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Abstract  Understanding and controlling the sinter-
ing behaviour of gold nanoparticles is important in 
the field of ligand-protected nanoparticles for their 
use as precursors for thin film fabrication. Lower-
ing the temperature of the sintering event of gold 
nanoparticles by facilitating desorption of the ligand 
through oxidation can provide compatibility of sin-
tered gold nanoparticle thin films onto heat-sensitive 
substrates. Here we examine the processes by which 
1-butanethiol-protected gold nanoparticles sinter 
under an ozone-rich environment. Upon heating, an 
ozone-rich environment significantly reduces the 
temperature of the sintering event when compared 
to sintering under ambient conditions. At room tem-
perature, exposure to an ozone-rich environment 
induces sintering over a period of 2.5 h. Upon expo-
sure to ozone, the surface-bound butanethiol ligands 

are oxidised to 1-butanesulfonic acid which facilitates 
sintering.
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Introduction

Sintering of gold nanoparticles (AuNPs) is an attrac-
tive technique to form continuous, electrically con-
ducting thin films [1, 2]. Using this method, low-cost 
printable electronic devices such as thin-film transis-
tors [2], field effect transistors [3], and contacts [2, 
4] can be fabricated. Formulations that sinter AuNPs 
at relatively low temperatures provide great flex-
ibility and enable AuNP films to be applied to low 
melting point polymers or other heat-sensitive sub-
strates. AuNPs can sinter if there is sufficient energy 
to overcome the activation energy barrier provided by 
the stabilizing ligands [5]. One method to lower the 
activation energy barrier, and thus the temperature 
of the sintering event (TSE), is to oxidise the capping 
ligands, which facilitates desorption from the gold 
surface.

The bond between gold and the thiolate stabiliz-
ing ligand may be described as a gold-thiyl interac-
tion (where thiyls are species with the RS· struc-
ture) [6]. These interactions can be degraded upon 
exposure to an oxidiser, to UV light, or at elevated 
temperatures [7–12]. Alkanethiolate self-assembled 
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monolayers (SAMs) on gold have been shown to 
oxidise to alkanesulfinates and alkanesulfides under 
ambient conditions [10, 13–15]. Scanning tunnelling 
microscope images of air-oxidised decanethiol SAMs 
on Au(111) shows that after a two-week exposure to 
ambient conditions, some conversion to decanesul-
fonate occurs [16]. Density functional theory calcula-
tions revealed that under oxidising conditions (surface 
oxide or ozone) thiolate groups on Au (111) surfaces 
might form sulfoxide derivatives (R2S = O), with 
sulfinate (RS(= O)O−) and sulfonate (RS(= O)2O−) 
derivatives formed if active oxygens are further sup-
plied [17].

Of particular relevance to the current work, expo-
sure of thiol-bound SAMs on gold to ozone has been 
shown to oxidise the sulphur atoms [11, 18, 19]. 
With regard to AuNPs, ozone can reduce the affinity 
of thiol-based ligands to the gold core in supported 
AuNPs, allowing for the removal of the ligands by 
washing with water [20]. X-ray photoelectron spec-
troscopy (XPS) analysis of the ozone-treated AuNPs 
revealed that the sulphur atoms had been oxidised 
upon exposure [20]. Previous work has also utilised 
nitrogen dioxide to oxidise the thiolate stabilizing 
ligands of AuNPs which subsequently sintered at 
room temperature [5]. In this work, we examine the 
sintering of thiol-stabilised AuNPs using ozone, a 
common and readily generated gas. We show that in 
an ozone-rich environment, the ligands surrounding 
AuNPs are oxidised and significantly reduce TSE to 
produce gold films. Importantly, we investigate the 
organic profile of the desorbed ligand to determine 
the processes that occur upon sintering. These find-
ings shed a new light on advancing the use of gold 
films for heat sensitive substrates.

Experimental

General

1-Butanethiol, Sodium 1-butanesulfonate, tetraoc-
tylammonium bromide, sodium borohydride, metha-
nol, acetonitrile, deuterated chloroform (CDCl3) and 
deuterated dimethyl sulfoxide (DMSO-d6) were pur-
chased from Sigma-Aldrich and used as received. 
Toluene (ChemSupplyAustralia) and chloroform 
(Rowe Scientific) were used as received. 1-Butane-
sulfonic acid [21] and dibutyl disulfide [22] were 

prepared by literature procedures. Tetrachloroau-
ric acid [23], and butanethiol-capped AuNPs (BT@
AuNPs) [2] was prepared using literature procedures. 
The AuNPs were characterised by scanning electron 
microscopy (SEM), transmission electron micro-
scopes (TEM) and proton nuclear magnetic resonance 
spectroscopy (1H NMR). 1H NMR spectra were 
recorded using a Bruker NMR spectrometer operating 
at 400 MHz. Spectra were referenced using residual 
non-deuterated signals: DMSO-d6 (1H δ 2.49), CDCl3 
(1H δ 7.26). Transmission electron microscopy 
(TEM) images were taken using a JEOL JEM-F200 
FE-TEM operating at 200 kV and fitted with a Gatan 
Rio 1816–4 k × 4 k camera. The TEM samples were 
prepared by evaporating diluted nanoparticle solution 
on the carbon-coated copper grid. The images were 
analysed using ImageJ software (https://​imagej.​nih.​
gov/​ij/). SEM was performed at facilities at Western 
Sydney University. A Zeiss Merlin field emission 
gun scanning electron microscope (FEGSEM) was 
utilised for imaging samples prepared on stubs. The 
FEGSEM was operated at 20  kV accelerating volt-
age in Hivac mode at a working distance of approxi-
mately 3 mm. Both secondary and in-lens secondary 
detectors were utilised for imaging. High-resolution 
mass-spectrometry (HRMS) was performed using 
an Agilent 6510 Q-TOF using flow injection and in 
positive ion mode for [M + H]+, or negative ion mode 
[M-H]− where specified.

Resistance measurements of AuNP films

Suspensions of BT@AuNPs in chloroform (0.5 mL of 
10 mg/ml) were drop cast onto DropSens (Metrohm) 
interdigitated gold electrodes forming films of AuNPs 
of ~ 5  mm diameter, which were then heated within 
a modified Linkam THMS600 temperature control 
stage. A Linkam TMS 94 controller maintained a 
heating rate of 10 °C min−1 from room temperature to 
250 °C. A Rigol DM3058E digital multimeter and a 
PT100 (RS PRO) RTD sensor, 2 mm × 5 mm Class B 
thermocouple measured the temperature on the gold 
electrode. A Rigol DM3068 digital multimeter (maxi-
mum resistance of 100 MΩ) measured the Electrical 
resistance of the electrode. A LabView program was 
used to interface with and control the multimeters, 
and to acquire the temperature and electrical resist-
ance. Ozone was generated using a Hailea HLO-300 
Ozonizer at 300 mg/h in a flow of 3.5 L/min.

https://imagej.nih.gov/ij/
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J Nanopart Res           (2024) 26:97 	

1 3

Page 3 of 7     97 

Vol.: (0123456789)

Warning

Ozone was destructive to several electronic compo-
nents including thermocouples when exposed for 
extended periods (up to 20 h).

Analysis of ozone‑treated AuNPs

BT@AuNPs were placed in a 5-mL side arm tube 
attached to a condenser cooled to − 0.5 °C and fitted 
with a drying tube. The outflow from an ozone gen-
erator was passed through dry silica gel beads tightly 
packed in a condenser cooled to − 0.5  °C to remove 
moisture and then directed into the side arm tube for 
48  h. Organic residues were then collected by rins-
ing the interior of the condenser and reaction tube 
first with CDCl3 (with sonication) and then DMSO-
d6. The solutions were filtered through cellulose fibre 
(Kimwipe) to remove elemental gold and analysed 
using 1H NMR spectroscopy and HRMS.

Results and discussion

BT@AuNPs were synthesised using a two-phase 
Brust-Schiffrin method and had diameters of 3.4 
(± 1.4) nm (measured using TEM, Figure S1).

Films of AuNPs were prepared by drop-casting a 
suspension of BT@AuNPs in chloroform onto inter-
digitated gold electrodes. Upon heating at 10 °C/min 
in air, the films sintered at ~ 190 °C to form a conduc-
tive gold film. The sintering event is associated with a 
change in resistance from > 1 MΩ to < 100 Ω (Fig. 1). 
These results are consistent with our earlier studies 
on BT@AuNPs [24]. In contrast, heating of the films 
in an ozone-rich atmosphere caused the films to sinter 
at ~ 80 °C, which is significantly lower than the TSE of 
the AuNPs sintered in air.

The significant decrease in the TSE observed upon 
heating at 10 °C/min prompted experiments to exam-
ine the effect of exposure to ozone at room tempera-
ture. Films of metallic gold were formed from AuNP 
films exposed to a stream of ozone (Fig. 2). To probe 
this behaviour further, films of AuNPs were formed 
by drop-casting AuNP suspensions onto interdigitated 
electrodes and the resistance was measured upon 
exposure to ozone. Figure 3 shows the resistance of 
BT@AuNPs at room temperature upon exposure to 
air and an ozone-rich environment over 15 h. In our 

hands, and as reported by others [25], such AuNPs 
are stable and do not sinter over periods of at least 
months. Under an atmosphere of air, the resistance 
remained stable at 2.5  MΩ. In contrast, under an 
ozone atmosphere, the resistance of the BT@AuNPs 
decreased markedly to ~ 300  Ω after ~ 2.5  h. The 
slightly greater resistance of the room temperature 
sintered AuNPs (300 Ω) compared to the thermally 
sintered AuNPs (~ 15 Ω) may be attributed to residual 
organic material remaining after the decomposition of 
butanethiol (see below), leading to a less dense film 
[26].

Low temperature sintering has been reported in our 
earlier work using a chemically synthesised oxidant 
but the nature of the reactions leading to the sintering 
event was not explored [5]. Here we examine the resi-
due surrounding the gold film formed after exposure 
to the ozone atmosphere using 1H NMR spectroscopy 
and HRMS data. After the reaction with ozone, which 
induced sintering, the reaction vessel was rinsed with 
CDCl3 and then DMSO-d6. The CDCl3 fraction con-
tained very little material of which none could be 
characterised by 1H NMR spectroscopy. The DMSO-
d6 fraction contained a significant amount of organic 
material.

The 1H NMR spectrum of the DMSO-d6 fraction 
contained signals that are consistent with the spec-
trum of 1-butanesulfonic acid (Figure  S3). A triplet 
at 0.85  ppm is assigned to the CH3 group, a sextet 
and a quintet at 1.31 and 1.54 ppm, respectively, are 
assigned to the two central CH2 groups. A triplet at 
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Fig. 1   Resistance data obtained from films of BT@AuNPs 
during heating. Conditions: a ozone-rich environment, c air. b, 
d are the corresponding derivatives of the resistance vs tem-
perature curves
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2.43  ppm is assigned to the CH2 group adjacent to 
the SO3H group and is identical to a spectrum of 
synthesised 1-butanesulfonic acid. Importantly, we 
found no evidence of dibutyl disulfide formation upon 
ozone-induced sintering in either the 1H NMR spec-
trum (Figure  S4) or HRMS. Upon sintering in air, 
hydrogen, nitrogen or argon atmospheres, surface-
bound thiyl ligands leave exclusively as their corre-
sponding disulfide compounds [24]. Other possible 
sulfur-containing compounds such as 1-butanethiol 
were excluded by comparison of the 1H NMR spectra 
(Figure S4).

The CDCl3 and DMSO-d6 fractions were both 
examined by mass spectrometry in positive and nega-
tive ion modes. In negative ion mode, the major peak 
was observed at m/z 137.028, which corresponds 

to the sulfonate ion with formula CH3(CH2)3SO3
−. 

Other oxygen- and sulphur-containing compounds 
such as sulfoxide and sulfinates (105 and 121  m/z 
respectively) were not detected. These findings are 
consistent with work examining UV-induced pho-
tooxidation of thiol SAMs on gold (over various time 
periods) using XPS where only the corresponding 
sulfonate ions were detected [27].

Considering the resistance data together with post-
sintering analysis, it is apparent that when the BT@
AuNPs are exposed to an ozone-rich environment, 
the butanethiol ligands undergo oxidation to butane-
sulfonic acid thus facilitating desorption of the ligand 
from the gold surface and inducing the sintering event 
(Fig. 4).

SEM images were collected of thermally induced 
and ozone-induced sintered BT@AuNPs (Fig.  5) as 
well as pristine BT@AuNPs (Figure  S2). The SEM 
images of the thermally induced, sintered gold films 
are consistent with previous reports, showing densi-
fication and large grain barriers [24]. SEM images of 
the room temperature ozone-induced sintered gold 
films show finer grain size with an agglomeration of 
particles and some residual material. Grains ranging 
from 600 to 1000  nm are apparent in the thermally 
induced sintered structures while the ozone-induced 
films have smaller grains ≤ 200  nm. In both cases, 
none of the original AuNPs were observed.

Conclusion

Conductive gold films have been prepared by sinter-
ing BT@AuNPs under an ozone-rich atmosphere. 

Fig. 2   BT@AuNP ink film 
a before and b after expo-
sure to a stream of ozone 
for 3 h
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Fig. 3   Resistance data of BT@AuNPs at room temperature in 
air and an ozone-rich environment over 15 h
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Resistance measurements of BT@AuNPs showed that 
exposure to the ozone-containing atmosphere during 
heating significantly reduced the TSE compared to sin-
tering under ambient conditions by ~ 80 °C. Further-
more, electrically conductive gold films were formed 
at room temperature when BT@AuNPs were exposed 
to ozone for ~ 2.5 h.

Examination of the AuNPs post-sintering revealed 
that the butanethiyl ligands undergo oxidation to 
form the corresponding butanesulfonic acid, which 
is a poor stabilizing ligand. We found no evidence 
of dibutyl disulfide (the major product of sintering 
under ambient conditions) in the post-sintering resi-
due, indicating that the oxidation process is further 
promoted by ozone. The gold films prepared by the 
new room temperature ozone-induced sintering pro-
cess showed a different morphology to those sin-
tered by thermal activation under ambient conditions 
(observed by SEM) with the former producing finer 
grain sizes.
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Fig. 4   Schematic depicting 
the removal of butanethiyl 
ligands from the surface 
of gold nanoparticles in an 
ozone-rich environment

Fig. 5   SEM images of 
gold films obtained by 
(left) heating BT@AuNPs 
to 250 °C at 10 °C/min, 
and (right) exposing BT@
AuNPs to an ozone-rich 
atmosphere for 6 h at room 
temperature
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