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Abstract The ongoing battle against viral infec-
tions highlighted so recently by the COVID-19
pandemic demonstrates the need to develop new
approaches using nanotechnology in antiviral strate-
gies. Nanoparticles have emerged as promising tools
in the fight against viral outbreaks, offering various
options for application such as biosensors, vaccine
nanoparticles, disinfectants, and functionalized nan-
oparticles. In this comprehensive review, we evalu-
ate the role of nanoparticles in pandemic control,
exploring their potential applications, benefits, and
associated risks. We first discuss the importance of
nanotechnology in viral outbreak management, par-
ticularly in vaccine development. Although lipid
nanoparticles play a crucial role in mRNA vaccines,
there are concerns about their potential side effects.
Although functionalization of protective face masks
using metallic nanoparticles has emerged as a sus-
tainable alternative to disposable masks, reducing
waste production and enhancing virus filtration,
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improper disposal of such masks leads to envi-
ronmental contamination and potential ecologi-
cal harm. Second, we address the potential adverse
effects associated with nanoparticle-based vaccines
containing polyethylene glycol and other vaccine
components, which trigger autoimmune diseases
and alter menstrual cycles. To manage outbreaks
effectively, we must minimize such potential risks
and environmental impacts. Thus, when developing
effective strategies for future pandemic control, it is
crucial to understand the advantages and challenges
associated with nanoparticle usage.
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Introduction

Throughout the twentieth century, viral infections sig-
nificantly impacted global health, causing millions of
deaths worldwide. To combat these diseases, nano-
technology has emerged as a promising approach in
the development of antiviral agents such as biosen-
sors, nanoprobes, virus-like particles (VLPs), and
functionalized nanoparticles [1-3]. The COVID-19
pandemic highlighted the importance of nanotech-
nology in the battle against viral infections, particu-
larly in the development of vaccines. In turn, ongo-
ing discoveries of new virus variants highlight the
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importance of being prepared to combat potential
future pandemics. Recently, for example, three new
COVID-related virus variants were discovered in bats
in Laos [4].

In this review, we evaluate the role of nanoparti-
cles in pandemic control and discuss their potential
applications, and also the alarms and risks associ-
ated with their use. We also draw on the insights
learned from the COVID-19 outbreak regarding the
use of nanoparticles in managing viral outbreaks.
For instance, although antiviral face masks contain-
ing metal nanoparticles were proposed as a more sus-
tainable alternative to disposable masks, since they
reduce the amount of non-biodegradable waste mate-
rial [5], their improper disposal has contributed to the
release of metal nanoparticles into the environment.
One recent example was their release into Colom-
bian and Southern Brazilian waters [6, 7]. Improper
disposal may also cause ecological harm [8]. A com-
prehensive understanding of the advantages and risks
associated with nanoparticle utilization is therefore
essential to their responsible and effective use.

Another significant application of nanoparticles in
the fight against COVID-19 is the use of lipid nano-
particle platforms for mRNA vaccines. Although
the widespread use of lipid nanoparticles containing
mRNA vaccines has contributed significantly to pan-
demic control [9], the long-term safety and activity
of the vaccine-containing nanoparticles are unclear.
Neither have the logistics associated with transport —
such as special equipment for storage during transport
to remote areas, and the costs this involves — been
addressed so far.

Below, we explore the various potentials of
nanoparticles in viral outbreak management.
More specifically, we discuss the use of function-
alized face masks for preventing viral infections,
the significance of nanoparticle-based drug deliv-
ery systems for antiviral therapeutics, and the role
of nanoparticles in diagnostic platforms for rapid
and accurate viral detection. We also address the
concerns and risks associated with the use of
nanoparticles, including their potential ecological
impacts and other long-term safety considerations.
We highlight the critical role of nanoparticles in
tackling viral outbreaks, showcasing their poten-
tial applications and stressing the importance of
their responsible and ethical use. Through proper
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consideration of the benefits and risks intricately
linked with nanoparticle usage, we hope to ensure
the development of effective strategies for future
pandemic control.

Nanotechnology applications in SARS-CoV-2
transmission prevention

Functionalization of protective face masks using
nanoparticles

The improper disposal of non-reusable face masks
has become an environmental concern, as these
masks often contain non-biodegradable materials and
pathogenic particles in their filter layer. Over time, the
mask weathering caused by factors such as mechani-
cal stress, UV-light, or quartz particles causes the
release of microplastics from the masks into the envi-
ronment [10].

Surgical masks usually consist of three layers, with
a central filter layer. To reduce waste production, this
filter layer can be functionalized with metallic nano-
particles composed of silver, zinc, or copper, which
interfere with viral reproductive cycles, thereby help-
ing to improve virus filtration over that of ordinary
masks [11-15]. Metallic nanoparticles can be used
to functionalize face masks through the addition of
substances such as photo-sensitizing nanoparticles,
which produce reactive oxygen species (ROS) upon
exposure to specific wavelengths of light, thereby
effectively destroying pathogenic membranes, pro-
teins, and nucleic acids after each mask use [16].
Plasma-based nanoparticles with photo-thermal effi-
ciency, such as graphene, silver, and gold nanoparti-
cles, are able to self-disinfect when exposed to light,
and to absorb any moisture present in the mask [12,
17]. Graphene-derivatives add other properties to
functionalized face masks, such as resistance to smog,
mechanical and abrasion stress, and UV light [18].
Positively charged polymer nanoparticles have strong
virucidal properties that reform and fluidize the lipid
content of viral membranes, particularly in lipid-raft
areas [19]. Similarly, biodegradable polysaccharide-
based materials successfully combat COVID-19 in
facial mask layers, achieving complete decomposition
in soil within 4 weeks [20, 21].



J Nanopart Res (2023) 25:229

Page3of25 229

Various nanotechnology applications in SARS-CoV-2
transmission prevention

As well as functionalizing protective face masks,
metallic nanoparticles can be applied in mouth-
wash and nose rinses, offering new opportunities
for combating viral infections. As silver nanoparti-
cles (AgNPs) inhibited SARS-CoV-2 in pre-clinical
studies [22, 23], they may have potential for wider
application. Whereas chemical disinfectants need
high concentrations of the active substance, metal-
lic nanoparticles can be used in low concentra-
tions, producing less harmful byproducts and being
more effective than standard disinfectants [24].
Another application of nanotechnology involves
spraying nano-sized electrostatic atomized water
particles (NEAWPs) onto an electrode on which
water molecules have first condensed. This signifi-
cantly reduces the environmental virus count [25].
Such use of nanoparticles is particularly important
because the excessive use of traditional disinfect-
ants during the pandemic increased levels of qua-
ternary ammonium compounds in water and soil,
thereby posing an environmental threat [26].

Nanoparticles as antiviral therapeutic agents

The main antiviral agents against SARS-CoV-2
infection, i.e., remdesivir, zanamivir, oseltamivir,
and abacavir, are specific for HIV and/or influ-
enza, but not for SARS-CoV-2 infections [27, 28].
The use of nanoparticles in COVID-19 treatment
strategies is promising since the nanoparticles do
combat SARS-CoV-2. For example, iron oxide
nanoparticles interfere with the S1 subunit of the
RBD domain [29], and amyloid-like proteins from
LCBI1 and LCB3 sequences of the S protein self-
assemble into multivalent spherical nanoparticles,
competitively blocking viral interaction with the
angiotensin-converting enzyme 2 (ACE2) recep-
tor [30]. Similarly, linear polyglycerol sulfate and
its fullerene-conjugated derivative can block virus
entry into host cells [31]. Biological nanovesicles
from human lung spheroid cells that present ACE2,
as cell-mimicking nanodecoys, are promising, since
they absorb viruses and prevent their attachment to
the host cells [32].

Controlled-release systems of antivirals using
nanoparticles

Nanoparticles provide a controlled-release system of
antivirals to reduce side effects, increase bioavailabil-
ity, improve circulation time, or ameliorate delivery of
the antivirals [33]. For example, polymeric nanoparti-
cles made of poly-e-caprolactone (PCL) or poly-lactic
glycolic acid-conjugated-poly-ethylene glycol (PLGA-
PEG) decorated with ACE2 ligands successfully
encapsulate remdesivir, playing dual antiviral roles
through competitive interference with SARS-CoV-2
in ACE2 binding, and through targeted drug delivery
to lung cells [34]. The anti-COVID efficacy of the
drug is enhanced by PLGA-lipid hybrid nanoparticles
encapsulating fluoxetine hydrochloride [35]. Table 1
provides information on selected types of nanoparticle
that are used against different coronaviruses.

Environmental challenges and urgent action

Adbverse effects associated with nanoparticles in
personal protective equipment

Despite some positive aspects of metal nanoparticle
usage in personal protective equipment (PPEs) such
as masks, potentially adverse effects of metal nano-
particles on ecosystems and their fate in the mask-
washing process have not been thoroughly inves-
tigated. Their entry into the ecosystem may have
unintended consequences.

Due to their high surface-to-volume ratio and
reactive surface, nanoparticles are prone to interfere
with biological processes. While their environmental
impact, particularly that of nanoparticles originat-
ing from PPEs, has raised concerns about possible
adverse effects on the ecosystem, these effects are
not entirely negative. As well as aiding the removal
of heavy metals and organic pollutants in wastewater
treatment, metal nanoparticles can degrade microplas-
tics and nanoplastics, and produce H,O and CO, as
end-products of degradation [8, 36, 37]. Nonetheless,
the prolonged and continuous use of nanoparticles
in PPEs leads to the accumulation of toxic levels of
degradation products, posing risks to various organ-
isms, and to the entire ecosystem [38]. In aquatic con-
ditions, metal nanoparticles derived from PPEs can
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Table 1 Nanoparticles used against different coronaviruses and their mechanism of action

Nanoparticles Target coronavirus Mechanism of action Reference
Carbon quantum dots HCoV-229E Inhibition of viral entry and replication in the [172]
cells
Gold nanorods conjugated to peptide inhibitors MERS-CoV Prevention of cell membrane fusion with virus [173]
Polyphosphate (polyP)-silica nanoparticles SARS-CoV-2 Inhibition of S-protein interaction with ACE2 [174]
NEAWPs SARS-CoV-2 Inhibition of virus to cell binding [25]
Trimethyl (11-mercaptoundecyl) ammonium SARS-CoV-2 Inhibition of virus transcription and replication [175]
chloride gold nanoclusters
Favipiravir-loaded PLGA nanoparticles SARS-CoV-2 Sustained favipiravir release [176]
siRNA-loaded LNPs SARS-CoV-2 Viral gene silencing [177]
AgNOj; nanoparticles HSV-1 and SARS-CoV-2  Induction of inflammatory cell apoptosis [178]
Aptamer-targeted LNPs encapsulating siRNAs SARS-CoV-2 Viral gene silencing [179]
SNAT, Tx—[NH,-AgNPs] SARS-CoV-2 Viral replication inhibition [180]
BSA-coated tellurium nanoparticles PRRSV Viral internalization inhibition into cells [181]
Au@AgNRs PEDV Decreased internalization, caspase-3 activity, and [182]
viral replication
Ag,S nanoclusters PEDV Blocked viral cycles in RNA negative-strand [183]
synthesis
Diphyllin-loaded PEG-PLGA nanoparticles FIP Inhibition of virus endosomal escape by blocked  [184]
acidification
siRNA-loaded spray-dried PLGA nanoparticles SARS-CoV-1 Viral gene inhibition in the lungs [185]
Ag nanoparticles TGEV Virus-caused apoptosis inhibition [186]
SinaCurcumin curcumin nanomicellar capsules SARS-CoV-2 Decreased inflammatory cytokine levels in [187]
COVID-19 patients
DNase-I and PEG-decorated melanin-like nano- ~ SARS-CoV-2 Excessive neutrophil clearance [188]
particles
DNase-I-decorated polydopamine-PEG nanopar-  SARS-CoV-2 Excessive neutrophil clearance [189]
ticles
HCQ and CQ-conjugated Pt nanoparticles SARS-CoV-2 Reduction of CQ side effects [190]
Anti-inflammatory microRNA-146a-decorated SARS-CoV-2 Prevention of acute respiratory distress syndrome [191]
cerium oxide nanoparticles caused by bleomycin in COVID-19 patients
Niclosamide-loaded LNPs SARS-CoV-2 Improved niclosamide solubility [192]
PLGA nanoparticles coated with cell membrane ~ SARS-CoV-2 SARS-CoV2 absorption [193]
containing ACE2 and CD147 receptors
Remdesivir-loaded PEGylated dendrimers SARS-CoV-2 Enhanced solubility [194]
siRNA-loaded peptide dendrimer KK-46 SARS-CoV-2 Viral gene silencing [195]
MTX-LDE SARS-CoV-2 Enhanced cellular uptake and efficacy of metho-  [196]
trexate
Methotrexate-loaded nanoparticles SARS-CoV-2 Enhanced cellular uptake and efficacy of metho-  [197]
trexate
Ag nanoparticles SARS-CoV-2 Virus-caused apoptosis inhibition [198]

ACE2, angiotensin-converting enzyme-2; Au@AgNRs, silver-coated gold nanorods; BSA, bovine serum albumin; CQ, chloroquine;
FIP, feline infectious peritonitis; HCoV-229E, human coronavirus; HCQ, hydroxychloroquine; MERS-CoV, Middle East respiratory
syndrome coronavirus; MTX-LDE, methotrexate-loaded cholesterol-rich non-protein nanoparticles; NEAWPs, nano-sized electro-
static atomized water particles; PEDV, porcine epidemic diarrhea (corona)virus; PLGA, poly-lactic glycolic acid; PRRSV, porcine
reproductive and respiratory syndrome virus; SNAT, smart nano-enabled antiviral therapeutic; Tx—/NH,-AgNPs], taxoid-decorated
amino-functionalized silver nanoparticles; TGEV, transmissible gastroenteritis virus

interact with other pollutants. The detrimental effects in organisms range from inflammation to cellular
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damage that further exacerbate any impact on the
environment [8]. A further problem is the improper
disposal of PPEs in landfills, dumpsites, marine envi-
ronments, or public spaces. This can cause animals
to mistakenly recognize such PPE waste as food,
resulting in their inadvertent and potentially harmful
ingestion.

All in all, urgent action is required to address a
range of significant environmental challenges. To
promote proper disposal practices and prevent the
dissemination of nanoparticles into the environment,
specific recycling guidelines tailored to nanotechnol-
ogy products should be established and enforced [19].
Before the SARS-CoV-2 pandemic, nanoparticles
entered the environment mainly through household
usage, industrial waste, or laboratory penetration.
However, during the initial stages of the pandemic,
when it was believed that the virus could be transmit-
ted through surfaces, the use of antiseptic and disin-
fectant agents skyrocketed, increasing the release of
nanoparticles into the environment. Now, in the post-
SARS-CoV-2 period, the main source of nanoparticle
pollution is the widespread uncontrolled abandon-
ment of personal protective equipment.

Adverse effects of nanoparticles on plants and
microorganisms

During the SARS-CoV-2 pandemic, the worldwide
demand for masks reached over 4 billion daily, all
while recycling programs for masks were inad-
equately planned [39]. Several countries used reus-
able masks containing carbon nanotubes, and/or sil-
ver (Ag), silicon dioxide (Si0O,), zinc oxide (ZnO),
or nanoparticles titanium dioxide (TiO,). Disposal of
nanosilver from these masks was found to pose eco-
logical hazards, inhibiting plant growth and photo-
synthesis [40]. Engineered nanoparticles commonly
penetrate the roots of plants, resulting in phytotoxicity
[41]. As nanoparticles generate reactive ions interact-
ing with nutrients and inorganic compounds in plants,
they cause chlorosis and wilting [42, 43]. Small-sized
nanoparticles such as TiO, pass through protective
layers like the cuticle, cell wall, and cell membrane
[44], impairing the growth of seedlings crops, the
uptake of minerals, and chlorophyll synthesis [45].
ZnO nanoparticles reduce chlorophyll production in
bulb onions, as well as crop growth and development
[46—48]. Ag nanoparticles increase the activity of

antioxidant enzymes, reduce chlorophyll content, and
impair photosynthesis in tomatoes [49, 50].

Similarly adverse effects of nanoparticles are
observed not only in plants, but also in bacteria and
aquatic animals [51]. For example, ZnO-based nano-
particles induce genetic mutations in Caenorhabdi-
tis elegans, resulting in offspring toxicity [52, 53].
In sea water, TiO, nanoparticles released from sun-
screens cause severe damage to gill filaments, ham-
pering aquatic animal reproduction [54, 55]. Overall,
it is therefore clear that the adverse effects of nano-
particles eventually disrupt the food chain for higher
organisms.

Adverse effects of nanoparticles on higher organisms

The generation of reactive oxygen species is a bio-
logical process. Their excessive generation causes
oxidative stress, leading to inflammation, diabetes,
cancer, and other degenerative diseases [56, 57].
Excessive reactive oxygen species causes free-
radical production, lipid peroxidation, genotoxic-
ity, and apoptosis [58]. Nanoparticles accumulate
in various organs and have overall systemic effects
[59]. Some inorganic nanoparticles such as TiO,,
Si0,, ZnO, and Fe,0; dissolve in the acidic envi-
ronment of the stomach [60]. Through absorption
into the skin, lungs, and liver [61], they also impair
human health.

Toxicity caused by silver nanoparticles (AgNPs)
in vitro depends on the surface coating and the con-
centration of AGNPs it contains. In vivo, AgNPs
enter the bloodstream and accumulate in organs,
where they cause cytotoxicity [62]. The generation
of Ag* ions from AgNPs and oxidative stress both
lead to apoptosis via translocation of mitochondrial
cytochrome C into the cytosol [63], or to necrosis by
reducing sulthydryl groups [64, 65]. Table 2 provides
an overview of anti-COVID-19-related cytotoxic
effects caused by AgNPs and other types of nanopar-
ticles in vitro and in vivo, and the compendial and
noncompendial tests used.

Direct contact with titanium dioxide nanoparti-
cles (TiO,NPs) affects skin cells in various ways,
for example, by impairing their viability, prolif-
eration, and differentiation [66]. TiO,NPs penetrate
into the deep layers of the skin are known to be
released in sweat [67-69]. Inhalation of TiO,NPs
poses a significant health risk: due to the lower
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protection provided by the olfactory bulb than by
the blood-brain barrier, nano-sized materials can
penetrate the brain faster through the olfactory
nerve than through systemic injection [70, 71].

Being in direct contact with the skin and the air
we breathe, protective masks containing Ag and
TiO, nanoparticles are potentially harmful. The
presence of these nanoparticles has been shown
to significantly inhibit the growth rate of human
osteoblasts, indicating that the adverse effects of
the masks are not limited to the skin, inhalation, or
brain [72].

The leaching of Ag* or Cu?* ions from metal-
impregnated masks has also been linked to potential
health risks for humans [73]. Exposure to these nano-
particles through ingestion, inhalation, or dermal pen-
etration can cause toxicity [74]. Ingestion is followed
by exposure to the complex and harsh condition of
the gastrointestinal tract, i.e., pH variations, gastric
salts, ions, and enzymes. These interactions modify
the composition of nanoparticles, leading to biomol-
ecule adsorption and aggregation [75-77].

Although nanoparticles have toxic effects on the
immune system and are involved in oxidative stress-
related disorders, many people attribute these disor-
ders to factors such as air pollution. This has led to
proposals for public education on proper disposal
of personal protective equipment in government-
provided trash containers. Long-term monitoring
of coastal waste and citizen initiatives for litter col-
lection in populated areas have also been suggested
[78-80], as has the recycling of carbon powders from
masks for use in batteries [81] or renewable fuels
[82], and the promotion of reusable alternatives and
cellulose-fiber textiles. Potential disposal methods
also include incineration and optimized pyrolysis [82,
83].

The toxicity of metal nanoparticles varies accord-
ing to the size, surficial coating, and shape of the nan-
oparticles [84]. The solubility of AgNPs is inversely
proportional to the size of the nanoparticle. Due to
increased dissolution and cell penetration efficacy,
small nanoparticles exhibit high toxicity, with a
strong attachment to DNA also causing DNA dam-
age. Use AgNPs sized more than 20 nm shows less
genotoxicity [85, 86]. As metal nanoparticles sized
less than 100 nm cause increased toxicity in vivo, the
recommended ranges lie between 100 and 150 nm
[87, 88].

@ Springer

Toxicity is also influenced by the type of nanopar-
ticle coating. Coating AgNPs with polyvinylpyrro-
lidone (PVP) has been found to have a greater tox-
icity and tissue uptake than citrate coatings, while
positively charged polymers such as chitosan enhance
the toxicity of AgNPs more than citrate-stabilized
particles do. A bovine serum albumin (BSA) coating
of gold nanoparticles (AuNPs) also leads to greater
toxicity and poorer renal clearance than a glutathione
(GSH) coating. On the other hand, coating AuNPs
with PEG reduces nanoparticle toxicity and appears
to be a suitable coating option [85, 89-92].

Nanoparticles in vaccines and risk assessment

The WHO defines vaccines as pharmaceutical formu-
lations that activate the immune system in order to
produce specific antibodies, thereby generating pro-
tective immunity against a disease caused by a patho-
gen [93]. The conventional vaccines developed since
the late eighteenth century rely on the discovery of
antibodies in patients who have recovered from infec-
tions. To elicit an immune response, these use attenu-
ated or inactivated pathogens and purified pathogen
fragments [94]. Second-generation vaccines are pro-
duced using recombinant DNA technology in bacteria
or in cell cultures [95].

Recently, a third generation of vaccines has
emerged, which introduces the gene encoding the pro-
tective antigen into a host cell. By improving antigen
processing and its presentation to antigen-presenting
cells (APCs), this enhances the activation of CD4"
and CD8" cells. This recent advance in vaccine tech-
nology holds promise for eliciting protective immune
responses against the virus [96].

To overcome the limitations of conventional
vaccines, i.e., attenuated or inactivated viruses,
alternative options such as RNA- or DNA-based
vaccines have also been sought recently. These
new RNA- or DNA-based vaccine production
technologies aim both to improve reactivity and
efficacy and to reduce the cost of vaccines. They
can also be used to effectively treat other dis-
eases, such as cancer. But whereas vaccines need
to be delivered to the right places in the body in a
suitable form so as to prepare the immune system
to combat an invading pathogen effectively, most
vaccine molecules are prone to degradation. Due
to limited accessibility and poor cell permeation
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[97], they may not be recognized efficiently by
the immune system. A crucial role in enhancing
the effectiveness of vaccines is played by deliv-
ery systems based on nanoformulations. By tailor-
ing nanoencapsulation, vaccines can be delivered
with precision and stability [96].

These delivery systems contribute to the in vivo
behavior of vaccines in various ways: they protect
vaccines from enzymatic degradation, improve their
pharmacokinetic properties through surface engineer-
ing techniques such as PEGylation, enable active tar-
geting to specific organs or cell types, and engineer
controlled release of vaccines [93, 98, 99].

Lipid nanoparticles, self-assembling protein
nanoparticles, virus-like particles, liposomes, and
cationic nanoemulsion vaccines have been designed
against SARS-CoV-2 [100]. The most prominent
vaccines against SARS-CoV-2 are lipid-based nano-
particles (LNPs), which have been designed as drug
nanocarriers for nucleic acid delivery [101]. By
protecting fragile and unstable nucleic acids from
degradation by nucleases, LNPs can increase the
half-life of nucleic acids in the blood circulation.
Charge-reversible LNPs contain ionizable lipids,
either positively or negatively charged, that allow
the LNPs to remain neutrally charged in the blood-
stream, effective encapsulation of nucleic acids in
the LNPs, and a high degree of endosomal escape of
LNPs (Fig. 1) [102].

LNPs contain two other main components: choles-
terol, a neutral phospholipid, and PEG-lipid, which
protects LNPs from phagocytosis and aggregation in

Fig. 1 Schematic illustra-
tion of an mRNA-based
SARS-CoV-2 lipid
nanoparticle vaccine. Dif-
ferent components of the
vaccine are visualized, i.e.,
positively charged lipids,
phospholipids, natural
lipids, PEGylated lipids,
cholesterol, and nucleic
acids. This figure is modi-
fied from those published
in [105]. PEG, polyethylene
glycol

the blood circulation and also during manufacturing
and storage. In vaccine formulations, the PEG-lipid
also ensures that the LNP maintains the desired diam-
eter (200 nm) [103]. A factor that is crucial to effi-
cient nucleic acid delivery is the complete escape of
nucleic acids from the endosomal compartment after
LNP internalization. By increasing the diffusibility of
PEG-lipids, the addition of distearoylphosphatidyl-
choline (DSPC) and dioleoylphosphatidylethanola-
mine (DOPE) lipids to nanoparticles enhances endo-
somal escape [104].

To produce viral proteins, leading anti-COVID
vaccine developers such as Moderna, Pfizer/BioN-
Tech, CureVac, Walvax, Sanofi, Pasteur, and Entos
Pharmaceuticals all use cationic LNPs to deliver
mRNA or DNA encapsulated into host cells.
Although mRNA vaccines are more prone to instabil-
ity and functional defects than DNA vaccines, they
are preferred due to their higher immunogenicity,
their direct translation in the cytosol, and their higher
loading potential into LNPs [106—108]. To achieve
the same level of efficiency, self-amplifying mRNA-
LNP vaccines such as those developed by Imperial
College London and Arcturus/Duke-NUS require ten
times less mRNA than mRNA vaccines. However,
they have less flexibility in nucleotide modification
than their mRNA counterparts [102, 109].

Most LNP-derived vaccines currently available
induce immune responses against the Spike protein
(S protein). Interestingly, the receptor binding (RBD)
and N-terminal (NTD) domains of the S protein are
targeted by the most potent of the 61 monoclonal

Positively charged
lipids

Phospholipids

Natural lipids

PEG-conjugated
lipids

Cholesterol

Nucleic acids
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antibodies isolated from infected patients [110]. As
anti-NTD antibodies inhibit and anti-RBD antibod-
ies neutralize viral infections [111], the presentation
of one of the virus protein domains is preferred above
presentation of the whole protein for optimal immu-
nity against new COVID-19 variants.

Due to the need for expensive low-temperature
storage required by the SARS-CoV-2 vaccines cur-
rently available, their distribution poses challenges
in developing countries. As the mechanical stresses
caused by shaking might lead to aggregation and
mRNA degradation in LNPs, vaccines also need to be
administered promptly after preparation [112-114].
By enhancing the long-term stability of mRNA-
LNPs, freeze-drying offers a solution to both these
problems. However, if freeze-drying is to be success-
ful, vaccine structure should not be affected by the
lyoprotectants and by temperature stress. A new gen-
eration of the Pfizer/BioNTech vaccine is currently
being prepared in lyophilized (freeze-dried) form
[115].

Adverse effects associated with SARS-CoV-2
nanoparticle vaccines

Mild to moderate side effects are experienced after
vaccinations. Compared to conventional vaccines,
Pfizer and Moderna vaccines have been shown to
cause more serious allergic reactions, including ana-
phylaxis. While side effects such as flushing and tran-
sient dyspnea were also observed in some of these
mRNA vaccines, they were not considered to be aller-
gic reactions [116]. Similar side effects were reported
in earlier clinical safety studies of mRNA vaccines
against influenza [116].

Although the rate of allergic reactions for LNP
vaccines containing mRNA cargo is generally around
1.31 (95% CI, 0.90-1.84) per million doses, the num-
ber of severe immune reactions may be higher with
booster doses [117]. LNPs induce inflammation,
especially in non-adherent cells, due to the higher
availability of cell surface receptors than in adherent
cells [118, 119]. The main suspect for anaphylactic
reactions in mRNA vaccines is the coating polymer,
PEG, which alters the water solubility of the vac-
cine-containing nanoparticles [120]. Although PEG
is widely used in cosmetics, food, medication, and
pharmaceutical agents, its use in vaccine technology
is rare [121].

@ Springer

Initially, PEG molecules were thought to be
safe and biologically inert, but nowadays PEG and
PEG-like polymers are not considered to be as safe
as initially thought [122]. An immune response
mediated by anti-PEG IgG antibodies may develop
in allergic individuals, particularly females [123].
These antibodies can target the PEG backbone or
specifically bind to PEG terminal functional groups
[124]. In the presence of reactive oxygen species,
anti-PEG antibodies detrimentally affect the respira-
tory chain and signal transduction pathways, and
also disrupt cell membranes [125]. In vivo, oxida-
tion of PEG, especially of the PEG low-molecular
polymer chains, produces toxic molecules, i.e.,
glycolic acid and hydroxy acid metabolites [126].
PEGylated nanoparticles cause pseudoallergic reac-
tions such as complement-activation-related pseudo
allergy (CARPA) [127] and toxic or immunogenic
responses, particularly with booster doses. Ana-
phylactic responses to PEG occur in 2-8 cases per
year worldwide, which has led the clinical use of
two PEGylated pharmaceuticals to be abandoned
[128-130]. The concentration of PEG in mRNA
vaccines is much lower than in PEGylated drugs,
and intramuscular administration induces less
inflammation [131]. While anaphylactic reactions
are caused not only by PEG, allergic reactions are
also caused by vaccine components such as poly-
sorbate 80 in the vaccines developed by AstraZen-
eca and Johnson [132]. On the other hand, polysorb-
ate 80 is considered to be safer than PEG [128].
Figure 2 provides a schematic illustration of the var-
ious SARS-CoV-2 vaccines, and Table 3 a summary
of the side effects associated with them.

The side effects of PEGylated vaccines and poly-
sorbate-containing vaccines include urticaria, diz-
ziness, diarrhea, wheezing, and tachycardia [133].
Dermal side effects, such as erythema or swelling,
are slightly more common with mRNA vaccines than
with adenoviral vaccines (10-15% versus 5-7% of the
patients) [134—136]. Rare side effects of viral vector
vaccines include thrombosis and thrombocytopenia.
When there is cross-reactivity between PEG and pol-
ysorbates, immediate hypersensitivity reactions occur
[137, 138]. For approximately 6 months, mRNA and
adenoviral vaccines can both cause changes in men-
strual cycles, such as dysmenorrhea, alterations in
frequency, volume, or cessation of bleeding. Women
with pre-existing platelet disorders [139], those
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Lipid

Fig. 2 Categorized adverse effects associated with different
components of nucleic acid-based lipid nanoparticle vaccines.
PEG, excipient, or nucleic-acid-related adverse effects, and

* PEG
HSC‘FO/\’}?%C”;[ .
o]

Molecular mimicry

Nucleic acid

PEG-related adverse effects
+ Pseudo allergy, dermal, anaphylaxis reactions
+ Hydroperoxidation caused by PEG impurities
CH,
Excipient-related adverse effects
Molecular mimicry
+ Development of different autoimmune syndromes

Nucleic acid-related adverse effects

» Similarity to syncytin-1 protein

+ Body-protein mimicry, autoantibody induction
* LNP instability, nucleic acid degradation

Adverse effects with (un)known origin
+ Non-allergic reactions

Flushing, transient dyspnea
+ Original antigenic sin (OAS)
+ Antibody-dependent enhancement (ADE)
* Innocent bystanders mechanism

adverse effects of known and unknown origin are indicated.
Formation of anti-PEG backbone auto-antibodies (blue). PEG,
polyethylene glycol

Table 3 Side effects of

. Vaccine(s) Side effects Reference(s)
SARS-CoV-2 vaccines
BTN162b2 Bullous pemphigoid [199]
CoronaVac, Janssen, Ad26, Lichen planus [200-202]
CoV2-S, BTN162b2
mRNA-1273 Chilblains, pityriasis lichenoides chronica [203]
mRNA-1273 Severe thrombocytopenia [204]

mRNA-1273, BTN162b2

mRNA-1273

BTN162b2
mRNA-1273, BTN162b2
mRNA-1273, BTN162b2
BTN162b2

Papulovesicular rashes, bullous pemphigoid-like, [205]
pernio toes, urticaria, neutrophilic dermatosis,
leukocytoclastic vasculitis

Morbilliform rashes, delayed large local reac- [205, 206]
tions, erythromelalgia, erythema multiforme,
granuloma annulare, sarcoid tattoo reaction,
psoriasis onset
Pityriasis rosea [207]
COVID arm symptom [208]
Orofacial edema [209]
Herpes zoster reactivation [210]

taking estrogen-based contraceptives [140], and those
with thrombocytopenia [141] are all at a higher risk
for such changes in their menstrual cycle. Messenger
RNA- and viral vaccines affect the menstrual cycle,
but the strongest changes are observed with mRNA-
LNP vaccines [142, 143].

A major concern with the use of nanoparticle
vaccines is that they trigger autoimmune diseases.
SARS-CoV-2 mRNA-NPs vaccines trigger autoim-
mune liver diseases, Guillain-Barré syndrome, IgA
nephropathy, myocarditis, optical neuromyelitis,
autoimmune polyarthritis, Graves’ disease, type 1

diabetes mellitus, and systemic lupus erythematosus
[144-149]. A second concern is the possibility of
reverse transcription of mRNA vaccines in liver cells,
which has been observed in vitro [150], although
genotoxicity in vivo remains debatable [151]. A third
concern is the phenomenon of original antigenic sin
(OAS), which occurs when antibodies from previous
infections or vaccinations hinder the neutralization
of newly mutated antigens, particularly the omicron
antigen variant [152]. A fourth concern is the concept
of antibody-dependent enhancement (ADE), where
low antibody titers bind to virus particles without

@ Springer
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neutralizing them, thereby facilitating virus entry
into macrophages and enhancing respiratory disease
responses. ADE has been linked to SARS-CoV-2
mRNA-NP vaccines [153].

A fifth concern has also arisen regarding the cross-
reaction of vaccine-induced antibodies against syncy-
tin-1, a placental protein similar to the SARS-CoV-2
spike protein, which activates the immune system
and impacts female pregnancy [154]. Another sig-
nificant consequence that can arise, mainly in young
men, after a second dose of mRNA-based vaccines is
myocarditis; this has an incidence of 12.6 cases per
million. Sex hormones can contribute to the develop-
ment of myocarditis [155], which is not only related
to molecular mimicry of S protein, self-antigens,
or the formation of autoantibodies, but may also be
caused by vaccine adjuvants, activation of “innocent
bystanders,” or induction of autoantibodies [149].

A question we are currently unable to answer is
whether the S protein should be replaced by other
viral proteins as the immunogenic target to develop
vaccines. New generations of vaccines such as spike-
trimers and spike-ferritin in liposomes will continue
to be based on spike proteins [156, 157]. To address
and mitigate the side effects of nanoparticle-based
vaccines, certain modifications might be considered.
PEG chain length and topological configuration affect
immunogenicity. Pre-treatment with small amounts of
high-molecular-weight PEG reduces anti-PEG reac-
tions, and in animal models, short and hyperbranched
PEG polymers, such as poly(oligo-ethylene glycol)
methacrylate, exhibit decreased interaction with
anti-PEG IgG and IgM antibodies [158]. To prevent
inflammation and side effects, glyceryl monostea-
rate (GMS) should not be included in LNPs [118].
Promising alternatives for PEG are polyglycerol pol-
yricinoleate, polysarcosine, polyhydroxypropylmeth-
acrylamide, polysulfobetaine, and polycarboxybetaine
polymers [159]. Replacing PEG with polysulfobetaine
coating results in higher biological activity of insulin;
in nude mice, a dextran coating eliminated toxicity
and liver stress of iron oxide nanoparticles [160, 161].
Polyesters like polycarbonates and polyphosphoesters
might also be viable alternatives to PEG, since they
degrade in vivo into non-toxic fragments, and can be
easily produced using ring-opening polymerization
(ROP) [162].

More preclinical studies are needed to evaluate
vaccines. As two-dimensional in vitro studies may

@ Springer

not always completely capture the complex immune
environment, and as the phenotype and expression of
receptors on cells may be influenced by culture con-
ditions [163], the prediction of vaccine performance
systems might be improved by three-dimensional cell
culture systems [164] and/or standardized in vitro cul-
ture systems [164]. And as small rodents are anatomi-
cally different from humans, non-human primates
might be more reliable for in vivo studies [165].

When evaluating nucleic acid vaccines, it is essen-
tial to assess not only the quantitative distribution of
DNA or mRNA cargo, but also protein expression.
This will help to monitor the distribution, retention,
and release pattern of the delivered DNA or mRNA,
providing a predictive tool for vaccine safety. In
addition, valuable insight into the tissue localization
of delivered nanoparticles is provided by informa-
tion on vaccine distribution in lymph nodes, organs,
and APCs [100]. Although a skin-sensitization test
is recommended before vaccination with PEG and
polysorbate [121, 128, 166, 167], the number of posi-
tive cases in skin tests is considerably lower than the
number of sensitive cases after vaccine administration
[168]. Protocols for graded dosing of vaccines have
been developed for hypersensitive individuals, such
as those with basophil disorders and uncontrolled
asthma. Allergic individuals are advised to receive a
second dose of a different vaccine, or, in some cases,
heterologous prime-boost vaccines are recommended
[169-171]. Finally, in Fig. 3, we propose several solu-
tions that will minimize the disadvantages associated
with nanoparticle use.

Conclusions

The use of nanoparticles in combatting viral infec-
tions has proved to represent a promising and valu-
able approach in the realm of global health. The
COVID-19 pandemic underscored the significance
of nanotechnology in vaccine development, infection
prevention, and therapeutic strategies. By offering
innovative solutions — including functionalized face
masks, antiviral therapeutics, and diagnostic plat-
forms — nanoparticles have already showcased their
potential in pandemic control. However, the potential
risks and challenges associated with their use still
require attention, particularly in vaccine development.
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Fig. 3 Proposed solutions
for minimizing the disad-
vantages associated with
nanoparticle usage

Existing LNP formulations have played a crucial
role in the rapid development of SARS-CoV-2 vac-
cines. Unfortunately, vaccine-induced immunity
against SARS-CoV-2 is of limited duration, and, to
enhance vaccine safety, adverse effects such as ana-
phylaxis and autoimmune reactions call for modifica-
tions in nanoparticle design such as after receiving
primary doses, individuals with a history of COVID-
19 vaccine anaphylaxis should not receive booster
doses of the same vaccine.

The development of long-lasting and immunogenic
nanoparticle formulations against SARS-CoV-2 is
crucial. To prevent nanoparticle aggregation, surface
modification of LNPs is also vital. It is also possible
that alternative coating materials, such as shorter-
length PEG polymers or other synthetic or natural
polymers, may help to minimize side effects and
enhance vaccine safety.

Whatever their promise in combating viral infec-
tions, the main concerns raised by metal nanoparti-
cles involve their entry into the ecosystem. However,
they can also aid in wastewater treatment, micro-
plastic degradation, and environmentally friendly
H,0 and CO, production. If responsible nanoparti-
cle use is to be ensured, it is imperative to achieve
better control of their toxicity through modifications
of nanoparticle size, surface coating, and shape,
and also to stimulate public education and proper
disposal practices for nanoparticle-based personal
protective equipment. Although multiple factors
determine whether nanoparticles are toxic, very lit-
tle information is available on their toxicity, which

Proposed solutions to problems associated with nanoparticle use
1.

Public education and recycling of nanoparticles
Nanotechnology recycling guidelines

« Proper personal protective equipment disposal
« Incineration and optimized pyrolysis
« Mask reusable materials, e.g. cellulose-fiber textiles

.

2.

.

3.

.

Mask re-use

Alternative disinfection methods

Nano-sized electrostatic atomized water particles
Metal nanoparticles instead of ammonium compounds
Nanoparticle re-engineering (size, coating)
Combination of virus immunogenic domains
Alternative (for PEG) polymer in LNP vaccines

4. Improvement of vaccine

Vaccine efficacy tests in 3D-platforms in vitro and in vivo

» Nucleic acid vaccine expression pattern determination
» Vaccine evaluation in primates, if no alternatives are available

5.

Establishment of standard protocols for hypersensitive individuals

« Skin sensitization test
* 15-min observation after vaccination
» Second boost with different vaccine

is sometimes related to the specific drug delivery,
and/or to the physical characteristics of the nano-
particles (i.e., their size, surface area, charge, shape,
and composition). The adverse effects associated
with the use of nanoparticles such as LNPs contain-
ing PEG (PEGylated LNPs; Fig. 2) limit the use
of LNPs in clinical applications. PEG is an FDA-
approved compound that is used in pharmacochemi-
cal and personal care products. A solution to prob-
lems involving its toxicity in clinical uses may be
provided by LNP modification, such as by replacing
PEG with natural polymers.

The lessons learned from the COVID-19 pandemic
have shed light on the importance of responsible
and ethical nanoparticle use. In the pursuit of future
pandemic control and global health protection, it is
essential to continue harnessing the potential of nano-
technology while simultaneously remaining cautious
and well-informed. By prioritizing the safety of nano-
particle-based products and vaccines, we will be able
to ensure that nanotechnology remains a valuable tool
in our fight against viral outbreaks, with minimized
risks and enhanced benefits for both human health
and the environment.
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