layers in general consist of a mixture of categorical
and continuous values.

RELATIVE INDEXES AND THEIR
MEASURES

The statistics from the spatial database are
considered as partial evidence in favor or against the
occurrence of events. The assumptions on the rele-
vance of those statistics to represent the condition of
future occurrences provide essentially a way to
obtain a relative ranking of all units within a map
and later of all points with aggregate values ranked
from a set of overlaid map layers, based on a spatial
prediction model. Using the model means that,
given two separate points in a study area, one point
will have a higher aggregate value than the other.
The relative ranks are the only interpretable evi-
dence obtainable from the model and the database.
It is doubtful that the original scores have any direct
meaning other that the relative ranking.
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After constructing a favorability function as the
spatial model, a relative potential level is estimated
at every pixel by computing the score of the favor-
ability function at every pixel in the study area. We
will be using the term ‘‘potential’’ to refer to either
‘‘resource discovery’’ or to ‘‘hazard’’ to indicate the
relative predicted index scores. These computed
scores normally range from 0 to infinity. Because
they express relative levels of potential, they can be
replaced by ranks (or orders) instead of the actual
scores. In a study area, suppose that there are n
pixels. We expect to have n estimated scores, one at
each pixel. These n values are sorted in decreasing
order and replaced by their rank, ranging now from
1 to n. Dividing each rank by the number of pixels n
standardizes the ranks. The resulting standardized
ranks range from 1/n to 1 were termed as ‘‘predicted
relative potential indices,’’ or PRP indices, with the
pixel having the highest PRP index being assigned
the value 1, and the pixel having the lowest PRP
index being assigned a value of 1/n. By plotting the
PRP index at each pixel, a PRP map is generated.
To illustrate the PRP index, let us consider a pixel
with 0.95 as the index. It means that the pixels whose
favorability function scores are greater than the
score of the pixel with 0.95 as the PRP index cover
5% of the study area. We will later use the PRP
indices to evaluate the prediction maps through
‘‘fitting-rate curves’’ and ‘‘prediction-rate curves’’
using cross-validation.

Simple ways to analyze rank statistics were
discussed by Chung and Fabbri (2003) who have
described several benefits of using such a ranking
procedure to generate the potential classes for a
prediction map. For example, suppose that we wish
to generate 100 equal-size prediction classes where
each class covers 1% of the study area. Then such
PRP indices obtained by the ranking procedure
provide a useful tool. The 100 equal-size classes are
generated in the following manner. Assign ‘‘Class
100’’ consisting of the pixels with the PRP indices
larger than 0.99 and less than or equal to 1. The
pixels in ‘‘Class 100’’ cover 1% of the study area.
‘‘Class 99’’ is assigned the pixels with the predicted
potential indexes larger than 0.98 and less than or
equal to 0.99. Similarly ‘‘Class 1’’ consists of the
pixels with the PRP indices less than or equal to
0.01. When considering an appropriate number of
potential classes, however, the meaningful number
of classes depends on the quality of information
available in the database and on the significance
of the model used. To illustrate the relationship

between computed favorability function values and
corresponding PRP indices, a scatter plot can be
used.

The first step to evaluate a prediction map is to
compare the predicted potential indices of the pixels
with the known occurrences of the events (note that
these events were used to generate the prediction
map) and such comparison generates the ‘‘fitting-
rate curve’’ of the prediction map. Suppose that we
have m known events. To produce the fitting rate
curve of a prediction map, simply obtain m predicted
potential indexes at m known events and then sort m
values in decreasing order; (q1, q2, …, qm), where q1

indicates the largest PRP index. We generate the
following m pairs:

1� q1ð Þ; 1=mf g; 1� q2ð Þ; 2=mf g; . . . ; 1� qmð Þ; 1f g
The scatter plot of these m pairs constitutes the fit-
ting-rate curve where the X-axis represents the
portion of the study area assigned to a ‘‘potential’’
class and the Y-axis represents the proportion of the
known events that have occurred within the assigned
‘‘potential’’ class. Such a fitting, however, only
reflects how the classes discriminate between the
settings identified using the distribution of the
observed events, and does not necessarily reflect
the distribution of future occurrences. For that, other
techniques and assumptions are necessary, as we will
see later on through the blind-test procedures.

HOW GOOD IS THE PREDICTED
RELATIVE POTENTIAL INDEX
AS A PREDICTOR?

Potential indices as we have described, are to
reflect not just the fitting to the prediction classes
but the likelihood of future event occurrence, given
the combined presence of the map unit data layers.
Such a likelihood, however, is restricted so far to the
distribution of the past events and the associated
database of the study area. To study and interpret
their effectiveness as predictors of future occur-
rences we have to assume a similarity of conditions
between what has been observed in the past and
what will occur in the future (e.g., new resource
discoveries, new hazardous events, etc.). Saying that
the past is the key to the future is only a starting
point that means that we are willing to infer, given
the observed trends, that within a given time interval
and within a given study area, we expect as many
events (or say twice as many, or some other larger or
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smaller number) as observed in the database.
Alternatively but impractically, we could wait for a
sufficiently long time and see how many events
would occur with respect to our prediction.

Another more convenient empirical way to
study the effectiveness of our initial prediction that
used the distribution of all past events is to perform
a cross-validation of the prediction results by parti-
tioning the set of observed events into a prediction
subset and a testing subset. With the former we can
obtain a second prediction and the relative ranked
equal area classes. With the latter we can verify how
the testing subset of events is distributed across
those new classes. A ‘‘good’’ prediction should show
a strong clustering of testing events in the higher
value classes. This second clustering, however, will
be different from that of the fitting classes men-
tioned earlier. Nevertheless, it is a measure of its
effectiveness.

The next section describes how to interpret the
prediction results via blind tests.

WHAT IS A BLIND TEST AND WHAT
IS IT TELLING US?

A BT is a fundamental way to cross-validate the
results of spatial predictions empirically, short of
waiting for events to occur. A BT is obtained, for
instance, by pretending that part of the known events
is unknown. It will be used to test the prediction
results generated using the other part of the known
events to establish the spatial relationships. The
probability table estimated via BT depends entirely
on how the partition is selected and the interpreta-
tion of the probability is again solely contingent and
subject to the partition. The event partition can be
obtained in various ways, depending on the quality
and quantity of the event data available.

(i) Only Very Few Events are Known that Cannot
be Separated in Different Periods or Sub-areas

One event out of m is used to BT and all the
m ) 1 remaining ones are to generate a prediction to
be cross-validated by the excluded event. Using the
m ) 1 remaining events, a prediction map based on
the PRP indices is constructed. The PRP index is
obtained at the pixel containing the excluded event.
The operation is iterated m times, once for each of
the m excluded events. This leads to generating m

PRP indices showing how well each future event can
be predicted, as the ‘‘next’’ event to occur, by all the
other existing ones. To produce the ‘‘prediction-rate
curve,’’ simply sort the m indices in decreasing or-
der; (p1, p2, …, pm), where p1 indicates the largest
PRP index. We generate the following m pairs:

1� p1ð Þ; 1=mf g; 1� p2ð Þ; 2=mf g; . . . ; 1� pmð Þ; 1f g

The scatter plot of these m pairs constitutes the
prediction rate curve where the X-axis represents
the proportion of the study area assigned to a
‘‘potential’’ class and the Y-axis may be regarded as
the representation of the proportion of the ‘‘future’’
events that have occurred within the assigned
‘‘potential’’ class. In contrast with the fitting-rate
curve that only reflects how the classes discriminate
between the settings identified using the distribution
of the observed events, the prediction-rate curve
reflects the distribution of future occurrences in the
prediction map.

(ii) Numerous Events are Known but Cannot
be Separated in Different Periods or Sub-areas

A random half of the events is used to BT and
the other random half is used to predict. The BT can
be repeated inverting the role of the two random
halves or it can be repeated several times with newly
generated random halves, to obtain integrated sta-
tistics on the stability and reliability of the prediction
results.

(iii) Numerous Events are Known that can be
Separated in Several Temporal Sub-groups

A BT is performed using the older set of events
to predict and the younger set for testing. The sta-
tistics from the BTs provide true time prediction
results. In such cases the quality of the prediction
results should reflect the stability in time of the
thematic map units subjected to transformation
(e.g., climatic or human-induced) such as land use or
land cover.

(iv) Numerous Events are Known that can be
Separated in Several Spatial Sub-groups

The event distribution in some sub-areas is used
to BT the results of a prediction obtained from an
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adjacent sub-area, in which the spatial relationships
have been established. It means that the statistics on
the relationships is obtained from one area and then
is applied to another area. The BT is dependent on
the similarity of conditions and events in the areas
analyzed and compared. In some situations, for
instance, the spatial data allow a combination of
Strategies (iii) and (iv).

(v) Other Types of BTs can be Performed

Changing the combination of thematic and
continuous data layers or the quality-resolution, BT
are obtained in experiments corresponding to one or
more of the previous types of BTs just described.

To produce the ‘‘prediction-rate curve’’ for (ii),
(iii), (iv) and (v), as described in (i), we have to
obtain PRP indices from the pixels that contain the
observed events but that were not used in con-
structing the prediction map in BT. Supposing that
we obtain k indices and sort them in decreasing or-
der; (p1, p2, …, pk), where p1 indicates the largest
predicted potential index. We generate the following
k pairs:

1� p1ð Þ; 1=kf g; 1� p2ð Þ; 2=kf g; . . . ; 1� pkð Þ; 1f g
The scatter plot of these k pairs constitutes the
prediction rate-curve where the X-axis represents
the proportion of the study area assigned to a
‘‘potential’’ class and the Y-axis may be regarded as
the representation for the proportion of the ‘‘future’’
events, which occurred within the ‘‘potential’’ class.
Performing BTs appears as a practical way of
interpreting many aspects of prediction modeling:
(1) quality of data layers (categorical and continu-
ous), distribution of types of known events/
discoveries, and expert�s knowledge of the spatial
database; (2) significance of the predicted relative
PRP index maps; (3) effect of database partitioning
in modeling; (4) comparisons of the results of dif-
ferent prediction models; and (5) assessment of
scenarios for exploration or for risk analysis.

A general purpose strategy for favorability
function predictive modeling is shown in Fig. 1 as an
operational flowchart with three stages. The distri-
bution of known discoveries or of the hazardous
occurrences is used to establish their spatial rela-
tionship with the units of the input map data layers.
The terms discoveries or occurrences are used
interchangeably to refer to exploration or to hazard/
impact applications. The interpretation of the

probability table obtained depends entirely on how
the partition for BT was made. To perform analyses
according to the strategies listed earlier, iterations
can be executed looping back one or more steps. In
the next section examples of applications with
and without BTs are discussed. Dedicated software
based on cross-validation has been discussed by
Fabbri, Chung, and Jang (2004).

SPATIAL PREDICTIONS WITH EVENT
PARTITIONS AND BLIND TESTS

Some General Purpose Applications

Once a unified framework for favorability
function models had been set up (Chung and Fabbri,
1993) and applications of various models were
developed, it became evident that to interpret the
results of predictions, either mineral potential maps
or hazard maps, empirical tests were necessary to
obtain scientific measures of success and decision

Figure 1. The three stages of favorability function modeling.

The probability table from the Second Stage, which depends

entirely on how the partition for BT is made for validation, is the

most critical piece of information to interpret the prediction

results in the First Stage and to obtain the risk prediction map in

the Third Stage, where E is element at risk, V is vulnerability,

and H is hazard. The term discovery is used interchangeably

with the term occurrence to refer to exploration and to hazard/

impact applications, respectively.
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values of the prediction results. BTs were used,
for instance, in cross-validations for the following
purposes:

– assessment of predictive power of landslide
hazard (Chung, Fabbri, and van Westen,
1995), a first application of BT to interpret
the ‘‘goodness’’ of spatial prediction results;

– comparisons of the performance of different
prediction models, and their integration with
expert�s knowledge (Chung and Fabbri, 1998,
1999);

– estimation of probability of mineral discovery
by an operational unit area for exploration
(Chung, Fabbri, and Chi, 2002a);

– separation of influential and non-influential
data layers in landslide hazard predictions
(Chung, Kojima, Fabbri, 2002b); it enabled to
identify predictions of greater reliability due
to the higher empirical support to character-
ize the settings of landslide occurrence;

– assessment of uncertainty in landslide hazard
predictions (Chung and others, 2006); by
iterating many times the selection of random
halves of the events, prediction-rates were
obtained to express the level of uncertainty
associated with the predicted classes;

– comparisons between spatial, temporal, and
spatial/temporal predictions (Chung and
Fabbri, 2008);

– cost-benefit analysis of prediction-rate curves
of landslide hazard (Chung and Fabbri, 2003);
a ratio of effectiveness was applied to identify
the most reliable parts of the prediction-rate
curves;

– landslide risk assessment via probability of
occurrence estimation (Chung and Fabbri,
2004; Chung and others, 2005a); the introduc-
tion of socioeconomic indicator maps led to
the assessment of landslide risks to people,
infrastructures, and valuable land uses.

Two Examples of BT Strategies

To clarify in some detail the usefulness of BT,
one recent application of spatial prediction model-
ing in mineral exploration, with only six known
discoveries, is discussed, followed by a second
application to landslide hazard for which 92 known
occurrences are used. The two BT strategies are

different, so are the results obtained and their
significance.

A spatial database for diamond exploration in
the Lac de Gras area of the Northwest Territories, in
Canada, was used by Chung and others (2005b) and
Chung and Fabbri (2005) to obtain the prediction-
rate curves shown in Fig. 2. The study area covers
34.6�22.9 km (692�450 pixels of 50 m resolution)
and contains six diamondiferous kimberlite ore
bodies (Beartooth, Panda, Koala, Koala North, Fox
and Misery). Additionally, 15 kimberlites with only
micro-diamonds were known. Radiometric and
magnetic sensor maps interpolated from parallel
flights, proximity maps to faults and dikes (as
continuous data layers) and the presence of two
indicator minerals, chromium-spinel and chromium-
diopside, were used in the study. In addition, a
bedrock lithology map (categorical data layer) was
employed to characterize the spatial associations of
the ore bodies and of the other kimberlites with
micro-diamonds.

A fuzzy set prediction model based on the
likelihood ratio function was instrumental to obtain
and interpret the prediction maps following strategy
(i) in section ‘‘What is a Blind Test and What is it
Telling Us?’’ A first prediction map was obtained
using the locations of all the six deposits. It was then
interpreted with the prediction table estimated from
the cross-validation procedures using six blind tests.
Six more prediction maps were so obtained from the
BT. Figure 2 shows parts of the prediction-rate
curve in blue from the latter six prediction maps. For
a comparison, two additional experiments with dif-
ferent inputs were performed: (1) instead of seven
data layers, only one data layer, the magnetic total
field, with the six ore bodies was used in an addi-
tional BT, using the same strategy (i) in section
‘‘What is a Blind Test and What is it Telling Us?’’, to
study the effects of input data layers, and (2) the
same seven data layers in the earlier BT, but using
the 15 kimberlites with micro-diamonds instead of
the six ore bodies, to test whether kimberlites with
micro-diamonds can ‘‘predict’’ the locations of the
six ore bodies. The cross-validation results were also
plotted in Fig. 2.

As discussed in Chung and others (2005b), even
without seeing the 13 prediction maps generated, we
can compare in Fig. 2 the prediction results. The
comparison is made by considering the area pro-
portion of the higher prediction classes containing
the ore bodies, each predicted as ‘‘next’’ to occur by
the other five, as the blue and the red prediction-rate
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curves. Obviously, the prediction of the six ore
bodies by the locations of the 15 kimberlites with
micro-diamonds is poor! The BT shows that statis-
tically the two types of kimberlites have different
characterizations. It suggests that the locations of
kimberlites with micro-diamonds do not provide any
useful information to locate undiscovered ore bodies
in this case study. In a second application, to hazard
modeling, a greater number of known occurrences
allowed a different strategy to be selected.

A spatial database for landslide hazard studies
was constructed for the Fanhões-Trancão area,
north of Lisbon, in Portugal. The study area is
13.3 km2. Detailed geologic-geomorphologic map-
ping at 1:2,000 identified 92 shallow translational
slides. They were compiled and digitized into a
5 � 5 m resolution spatial database consisting of
digital images of 760 � 700 pixels. The causal factors
(i.e., related to the occurrence of landslides) are:
continuous data layers, i.e., elevation, slope angle,
aspect angle obtained from the digital elevation
model (DEM), and categorical ones, i.e., geology
map, surficial deposit map, and land-use map.

The 92 landslides in the study area consist of 43
pre-1980 landslides and of the remaining 49 post-
1980 landslides. The region has been the focus of
numerous geomorphologic analyses for hazard
zonation by Zêzere and others (2004).

A landslide hazard (potential) prediction map
of the Fanhões-Trancão area, Portugal, was
obtained by Chung and Fabbri (2008), using the
Fuzzy Set membership function of the Likelihood
Ratio Function. The same function has been used in
the other prediction experiments. Input data were
the locations of the polygons of the 92 shallow
translational landslides and the six geomorphologic
and topographic map layers. In that application, the
number of the 92 landslide polygons that fell into
each of 200 hazard classes was counted. Each class
corresponded to 0.5% of the study area. To be
counted within a class, at least 50% of the pixels in a
landslide polygon must be included in the class. The
counts are weighted by the numbers of pixels in the
polygons. Weighted counts of the landslide polygons
form the ‘‘fitting-rate table’’ or curve that was plot-
ted as the gray line with triangles in Fig. 3 with the
horizontal axis representing the proportion of the
study area predicted as hazardous, and the vertical
axis showing the cumulative proportion of landslides
falling within each class. A second experiment gen-
erated another prediction map using only 43 pre-
1979 landslides and its fitting-rate curve is also
shown in Fig. 3, falling below the previous fitting-
rate curve based on all the 92 landslides. The third
curve in the illustration is the prediction-rate curve
from the latter experiment that provides a measure
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Figure 2. Example of prediction-rate curves obtained from cross-validation in the Lac de Grass area,

Northwest Territories, Canada, obtained using strategy (i) in section ‘‘What is a Blind Test and What is it

Telling Us?’’. The cumulative plots allow the probability of discovery of a new deposit location to be

computed within the high potential area of the corresponding prediction maps, not shown here (Chung

and others, 2005b). Vertical gradient is vg, total field is tf, chromite is ch, spinel is sp, and diopside is dp.
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of ‘‘goodness’’ of the classes obtained in the two
preceding predictions using the time partition of
the landslide occurrences. Strategy (iii) of section
‘‘What is a Blind Test and What is it Telling Us?’’
was used in this experiment. Here the assumption
was made that the 49 post-1980 landslides are
unknown and represent the future occurrences dur-
ing a 25-year period (1980–2004). Additionally, we
assumed that the prediction rate obtained represents
the prediction power of the first prediction that used
all the 92 occurrences for the next 25 years, i.e., the
period 2005–2030.

The 10% of the study area with the highest
predicted values (Fig. 3) corresponds to a prediction
rate of 41% whereas the fitting rates are 61 and 77%,
respectively. The latter two would overestimate the
‘‘goodness’’ of the prediction. They only indicate
the ‘‘goodness’’ of fit between the landslides and the
causal factors.

In another experiment, the study area was
divided into two mutually exclusive sub-areas, the
left region and the right region, as in strategy (iv) of
section ‘‘What is a Blind Test and What is it Telling
Us?’’. An experiment of this type would enable the
similarity of geomorphologic settings or of climatic
conditions to be tested. The left region contains 38
landslides (13 pre-1979 and 25 post-1980) and the
right region includes 54 landslides (30 pre-1979 and
24 post-1980). Lower prediction-rate curves are
compared (Fig. 4) to the prediction-rate curve from
Fig. 3. There the previous prediction of the 49 post-
1980 from the 43 pre-1979 landslides is compared
with two spatial predictions in the right half using
the landslides from the left half region and vice

versa. Corresponding values for the 10% of highest
predicted classes are 41 vs. 37%. A mosaic of
two prediction images is the result of this validated
prediction image.

An extensive discussion of these and more
experiments can be found in Chung and Fabbri
(2008), who also combined strategies (iii) and (iv)
that provided even lower prediction-rate values.

Clearly, all the above-mentioned characteristics
of ‘‘goodness’’ of the prediction images generated
would be totally unknown without cross-validation
via BT. Consequently, the BTs lead to consider-
ations and introspections on the similarity of
occurrences in time, of settings in time and in space,
of comparability between adjacent study areas,
between prediction models, and on how to use the
prediction-rate values for estimating the probabili-
ties of occurrences for each class or for each
pixel. Far from trivial consequences follow the use
of BT!

CONSIDERATIONS ON RECENT SPATIAL
PREDICTIONS IN THE GEOSCIENCES

Having explored the information that must be
extracted from spatial databases by BT of the pre-
diction results, it should be instructive to consider a
number of research papers in spatial modeling that
would greatly benefit from BT and/or from more
extensive applications of BT. Since cross-validations
of spatial prediction results have been initially pro-
posed (Chung, Fabbri, and van Westen, 1995; Chung
and Fabbri, 1999), relatively few examples of BT can
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be found either in mineral exploration or in natural
hazard studies.

In the past 12 years or so interest in empirical
validation or BT for prediction modeling in mineral
exploration has varied from complete absence to
considerable concern. However, there does not
seem to be a consistent systematic or standardized
approach to the application of cross-validation
techniques. For instance, the evaluation of spatial
modeling for epithermal gold deposit prediction by
Raines (1999) rightly saw the prediction results as a
‘‘relative ordinal rank’’ but no BT was reported. The
separation of favorability values into favorable,
permissive, and non-permissive was obtained by
identifying breaks in the cumulative area ranks. That
corresponds to using the fitting rates of the deposits
used to predict and not to the prediction-rates from
a cross-validation.

A different approach is the one by Singer and
Kouda (1999) who compared several probabilistic
models in the prediction of mineral deposits. They
analyzed a test data set of 15 volcanic hosted mas-
sive sulfide deposits in a study area with 23 binary
map data layers in the Province of Manitoba,
Canada. Considered as wise by the authors was to
perform independent validation tests by dividing the
entire study area in two parts, one for predictive
modeling and the other for validation. A random
subset of 8 of the 15 deposits was selected together
with a randomized half of the 6460 unique-condition
polygons covering the study area and containing the
8 modeling deposits. The other half contained the
remaining 7 deposits. Predictions were compared in
terms of correctly classified polygons as deposit
polygons or as barren polygons. Interestingly, they
observed that very few deposits were correctly rec-
ognized in the independent tests whereas in the
initial prediction modeling a high percentage had
been recognized. Those authors made efforts to
discuss in depth the pros and cons of the methods
used, including the loss of information caused by
binarizing all map data even when continuous.
Nevertheless, also in that case, their analyses could
be further expanded by applying strategy (i) of
section ‘‘What is a Blind Test and What is it Telling
Us?’’ (i.e., the take-one-out procedure) also used for
the application described in Fig. 2.

An illustrative instance of a successful applica-
tion is the one by Cheng (2004), who applied spatial
modeling to predict the potential distribution of
artesian aquifers in the Oak Ridge Moraine study
area, near Toronto, Canada. As training points for

modeling he used the spatial distribution of 353
wells with water level above the surface. Binary
expressions of surficial geology map, distance from
thick drift layers, distance from the Oak Ridge
Moraine, and distance from steep slope zones were
used as evidential data layers. Buffer zones with
unequal intervals were generated to obtain binary
units from distance maps. The purpose was the
identification of combinations of conditions to
reduce the prediction areas of having flowing wells
by two-thirds by generating a posterior probability
map. BT of the results was not described, never-
theless the application would appear promising even
if it cannot be certified how much so. It can be
suggested that the use of strategy (ii) of section
‘‘What is a Blind Test and What is it Telling Us?’’
and the repetition of the analysis, say 30–40 times,
with new random half partitions of the training and
validation points would provide empirical means to
interpret the ‘‘goodness’’ of the relative posterior
probability value ranking obtained. In addition, a
comparison of the 30–40 results would help to assess
their robustness. The applications considered are
just used here to exemplify the likely benefits of BT
even in innovative and successful contributions,
independently from the prediction models used.

Other more recent works dealt with problems
such as the assessment of the quality of the predic-
tion results (Porwal, Carranza, and Hale, 2003a,
2003b), and the comparison of different predicting
methods and models when analyzing the same data
set (de Quadros and others, 2006; Brown, Groves,
and Gedeon, 2003; Porwal, Carranza, and Hale,
2006a, 2006b). Much of the emphasis in those works,
however, was more on experimenting with new
advanced techniques than on the interpretation of
the significance of their application results. In addi-
tion, the strategies and specific assumptions of those
cross-validations techniques were so different that it
is not possible to evaluate or compare their useful-
ness in more general experiments or situations. For
instance, lumping together fitting and prediction
rates complicates the evaluation of the prediction
quality. Thresholds to transform multi-value pre-
diction maps into binary or tertiary maps are likely
to weaken the cross-validation. In addition, some
cross-validation experiments appeared limited to the
training of classifiers and not directed to interpret
the final prediction results.

Applications of spatial prediction models to
natural hazard show a similar trend in the last few
years. For instance in a special issue of Natural
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Hazards there are contributions without validation
of prediction results (e.g., Corominas and others,
2003), one in which validation has been avoided, in
favor of fitting curves, with the argument of
unavailability of the time of occurrence of landslides
in the database (van Westen, Rengers, and Soeters,
2003), three studies in which validation was consid-
ered as integral part of the interpretation of hazard
predictions (Santacana and others, 2003; Remondo
and others, 2003a, 2003b), and two more studies in
which validation was used to explore and compare
prediction powers or to eliminate misunderstandings
on perceived obstacles to spatial predictive modeling
(Chung and Fabbri, 2003; Fabbri and others, 2003).

Indicative of the degree of confusion now
remaining about validation in spatial prediction
modeling is a recent collection of papers on spatial
modeling in GIS. In this collection, four contribu-
tions deal with prediction of hazards (landslides) or
vulnerability (aquifer), and six with the prediction of
natural resources (metals, aggregates, and soils). All
contributions claim to perform validations of
modeling results; however, entirely different strate-
gies are followed and assumptions made. Some
approaches use fitting-rate curves (success rates) to
identify ‘‘natural breaks’’ in them and obtain inter-
pretable classes (Arthur and others, 2007; Masetti,
Poli, and Sterlacchini, 2007; Poli and Sterlacchini,
2007; Behnia, 2007; Nelson, Connors, and Suárez,
2007). Generally weak comparisons are made of
different prediction results by using either too few
classes or too few occurrences to verify limited
numbers of predictions (e.g., Nykanen and Ojala,
2007; Coolbaugh, Raines, and Zehner, 2007; Tissari
and others, 2007). No effective validation of the
prediction results appears in those contributions.
Robinson and Larkin (2007) provide the only
instance of prediction-rate curves in a diagram with
proportions of sites correctly predicted (sensitivity)
on the vertical axis and the cumulative area fraction
(of study area) on the horizontal axis. Following a
technique applied by Begueria (2006), they use a
function of the area under the curve to establish the
quality of the model prediction results. No further
discussion is provided of the significance of such
curve pattern in prediction modeling.

Applications that seem to lead to a more con-
sistent approach of BT in mineral exploration are
those by Chung (2003), Harris and others (2003),
Agterberg and Bonham-Carter (2005), and Skabar
(2005). Recent works on landslide hazard based on

cross-validations are the ones by Zêzere and others
(2004) and by Lee and others (2006). In natural
hazard studies the approach by Chung (2006) and
Chung and Fabbri (2003, 2004, 2008) are targeting a
more consistent way to use cross-validation tech-
niques to estimate probabilities of occurrence of
hazardous events.

CONCLUDING REMARKS

We have discussed how in spatial prediction
modeling only relative ranks can be obtained using
prediction models and their assumptions. We have
dealt with the problem of assessing the ‘‘goodness’’
of the prediction results via a variety of empirical
blind tests. A three-stage strategy for favorability
function modeling has been proposed for which
dedicated software is available that is soundly based
on cross-validation. Examples of general purpose
spatial prediction were listed, followed by two
applications of BT that use prediction-rate curves to
interpret the prediction results and proceed with the
estimation of probabilities of occurrence. A number
of recent applications were pointed out in which
varying degrees and strategies of validation were
attempted, while other ones seem to use ad hoc
scenarios of limited effectiveness. Some additional
applications appeared to potentially lead to a stan-
dardization of validation techniques.

A few recommendations can now be made for
further research. In order to establish standards to
interpret and compare the results of spatial predic-
tions, three initiatives must be initiated in the geo-
sciences: (1) identify one or two spatial databases to
be distributed and analyzed by many researchers
with different models to achieve agreement on how
to construct BTs; (2) organize a special meeting on
the standardization of validation strategies; and
(3) focus on representing and assessing by BT the
uncertainties associated with the prediction results.
The authors of this contribution are committed to
the last initiative.

There is now a wealth of different prediction
methods and many applications have been at-
tempted; however, scientific progress at present is
perhaps needed more in assessing the significance
and stability of the predictions obtained than in
devising additional ways to establish spatial rela-
tionships with sophisticated new prediction models
whose effectiveness may not be easily evaluated.
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slope stability analysis, Chuquicamata open pit copper mine,
Chile: Nat. Resour. Res., v. 10, no. 2, p. 171–190. doi:10.1007/
s11053-007-9044-7.

Nykanen, V., and Ojala, V. J., 2007, Spatial analysis techniques as
successful mineral-potential mapping tools for orogenic
gold deposits in the northern Fennoscandian Shield, Finland:
Nat. Resour. Res., v. 10, no. 2, p. 85–92. doi:10.1007/s11053-
007-9046-5.

Poli, S., and Sterlacchini, S., 2007, Landslide representation
strategies in susceptibility studies using Weights-of-Evidence
modeling technique: Nat. Resour. Res., v. 10, no. 2, p. 121–
134. doi:10.1007/s11053-007-9043-8.

Porwal, A., Carranza, E. J. M., and Hale, M., 2003, Knowledge-
driven and data-driven fuzzy models for predictive mineral
potential mapping: Nat. Resour. Res., v. 12, no. 1, p. 1–25.
doi:10.1023/A:1022693220894.

Porwal, A., Carranza, E. J. M., and Hale, M., 2003, Artificial
neural networks for mineral-potential mapping: a case study
from Aravalli Province, western India: Nat. Resour. Res.,
v. 12, no. n. 3, p. 155–171. doi:10.1023/A:1025171803637.

Porwal, A., Carranza, E. J. M., and Hale, M., 2006, Bayesian
network classifiers for mineral potential mapping: Comput.
Geosci., v. 32, p. 1–16. doi:10.1016/j.cageo.2005.03.018.

Porwal, A., Carranza, E. J. M., and Hale, M., 2006, A hybrid fuzzy
weights-of-evidence model for mineral potential mapping:
Nat. Resour. Res., v. 15, no. 1, p. 1–14. doi:10.1007/s11053-
006-9012-7.

Raines, G. L., 1999, Evaluation of weights of evidence to predict
epithermal-gold deposits in the great basin of the western

United States: Nat. Resour. Res., v. 8, no. 4, p. 257–276.
doi:10.1023/A:1021602316101.
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