Skip to main content
Log in

Enhanced photoelectrocatalytic performance of ZnIn2S4 modified TiO2 nanotube array toward methylene blue

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Environmental pollution caused by organic pollutants has been attracted more and more attention by the researchers. In this paper, ZnIn2S4 modified TiO2 nanotube array (ZnIn2S4/TiO2) composite electrodes are prepared by loading chalcogenide semiconductor material ZnIn2S4 on the surface of TiO2 nanotube array (TiO2 NTA) for the degradation of methylene blue (MB). The physicochemical properties of ZnIn2S4/TiO2 composite electrodes are analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, photoluminescence spectroscopy and so on. The photoelectrocatalytic degradation rate of ZnIn2S4/TiO2 composite electrode with the concentration of ZnIn2S4 as 0.5 mmol/L (ZISTO-2) reaches 93.3% under the bias voltage of 0.7 V and simulated sunlight irradiation for 180 min against MB, which is 22.44% higher than that of pure TiO2 NTA electrode, and the degradation rate of ZISTO-2 composite electrode toward MB is maintained at 78.2% after five cycles. The radical trapping experiments indicate that h+, ·O2− and ·OH has significant contribution in the photoelectrocatalytic degradation. This paper provides a new ideal way to solve the problem of water pollution under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nguyen C, Fu C, Juang R (2018) Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J Clean Prod 202:413–427

    CAS  Google Scholar 

  2. Faryad S, Azhar U, Tahir MB, Ali W, Arif M, Sagir M (2023) Spinach-derived boron-doped g-C3N4/TiO2 composites for efficient photo-degradation of methylene blue dye. Chemosphere 320:138002

  3. Aravind M, Amalanathan M, Aslam Sadia, Noor Arsh E, Jini D, Saadat Majeed P, Velusamy Asma A, Alothman Razan A, Alshgari Mohammed Sheikh, Mushab Saleh, Sillanpaa Mika (2023) Hydrothermally synthesized Ag-TiO2 nanofibers (NFs) for photocatalytic dye degradation and antibacterial activity. Chemosphere 321:138077

    CAS  PubMed  Google Scholar 

  4. Jia J, Liu Y, Wu D, Yu J, Gao T, Li F (2023) Water-insoluble β-cyclodextrin-based nanocubes as cost-effective adsorbents for dyeing wastewater remediation with high selectivity. Chem Eng J 457:141331

    CAS  Google Scholar 

  5. Wang C, Jin J, Sun Y, Yao J, Zhao G, Liu Y (2017) In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem Eng J 327:774–782

    CAS  Google Scholar 

  6. Wan D, Li W, Wang G, Chen K, Lu L, Hu Q (2015) Adsorption and heterogeneous degradation of rhodamine B on the surface of magnetic bentonite material. Appl Surf Sci 349:988–996

    CAS  Google Scholar 

  7. Palanisamy G, Al-Shaalan Nora Hamad, Bhuvaneswari K, Bharathi G, Bharath G, Pazhanivel T, Sathishkumar VE, Arumugam Madan Kumar, Khadeer Pasha SK, Habila Mohamed A, El-Marghany Adel (2021) An efficient and magnetically recoverable g-C3N4/ZnS/CoFe2O4 nanocomposite for sustainable photodegradation of organic dye under UV–visible light illumination. Environ Res 201:111429

    CAS  PubMed  Google Scholar 

  8. Chen M, Li S, Wen L, Xu Z, Li H, Ding L, Cheng Y (2023) Exploration of double Z-type ternary composite long-afterglow/graphitic carbon nitride@metal-organic framework for photocatalytic degradation of methylene blue. J Colloid Interf Sci 629:409–421

    CAS  Google Scholar 

  9. Thanka Rajan S, Jaganathan Senthilnathan A, Arockiarajan (2023) Sputter-coated N-enriched mixed metal oxides (Ta2O5-Nb2O5-N) composite: A resilient solar driven photocatalyst for water purification. J Hazard Mater 452:131283

    PubMed  Google Scholar 

  10. Cheng T, Ma Q, Gao H, Meng S, Lu Z, Wang S, Yi Z, Wu X, Liu G, Wang X, Yang H (2022) Enhanced photocatalytic activity, mechanism and potential application of I doped-Bi4Ti3O12 photocatalysts. Mater Today Chem 23:100750

    CAS  Google Scholar 

  11. Li C, Yin J, Cao B, Liu D (2023) Facile fabrication of 3D interconnected porous boron doped polymeric g-C3N4 with enhanced visible light photocatalytic hydrogen evolution and dye contaminant elimination. Ceram Int 49:6213–6221

    CAS  Google Scholar 

  12. Tang S, Fu Z, Li Y, Li Y (2020) Study on boron and fluorine-doped C3N4 as a solid activator for cyclohexane oxidation with H2O2 catalyzed by 8-quinolinolato ironIII complexes under visible light irradiation. Appl Catal A-Gen 590:117342

    CAS  Google Scholar 

  13. Di L, Sun X, Xian T, Li H, Gao Y, Yang H (2021) Preparation of Z-scheme Au-Ag2S/Bi2O3 composite by selective deposition method and its improved photocatalytic degradation and reduction activity. Adv Powder Technol 32:3672–3688

    CAS  Google Scholar 

  14. Munawar T, Mukhtar F, Nadeem M, Manzoor S, Ashiq M, Mahmood K, Batool S, Hasan M, Iqbal F (2022) Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J Alloy Compd 898:162779

    CAS  Google Scholar 

  15. Hossein A-T, Mahdi K-N, Mohammad E, Abolfazl B (2024) Load transfer engineering via synergy of BiOI heterojunction with Ag and loading cocatalyst of La2O2CO3 in photoelectrochemical water splitting. Int J Hydrogen Energ 57:379–387

    Google Scholar 

  16. Palmas S, Mais L, Mascia M, Vacca A (2021) Trend in using TiO2 nanotubes as photoelectrodes in PEC processes for wastewater treatment. Curr Opin Electroche 28:100699

    CAS  Google Scholar 

  17. Jia Y, Liu P, Wang Q, Wu Y, Cao D, Qiao Q (2021) Construction of Bi2S3-BiOBr nanosheets on TiO2 NTA as the effective photocatalysts: Pollutant removal, photoelectric conversion and hydrogen generation. J Colloid Interf Sci 585:459–469

    ADS  CAS  Google Scholar 

  18. Hu K, L. E, D. Zhao, Y. Li, W. Zhao, H. Rong (2020) Cryst Eng Comm 22:1086

    CAS  Google Scholar 

  19. Wang H, Wu Y, Xiao T, Yuan X, Zeng G, Tu W, Wu S, Lee HY, Tan Y, Chew JW (2018) Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl Catal B-Environme 233:213–225

    Google Scholar 

  20. Ma X, Ma Z, Lu D, Li L, Liao T, Hou B (2022) Preparation of In2S3/AgInS2/TiO2 nanotube arrays and enhanced photoelectrochemical cathodic protection for 304 SS under visible light. J Photoch Photobio A 433:114143

    CAS  Google Scholar 

  21. Zhang Y, Sun A, Xiong M, Macharia DK, Liu J, Chen Z, Li M, Zhang L (2021) TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV-vis photoresponsive for efficiently degrading various pollutants. Chem Eng J 415:129019

    CAS  Google Scholar 

  22. Yang R, Mei L, Fan Y, Zhang Q, Zhu R, Amal R, Yin Z, Zeng Z (2021) ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 5:2100887

    CAS  Google Scholar 

  23. Zhu Q, Xu Q, Du M, Zeng X, Zhong G, Qiu B, Zhang J (2022) Recent progress of metal sulfide photocatalysts solar energy conversion. Adv Mater 34:2202929

    CAS  Google Scholar 

  24. Liang Q, Gao W, Liu C, Xu S, Li Z (2020) A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnInzSa for enhancedphotocatalytic activity. J Hazard Mater 392:122500

    CAS  PubMed  Google Scholar 

  25. Shi W, Hao C, Fu Y, Guo F, Tang Y, Yan X (2022) Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots. Chem Eng J 433:133741

    CAS  Google Scholar 

  26. Tian Q, Wu W, Liu J, Wu Z, Yao W, Ding J, Jiang C (2017) Dimensional heterostructures of 1 D CdS/2D ZnIn2S4 composited with 2D graphene: designed synthesis and superior photocatalytic performance. Dalton T 46:2770–2777

    CAS  Google Scholar 

  27. Wang H, Zhang F, Jin M, Zhao D, Fan X, Li Z, Luo Y, Zheng D, Li T, Wang Y, Ying B, Sun S, Liu Q, Liu X, Sun X (2023) V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater Today Phys 30:100944

    CAS  Google Scholar 

  28. Pan Y, Zhang J, Sun J, Liu Y, Zhang C, Li R, Kuang F, Wu X, Lu X (2023) Enhanced strength and ductility in a powder metallurgy Ti material by the oxygen scavenger of CaB6. J Mater Sci Technol 137:132–142

    CAS  Google Scholar 

  29. Assaker IB, Gannouni M, Naceur JB, Almessiere MA, Al-Otaibi AL, Ghrib T, Shen S, Chtourou R (2015) Electrodeposited ZnIn2S4 onto TiO2 thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications. Appl Surf Sci 351:927–934

    Google Scholar 

  30. Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K, Li L (2014) 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:17200–17207

    CAS  PubMed  Google Scholar 

  31. Wei N, Wu Y, Wang M, Sun W, Li Z, Ding L, Cui H (2019) Construction of noble-metal-free TiO2 nanobelt/ZnIn2S4 nanosheet heterojunction nanocomposite for highly efficient photocatalytic hydrogen evolution. Nanotechnology 30:045701

    ADS  CAS  PubMed  Google Scholar 

  32. Chen Y, Zhu L, Shen Y, Liu J, Xi J, Qiu L, Xu X, Men D, Li P, Duo S (2023) Facile Construction of 2D/2D ZnIn2S4-Based Bifunctional Photocatalysts for H2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline. Nanomaterials 13:2315

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Chen S, Zhao X, Xie F, Tang Z, Wang X (2020) Efficient charge separation between ZnIn2S4 nanoparticles and polyaniline nanorods for nitrogen photofixation. New J Chem 44:7350–7356

    CAS  Google Scholar 

  34. Li H, Li Y, Wang M, Niu Z, Wang X, Hou B (2018) Preparation and photocathodic protection property of ZnIn2S4/RGO/TiO2 composites for Q235 carbon steel under visible light. Nanotechnology 29:435706

    ADS  PubMed  Google Scholar 

  35. Chen S, Li S, Xiong L, Wang G (2018) In-situ growth of ZnIn2S4 decorated on electrospun TiO2 nanofibers with enhanced visible-light photocatalytic activity. Chem Phys Lett 706:68–75

    ADS  CAS  Google Scholar 

  36. Peng S, Wu Y, Zhu P, Thavasi V, Ramakrishna S, Mhaisalkar SG (2011) Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. J Mater Chem 21:15718–15726

    CAS  Google Scholar 

  37. Mahdi K-N, Goharshadi EK, Sajjadizadeh H-S (2022) Copper-Azolate Framework Coated on g-C3N4 Nanosheets as a Core-Shell Heterojunction and Decorated with a Ni(OH)2 Cocatalyst for Efficient Photoelectrochemical Water Splitting. J Phys Chem C 126:8327–8336

    Google Scholar 

  38. Vijayan K, Vijayachamundeeswari SP (2022) Improving the multifunctional attributes and photocatalytic dye degradation of MB and RhB dye-A comparative scrutiny. Inorg Chem Commun 144:109940

    CAS  Google Scholar 

  39. Manoharan K, Chandar NRK (2023) Hydrothermal Synthesis and Characterization of Sulfur-doped g-C3N4/VS4 nanocomposite for efficient photocatalytic applications. Inorg Chem Commun 155:111047

    CAS  Google Scholar 

  40. Nkwe VM, Onwudiwe DC, Azeez MA (2021) Solvothermal synthesis of pure and Sn-doped Bi2S3 and the evaluation of their photocatalytic activity on the degradation of methylene blue. BMC Chem 15:65

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhao J, Zhang M, Piao H, Zuo S, Shi X, Quan Q, Zhu R, Huang Q, Xiao C (2023) ZnS/Ag2S decorated PES membrane with efficient near-infrared response and enhanced photocatalysis for pollutants photodegradation on high-turbidity water. Appl Surf Sci 635:157728

    CAS  Google Scholar 

  42. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J Mol Liq 258:354–365

    Google Scholar 

  43. Sutar Radhakrishna S, Barkul Rani P, Patil Meghshyam K (2021) Sunlight assisted photocatalytic degradation of different organic pollutants and simultaneous degradation of cationic and anionic dyes using titanium and zinc based nanocomposites. J Mol Liq 340:117191

    Google Scholar 

  44. Hou J, Wang Y, Zhou J, Lu Y, Liu Y, Lv X (2021) Photocatalytic degradation of methylene blue using a ZnO/TiO2 heterojunction nanomesh electrode. Surf Interfaces 22:100889

    CAS  Google Scholar 

  45. Zhang Y, Cui T, Zhao J (2022) Fabrication and study of a novel TiO2/g-C3N5 material and photocatalytic properties using methylene blue and tetracycline under visible light. Inorg Chem Commun 143:109815

    CAS  Google Scholar 

  46. Jiang X, Sun M, Chen Z, Jing J, Lu G, Feng C (2021) Boosted photoinduced cathodic protection performance of ZnIn2S4/TiO2 nanoflowerbush with efficient photoelectric conversion in NaCl solution. J Alloy Compd 876:160144

    CAS  Google Scholar 

  47. Wang Y, Meng X, Hu Q, Zhang M, Cao X, Xu C, Ding Y (2021) Visible-light driven ZnIn2S4/ TiO2 heterostructure for boosting photocatalytic H2 evolution. Int J Hydrogen Energy 46:6262–6271

    CAS  Google Scholar 

  48. Yang G, D.i Chen, H. Ding, J. Feng, J.-Z. Zhang, Y. Zhu, S. Hamid, D.-W. Bahnemann (2017) Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Appl Catalys B-Environmen 219:611–618

    ADS  CAS  Google Scholar 

  49. Yang G, Ding H, Chen D, Feng J, Hao Q, Zhu Y (2018) Construction of urchin-like ZnIn2S4-Au- TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Appl Catalys B-Environmen 234:260–267

    CAS  Google Scholar 

  50. Yuan W, Xia Z, Li L (2013) Synthesis and photocatalytic properties of core-shell TiO2@ZnIn2S4 photocatalyst. Chinese Chem Lett 24:984–986

    CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Shandong Province (No. ZR2019BEE075), Young Science and Technology Innovation Program of Shandong Province (No. 2020KJD001), Elite Program of SDUST (No. skr21-3–051), Science and Technology Project of Qingdao West Coast New Area (2021–4), Taishan Scholars Program of Shandong Province, National Natural Science Foundation of China (Grant No. 52074175) and Shandong Provincial Natural Science Foundation (Grant No. ZR2020ME103).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Junxiang Wang, Zhenyu Chen, Qianqian Song, Qingming He. The investigation and formal analysis were performed by Xindong Zhou, Ping Chen, Jingang Wang, Tao Wang. Fund support was provided by Junxiang Wang and Lin Li. The first draft of the manuscript was written by Hui Yang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hui Yang or Lin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 926 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, Z., Song, Q. et al. Enhanced photoelectrocatalytic performance of ZnIn2S4 modified TiO2 nanotube array toward methylene blue. J Nanopart Res 26, 34 (2024). https://doi.org/10.1007/s11051-024-05946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05946-z

Keywords

Navigation