Skip to main content
Log in

Current progress in the synthesis of zeolite crystals at low temperatures and their catalytic applications

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Zeolite is an interesting material with a broad range of applications, particularly in industrial catalysts, which transform raw materials into valuable products. For use in industry, it is imperative to take into account advantageous factors, including low cost, low energy consumption, safety, and sustainability in the synthesizing of zeolite. As a result, further development needs to be performed on designing zeolite synthesis at lower temperatures. However, lowering temperatures in the zeolite synthesis offers several drawbacks, including slower reaction rates and narrower pore sizes. Several strategies have been attempted to address the limitation, including longer synthesis times, the use of templates, mesoporogens, and other methods. Therefore, it is interesting to examine the manufacture of zeolites at low temperatures and their use in the catalytic process comprehensively. In addition, we offer a concise techno-economic analysis for consideration in the scaling-up process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Crum JT, Crum JR, Taylor C, Schneider WF (2023) Characterization and analysis of ring topology of zeolite frameworks. Microporous Mesoporous Mater 351:112466. https://doi.org/10.1016/j.micromeso.2023.112466

    Article  CAS  Google Scholar 

  2. Rahmah W, Kadja GTM, Mahyuddin MH, Saputro AG, Dipojono HK, Wenten IG (2022) Small-pore zeolite and zeotype membranes for CO2 capture and sequestration – A review. J Environ Chem Eng 10(6):108707. https://doi.org/10.1016/j.jece.2022.108707

    Article  CAS  Google Scholar 

  3. Khaleque A et al (2020) Zeolite synthesis from low-cost materials and environmental applications: a review. Environ Adv 2:100019. https://doi.org/10.1016/j.envadv.2020.100019

    Article  Google Scholar 

  4. Kadja GTM, Azhari NJ, Mardiana S, Culsum NTU, Maghfirah A (2023) Recent advances in the development of nanosheet zeolites as heterogeneous catalysts. Results Eng 17:100910. https://doi.org/10.1016/j.rineng.2023.100910

    Article  CAS  Google Scholar 

  5. Nishu et al (2020) A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure. Fuel Process Technol 199:106301. https://doi.org/10.1016/j.fuproc.2019.106301

    Article  CAS  Google Scholar 

  6. Cai R et al (2020) Biomass catalytic pyrolysis over zeolite catalysts with an emphasis on porosity and acidity: a state-of-the-art review. Energy Fuels 34(10):11771–11790. https://doi.org/10.1021/acs.energyfuels.0c02147

    Article  CAS  Google Scholar 

  7. Gunawan ML, Novita TH, Aprialdi F, Aulia D, Nanda ASF, Rasrendra CB, Addarojah Z, Mujahidin D, Kadja GTM (2023) Palm-oil transformation into green and clean biofuels: Recent advances in the zeolite-based catalytic technologies. Bioresour Technol Rep 23:101546. https://doi.org/10.1016/j.biteb.2023.101546

    Article  CAS  Google Scholar 

  8. Zheng Z et al (2023) One-pot efficient conversion of glucose into biofuel 5-ethoxymethylfurfural catalyzed by zeolite solid catalyst. Biomass Convers Biorefin 13(10):8927–8938. https://doi.org/10.1007/s13399-021-01660-1

    Article  CAS  Google Scholar 

  9. Farah E, Demianenko L, Engvall K, Kantarelis E (2023) Controlling the activity and selectivity of HZSM-5 catalysts in the conversion of biomass-derived oxygenates using hierarchical structures: the effect of crystalline size and intracrystalline pore dimensions on olefins selectivity and catalyst deactivation. Top Catal. https://doi.org/10.1007/s11244-023-01833-4

    Article  Google Scholar 

  10. Lin L et al (2020) Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite. Nat Mater 19(1):86–93. https://doi.org/10.1038/s41563-019-0562-6

    Article  CAS  PubMed  Google Scholar 

  11. Liao Y, Zhong R, d’Halluin M, Verboekend D, Sels BF (2020) Aromatics production from lignocellulosic biomass: shape selective dealkylation of lignin-derived phenolics over hierarchical ZSM-5. ACS Sustain Chem Eng 8(23):8713–8722. https://doi.org/10.1021/acssuschemeng.0c02370

    Article  CAS  Google Scholar 

  12. Mardiana S, Azhari NJ, Kadja GTM (2021) On the effectiveness of hierarchical zeolite catalyst for isomerization of biomass-derived compound. Journal of Research and Development on Nanotechnology Review 1:23–27. https://doi.org/10.5614/jrdn.2021.1.1.16619

    Article  Google Scholar 

  13. Mardiana S, Azhari NJ, Ilmi T, Kadja GTM (2022) Hierarchical zeolite for biomass conversion to biofuel: a review. Fuel 309:122119. https://doi.org/10.1016/j.fuel.2021.122119

    Article  CAS  Google Scholar 

  14. Ershov M, Potanin D, Gueseva A, Abdellatief TMM, Kapustin V (2020) Novel strategy to develop the technology of high-octane alternative fuel based on low-octane gasoline Fischer-Tropsch process. Fuel 261:116330. https://doi.org/10.1016/j.fuel.2019.116330

    Article  CAS  Google Scholar 

  15. Ghorbannezhad P, Park S, Onwudili JA (2020) Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products. Waste Manage 102:909–918. https://doi.org/10.1016/j.wasman.2019.12.006

    Article  CAS  Google Scholar 

  16. Liu S, Kots PA, Vance BC, Danielson A, Vlachos DG (2021) Plastic waste to fuels by hydrocracking at mild conditions. Sci Adv 7(17). https://doi.org/10.1126/sciadv.abf8283.

  17. Hasan MM et al (2022) Zeolite shape selectivity impact on LDPE and PP catalytic pyrolysis products and coke nature. Sustain Energy Fuels 6(6):1587–1602. https://doi.org/10.1039/D2SE00146B

    Article  CAS  Google Scholar 

  18. Liu Y et al (2023) Direct conversion of methane to zeolite-templated carbons, light hydrocarbons, and hydrogen. Carbon N Y 201:535–541. https://doi.org/10.1016/j.carbon.2022.09.050

    Article  CAS  Google Scholar 

  19. Weber JL et al (2020) Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catal Today 342:161–166. https://doi.org/10.1016/j.cattod.2019.02.002

    Article  CAS  Google Scholar 

  20. Wang F et al (2023) Catalytic upgradation of crude glycerol to produce bio-based aromatics over hierarchical MFI zeolite: effect of bimodal hierarchical porosity enhancement and porosity-acidity interaction. Molecular Catalysis 535:112858. https://doi.org/10.1016/j.mcat.2022.112858

    Article  CAS  Google Scholar 

  21. Saenluang K et al (2020) Hierarchical nanospherical ZSM-5 nanosheets with uniform Al distribution for alkylation of benzene with ethanol. ACS Appl Nano Mater 3(4):3252–3263. https://doi.org/10.1021/acsanm.9b02568

    Article  CAS  Google Scholar 

  22. Rong Y, Zhang X, Wang H, Tan D, Wang H, Zhang T (2022) Imidazolium salts facilitate mechanochemical synthesis of well-dispersed MFI zeolite crystals with c-axis orientation. Microporous Mesoporous Mater 341:112094. https://doi.org/10.1016/j.micromeso.2022.112094

    Article  CAS  Google Scholar 

  23. Rahmah W, Novita TH, Wenten IG, Kadja GTM (2023) Perspective and outlook into green and effective approaches for zeolitic membrane preparation. Mater Today Sustain 22:100345. https://doi.org/10.1016/j.mtsust.2023.100345

    Article  Google Scholar 

  24. Khatrin I, Kusuma RH, Kadja GTM, Krisnandi YK (2023) Significance of ZSM-5 hierarchical structure on catalytic cracking: intra- vs inter-crystalline mesoporosity. Inorg Chem Commun 149:110447. https://doi.org/10.1016/j.inoche.2023.110447

    Article  CAS  Google Scholar 

  25. Novita TH, Kadja GTM (2024) Hydroxyl radicals-mediated zeolite crystallization: impacts on the kinetics crystal morphologies and catalytic application. J Porous Mater 31(7875):1–19. https://doi.org/10.1007/s10934-023-01550-z

  26. Kadja GTM et al (2021) Accelerated, mesoporogen-free synthesis of hierarchical nanorod ZSM-48 assisted by hydroxyl radicals. Ind Eng Chem Res 60(48):17786–17791. https://doi.org/10.1021/acs.iecr.1c03586

    Article  CAS  Google Scholar 

  27. Valtchev VP, Tosheva L, Bozhilov KN (2005) Synthesis of zeolite nanocrystals at room temperature. Langmuir 21(23):10724–10729. https://doi.org/10.1021/la050323e

    Article  CAS  PubMed  Google Scholar 

  28. Kim SD, Noh SH, Park JW, Kim WJ (2006) Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process. Microporous Mesoporous Mater 92(1–3):181–188. https://doi.org/10.1016/j.micromeso.2006.01.009

    Article  CAS  Google Scholar 

  29. Zhang X, Tang D, Jiang G (2013) Synthesis of zeolite NaA at room temperature: the effect of synthesis parameters on crystal size and its size distribution. Adv Powder Technol 24(3):689–696. https://doi.org/10.1016/j.apt.2012.12.010

    Article  CAS  Google Scholar 

  30. Mukaromah AH, Kadja GTM, Mukti RR, Pratama IR, Zulfikar MA, Buchari B (2016) The surface-to-volume ratio of the synthesis reactor vessel governing the low temperature crystallization of ZSM-5. J Math Fundam Sci 48(3):241–251. https://doi.org/10.5614/j.math.fund.sci.2016.48.3.5

    Article  CAS  Google Scholar 

  31. Jin C-X, Shang H-B (2021) Synthetic methods, properties and controlling roles of synthetic parameters of zeolite imidazole framework-8: a review. J Solid State Chem 297:122040. https://doi.org/10.1016/j.jssc.2021.122040

    Article  CAS  Google Scholar 

  32. Wu Q, Meng X, Gao X, Xiao F-S (2018) Solvent-free synthesis of zeolites: mechanism and utility. Acc Chem Res 51(6):1396–1403. https://doi.org/10.1021/acs.accounts.8b00057

    Article  CAS  PubMed  Google Scholar 

  33. Jia H et al (2021) Synthesis of template-free ZSM-5 from rice husk ash at low temperatures and its CO2 adsorption performance. ACS Omega 6(5):3961–3972. https://doi.org/10.1021/acsomega.0c05842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X et al (2021) A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance. Commun Chem 4(1):107. https://doi.org/10.1038/s42004-021-00543-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kadja GTM, Azhari NJ, Mukti RR, Khalil M (2021) A mechanistic investigation of sustainable solvent-free seed-directed synthesis of ZSM-5 zeolites in the absence of an organic structure-directing agent. ACS Omega 6(1):925–933. https://doi.org/10.1021/acsomega.0c05070

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen D-K, Dinh V-P, Dang NT, Khan DT, Hung NT, Thi Tran NH (2023) Effects of aging and hydrothermal treatment on the crystallization of ZSM-5 zeolite synthesis from bentonite. RSC Adv 13(30):20565–20574. https://doi.org/10.1039/D3RA02552G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao Y, Li Y, Cheng P, Zhang H (2023) Hierarchical ZSM-5 zeolite synthesized only with simple organic templates. Inorganics 11(7):297. https://doi.org/10.3390/inorganics11070297

    Article  CAS  Google Scholar 

  38. Feng J, Wang D, Han C, Yan X, Cao N, Lu T, Wang J, Wang Z, Han L (2024) Exploring the effect of polyacrylamide/graphene oxide composite hydrogel on the synthesis and application of ZSM-5 molecular sieves. Microporous Mesoporous Mater 367:112996. https://doi.org/10.1016/j.micromeso.2024.112996

    Article  CAS  Google Scholar 

  39. Hao Z, Liu X, Zhang X, Zhang Y, Zhang Y (2024) Ethanol–based in situ synthesis of organic–inorganic hierarchical ZSM–5 for efficient capture of toluene under humidity environment. Chem Eng J 483:149123. https://doi.org/10.1016/j.cej.2024.149123

    Article  CAS  Google Scholar 

  40. Fyfe CA, Darton RJ, Mowatt H, Lin ZS (2011) Efficient, low-cost, minimal reagent syntheses of high silica zeolites using extremely dense gels below 100°C. Microporous Mesoporous Mater 144(1–3):57–66. https://doi.org/10.1016/j.micromeso.2011.02.020

    Article  CAS  Google Scholar 

  41. Kadja GTM et al (2016) Mesoporogen-free synthesis of hierarchically porous ZSM-5 below 100 °C. Microporous Mesoporous Mater 226:344–352. https://doi.org/10.1016/j.micromeso.2016.02.007

    Article  CAS  Google Scholar 

  42. Kadja GTM et al (2017) The effect of structural properties of natural silica precursors in the mesoporogen-free synthesis of hierarchical ZSM-5 below 100°C. Adv Powder Technol 28(2):443–452. https://doi.org/10.1016/j.apt.2016.10.017

    Article  CAS  Google Scholar 

  43. Kadja GTM, Azhari NJ, Apriadi F, Novita TH, Safira IR, Rasrendra CB (2023) Low-temperature synthesis of three-pore system hierarchical ZSM-5 zeolite for converting palm oil to high octane green gasoline. Microporous Mesoporous Mater 360:112731. https://doi.org/10.1016/j.micromeso.2023.112731

    Article  CAS  Google Scholar 

  44. A. Maghfirah, M. M. Ilmi, A. T. N. Fajar, and G. T. M. Kadja. A review on the green synthesis of hierarchically porous zeolite. Mater Today Chem 17. Elsevier Ltd, 2020. https://doi.org/10.1016/j.mtchem.2020.100348.

  45. Schwieger W et al (2016) Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem Soc Rev 45(12):3353–3376. https://doi.org/10.1039/c5cs00599j

    Article  CAS  PubMed  Google Scholar 

  46. Zhang L, Wang X, Shi C (2022) Rapid solvent-free synthesis of nano-sized ZSM-5 with a low Si/Al ratio at 90 °C. Inorg Chem Front 9(9):1992–2000. https://doi.org/10.1039/D2QI00298A

    Article  CAS  Google Scholar 

  47. Wang J-Q, Huang Y-X, Pan Y, Mi J-X (2016) New hydrothermal route for the synthesis of high purity nanoparticles of zeolite Y from kaolin and quartz. Microporous Mesoporous Mater 232:77–85. https://doi.org/10.1016/j.micromeso.2016.06.010

    Article  CAS  Google Scholar 

  48. Zhao J, Wang G, Qin L, Li H, Chen Y, Liu B (2016) Synthesis and catalytic cracking performance of mesoporous zeolite Y. Catal Commun 73:98–102. https://doi.org/10.1016/j.catcom.2015.10.020

    Article  CAS  Google Scholar 

  49. Ren X et al (2020) Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption. Microporous Mesoporous Mater 295:109940. https://doi.org/10.1016/j.micromeso.2019.109940

    Article  CAS  Google Scholar 

  50. Bahgaat A, Mohamed M, Abdel Karim A, Melegy A, Hassan H (2020) Synthesis and characterization of zeolite-Y from natural clay of Wadi Hagul. Egypt. Egypt J Chem 63(10):3791–800

    Google Scholar 

  51. Kang Y-H et al (2020) Catalytic hydroconversion of soluble portion in the extraction from Hecaogou subbituminous coal to clean liquid fuel over a Y/ZSM-5 composite zeolite-supported nickel catalyst. Fuel 269:117326. https://doi.org/10.1016/j.fuel.2020.117326

    Article  CAS  Google Scholar 

  52. Pedrolo DRS, de Menezes Quines LK, de Souza G, Marcilio NR (2017) Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption. J Environ Chem Eng 5(5):4788–4794. https://doi.org/10.1016/j.jece.2017.09.015

    Article  CAS  Google Scholar 

  53. Le T, Wang Q, Pan B, Ravindra AV, Ju S, Peng J (2019) Process regulation of microwave intensified synthesis of Y-type zeolite. Microporous Mesoporous Mater 284:476–485. https://doi.org/10.1016/j.micromeso.2019.04.029

    Article  CAS  Google Scholar 

  54. Le T, Wang T, Ravindra AV, Xuxiang Y, Ju S, Zhang L (2021) Fast synthesis of submicron zeolite Y using microwave heating. Kinet Catal 62(3):436–444. https://doi.org/10.1134/S0023158421030046

    Article  Google Scholar 

  55. He Y, Guo S, Li S, Yin S (2022) Green and efficient synthesis of high-purity Y zeolite using natural raw material-kaolin activated by microwave heating. Appl Phys A 128(12):1077. https://doi.org/10.1007/s00339-022-06230-4

    Article  CAS  Google Scholar 

  56. Mendoza C, Echavarría A (2022) A systematic study on the synthesis of nanosized Y zeolite without using organic structure-directing agents: control of Si/Al ratio. J Porous Mater 29(3):907–919. https://doi.org/10.1007/s10934-022-01218-0

    Article  CAS  Google Scholar 

  57. Zhang R et al (2020) Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites. Front Chem Sci Eng 14(2):275–287. https://doi.org/10.1007/s11705-019-1905-1

    Article  CAS  Google Scholar 

  58. Mastropietro TF, Drioli E, Poerio T (2014) Low temperature synthesis of nanosized NaY zeolite crystals from organic-free gel by using supported seeds. RSC Adv. 4(42):21951–21957. https://doi.org/10.1039/C4RA03376K

    Article  CAS  Google Scholar 

  59. Rouquerol J, Llewellyn P, Sing K (2014) Adsorption by clays, pillared clays, zeolites and aluminophosphates. In: Adsorption by powders and porous solids. Elsevier, pp 467–527. https://doi.org/10.1016/B978-0-08-097035-6.00012-7

    Chapter  Google Scholar 

  60. Pei Y, Zhong Y, Xie Q, Chen N (2022) Two-step hydrothermal synthesis and conversion mechanism of zeolite X from stellerite zeolite. RSC Adv 12(6):3313–3321. https://doi.org/10.1039/D1RA07798H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. A. Julbe and M. Drobek (2014) Zeolite X: type. In Encyclopedia of membranes, Berlin, Heidelberg: Springer Berlin Heidelberg, 1–2. https://doi.org/10.1007/978-3-642-40872-4_607-1.

  62. Qiang Z, Shen X, Guo M, Cheng F, Zhang M (2019) A simple hydrothermal synthesis of zeolite X from bauxite tailings for highly efficient adsorbing CO2 at room temperature. Microporous Mesoporous Mater 287:77–84. https://doi.org/10.1016/j.micromeso.2019.05.062

    Article  CAS  Google Scholar 

  63. Srilai S et al (2020) Synthesis of zeolite X from bentonite via hydrothermal method. Mater Sci Forum 990:144–148. https://doi.org/10.4028/www.scientific.net/MSF.990.144

    Article  Google Scholar 

  64. Yao G, Lei J, Zhang X, Sun Z, Zheng S, Komarneni S (2018) Mechanism of zeolite X crystallization from diatomite. Mater Res Bull 107:132–138. https://doi.org/10.1016/j.materresbull.2018.07.021

    Article  CAS  Google Scholar 

  65. Mezni M, Hamzaoui A, Hamdi N, Srasra E (2011) Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Appl Clay Sci 52(3):209–218. https://doi.org/10.1016/j.clay.2011.02.017

    Article  CAS  Google Scholar 

  66. Jiang JL, Gu X, Duan Mu CS, Du WG, Wu J (2011) Synthesis of pure zeolite X from palygorskite clay using a two-stage method. Adv Mat Res 236–238:767–770. https://doi.org/10.4028/www.scientific.net/AMR.236-238.767

    Article  Google Scholar 

  67. Kovo AS (2012) Effect of temperature on the synthesis of zeolite X from Ahoko Nigerian kaolin using novel metakaolinization technique. Chem Eng Commun 199(6):786–797. https://doi.org/10.1080/00986445.2011.625065

    Article  CAS  Google Scholar 

  68. Ibsaine F, Azizi D, Dionne J, Tran LH, Coudert L, Pasquier L-C, Blais J-F (2023) Conversion of aluminosilicate residue generated from lithium extraction process to NaX zeolite. Minerals 13(12):1467. https://doi.org/10.3390/min13121467

    Article  CAS  Google Scholar 

  69. Outram JG, Collins FJ, Millar GJ, Couperthwaite SJ, Beer G (2023) Process optimisation of low silica zeolite synthesis from spodumene leachate residue. Chem Eng Res Des 189:358–370. https://doi.org/10.1016/j.cherd.2022.11.015

    Article  CAS  Google Scholar 

  70. R. Zari et al (2023) Development of a selective nanoporous Na-zeolite X from Moroccan coal fly ash for anionic dye adsorption and removal. Int J Environ Anal Chem, 1–19. https://doi.org/10.1080/03067319.2023.2239711.

  71. Musyoka NM, Petrik LF, Hums E, Baser H, Schwieger W (2014) In situ ultrasonic diagnostic of zeolite X crystallization with novel (hierarchical) morphology from coal fly ash. Ultrasonics 54(2):537–543. https://doi.org/10.1016/j.ultras.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  72. Sivalingam S, Sen S (2018) Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Appl Surf Sci 455:903–910. https://doi.org/10.1016/j.apsusc.2018.05.222

    Article  CAS  Google Scholar 

  73. Liu Y, Yang X, Yan C, Wang H, Zhou S (2019) Solvent-free synthesis of zeolite LTA monolith with hierarchically porous structure from metakaolin. Mater Lett 248:28–31. https://doi.org/10.1016/j.matlet.2019.03.135

    Article  CAS  Google Scholar 

  74. Murukutti MK, Jena H (2022) Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste. J Hazard Mater 423:127085. https://doi.org/10.1016/j.jhazmat.2021.127085

    Article  CAS  PubMed  Google Scholar 

  75. Chen L et al (2022) Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeolite X supported catalysts. Fuel 320:123969. https://doi.org/10.1016/j.fuel.2022.123969

    Article  CAS  Google Scholar 

  76. Fyfe CA, Lin ZS, Tong C, Darton RJ (2012) Simple, efficient syntheses of zeolite ZSM-11 (MEL) at temperatures below 100 °C using very dense gels. Microporous Mesoporous Mater 150:7–13. https://doi.org/10.1016/j.micromeso.2011.09.021

    Article  CAS  Google Scholar 

  77. Ng E-P et al (2012) Nucleation and crystal growth features of EMT-type zeolite synthesized from an organic-template-free system. Chem Mater 24(24):4758–4765. https://doi.org/10.1021/cm3035455

    Article  CAS  Google Scholar 

  78. Georgieva V et al (2015) Control of Na-EMT zeolite synthesis by organic additives. Cryst Growth Des 15(4):1898–1906. https://doi.org/10.1021/acs.cgd.5b00071

    Article  CAS  Google Scholar 

  79. Wang Y et al (2019) Sustainable and efficient synthesis of nanosized EMT zeolites under solvent-free and organotemplate-free conditions. Microporous Mesoporous Mater 286:105–109. https://doi.org/10.1016/j.micromeso.2019.05.037

    Article  CAS  Google Scholar 

  80. E. Stauffer, J. A. Dolan, and R. Newman. Chemistry and physics of fire and liquid fuels. in Fire Debris Analysis, Elsevier, 2008, pp. 85–129. https://doi.org/10.1016/B978-012663971-1.50008-7.

  81. M. Haripriya et al. Mammals’ dung and urine for fuel production. In Valorization of wastes for sustainable development. Elsevier, 2023, pp. 91–111. https://doi.org/10.1016/B978-0-323-95417-4.00004-4.

  82. Gandhi D, Bandyopadhyay R, Soni B (2021) Zeolite Y from kaolin clay of Kachchh, India: synthesis, characterization and catalytic application. J Indian Chem Soc 98(12):100246. https://doi.org/10.1016/j.jics.2021.100246

    Article  CAS  Google Scholar 

  83. Ge T et al (2015) One-pot synthesis of hierarchically structured ZSM-5 zeolites using single micropore-template. Chin J Catal 36(6):866–873. https://doi.org/10.1016/S1872-2067(14)60263-1

    Article  CAS  Google Scholar 

  84. Cui W et al (2022) Synthesis of mesoporous high-silica zeolite Y and their catalytic cracking performance. Chin J Catal 43(7):1945–1954. https://doi.org/10.1016/S1872-2067(21)64043-3

    Article  CAS  Google Scholar 

  85. Meng B et al (2020) Intra-crystalline mesoporous zeolite [Al, Zr]-Y for catalytic cracking. ACS Appl Nano Mater 3(9):9293–9302. https://doi.org/10.1021/acsanm.0c01925

    Article  CAS  Google Scholar 

  86. Simanjuntak W, Pandiangan KD, Sembiring Z, Simanjuntak A, Hadi S (2021) The effect of crystallization time on structure, microstructure, and catalytic activity of zeolite-a synthesized from rice husk silica and food-grade aluminum foil. Biomass Bioenergy 148:106050. https://doi.org/10.1016/j.biombioe.2021.106050

    Article  CAS  Google Scholar 

  87. Soongprasit K, Vichaphund S, Sricharoenchaikul V, Atong D (2020) Activity of fly ash-derived ZSM-5 and zeolite X on fast pyrolysis of Millettia (Pongamia) pinnata waste. Waste Biomass Valorization 11(2):715–724. https://doi.org/10.1007/s12649-019-00709-7

    Article  CAS  Google Scholar 

  88. Bhandari R, Volli V, Purkait MK (2015) Preparation and characterization of fly ash based mesoporous catalyst for transesterification of soybean oil. J Environ Chem Eng 3(2):906–914. https://doi.org/10.1016/j.jece.2015.04.008

    Article  CAS  Google Scholar 

  89. Talebian-Kiakalaieh A, Tarighi S (2020) Synthesis of hierarchical Y and ZSM-5 zeolites using post-treatment approach to maximize catalytic cracking performance. J Ind Eng Chem 88:167–177. https://doi.org/10.1016/j.jiec.2020.04.009

    Article  CAS  Google Scholar 

  90. Sanhoob MA, Khan A, Ummer AC (2022) ZSM-5 Catalysts for MTO: effect and optimization of the tetrapropylammonium hydroxide concentration on synthesis and performance. ACS Omega 7(25):21654–21663. https://doi.org/10.1021/acsomega.2c01539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mirshafiee F, Khoshbin R, Karimzadeh R (2022) A green approach for template free synthesis of beta zeolite incorporated in ZSM-5 zeolite to enhance catalytic activity in MTG reaction: effect of seed nature and temperature. J Clean Prod 361:132159. https://doi.org/10.1016/j.jclepro.2022.132159

    Article  CAS  Google Scholar 

  92. Ng E-P et al (2017) Alkali metal ion-exchanged zeolite X from bamboo leaf biomass as base catalysts in cyanoethylation of methanol enhanced by non-microwave instant heating. Aust J Chem 70(12):1239. https://doi.org/10.1071/CH17168

    Article  CAS  Google Scholar 

  93. Ng E-P, Chow J-H, Mukti RR, Muraza O, Ling TC, Wong K-L (2017) Hydrothermal synthesis of zeolite A from bamboo leaf biomass and its catalytic activity in cyanoethylation of methanol under autogenic pressure and air conditions. Mater Chem Phys 201:78–85. https://doi.org/10.1016/j.matchemphys.2017.08.044

    Article  CAS  Google Scholar 

  94. Aziz MAH, Jalil AA, Siang TJ, Hussain I, Rahman AFA, Hamdan H (2021) Abundant Lewis acidic sites of peculiar fibrous silica zeolite X enhanced toluene conversion in side chain toluene methylation. Fuel 305:121432. https://doi.org/10.1016/j.fuel.2021.121432

    Article  CAS  Google Scholar 

  95. Choo M-Y et al (2022) Uniform mesoporous hierarchical nanosized zeolite Y for production of hydrocarbon-like biofuel under H2-free deoxygenation. Fuel 322:124208. https://doi.org/10.1016/j.fuel.2022.124208

    Article  CAS  Google Scholar 

  96. Gengiah K, Gurunathan B, Rajendran N, Han J (2022) Process evaluation and techno-economic analysis of biodiesel production from marine macroalgae Codium tomentosum. Bioresour Technol 351:126969. https://doi.org/10.1016/j.biortech.2022.126969

    Article  CAS  PubMed  Google Scholar 

  97. Li R (2022) Integrating the composition of food waste into the techno-economic analysis of waste biorefineries for biodiesel production. Bioresour Technol Rep 20:101254. https://doi.org/10.1016/j.biteb.2022.101254

    Article  CAS  Google Scholar 

  98. Saetiao P, Kongrit N, Cheng CK, Jitjamnong J, Direksilp C, Khantikulanon N (2023) Catalytic conversion of palm oil into sustainable biodiesel using rice straw ash supported-calcium oxide as a heterogeneous catalyst: process simulation and techno-economic analysis. Case Stud Chem Environ Eng 8:100432. https://doi.org/10.1016/j.cscee.2023.100432

    Article  CAS  Google Scholar 

  99. Grand View Research. Zeolite market size, share & trends analysis report by application (catalyst, adsorbent, detergent builder), by product (natural, synthetic), by region (North America, Europe, APAC, CSA, MEA), and segment forecasts, 2022 - 2030. https://www.grandviewresearch.com/industry-analysis/zeolites-market#:~:text=The%20global%20zeolite%20market%20size%20was%20estimated%20at%20USD%2012.6,USD%2013.2%20billion%20in%202022.

Download references

Funding

This work is supported by Hibah PDUPT 2023 from the Ministry of Education, Culture, Research, and Technology, the Republic of Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

D.A. and N.T.U.C wrote and revised the manuscript, and G.T.M.K. concepted the idea, supervised, and revised the manuscript.

Corresponding author

Correspondence to Grandprix T. M. Kadja.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulia, D., Culsum, N.T.U. & Kadja, G.T.M. Current progress in the synthesis of zeolite crystals at low temperatures and their catalytic applications. J Nanopart Res 26, 79 (2024). https://doi.org/10.1007/s11051-024-05976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05976-7

Keywords

Navigation