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Abstract Simple and quick techniques for assem-
bling nanoparticles in topographically designed 
Poly(dimethylsiloxane) moulds of nanosized shapes 
have great potential in many spectroscopic and sens-
ing tools. Close-packed particles pose rich plasmonic 
resonances, enabling the optical response to be tai-
lored on both the nano- and macroscale. Template-
assisted self-assembly (TASA) is a method that cre-
ates colloidal aggregates with controlled sizes formed 
by dewetting aqueous dispersions of NPs across sur-
faces. We present rapid TASA (rTASA), a modified 
version with an overall process time of under 10 min, 
improving speed and user-friendliness. Depending on 
the array pitch distance and average number of NPs 
per trap, the transmission through the template drops 
by between 20 and 80%, enabling them to be detected 
with even the simplest spectroscopic solutions. This 
rapid method is useful as a building block to generate 
self-assembled systems that exhibit exciting optical 
properties in crucial areas, particularly in building a 
fast test for size-selective NP detection.

Keywords Colloidal particles · CAPA · TASA · 
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Introduction

Many scientific fields and technologies involve nano-
sized objects, structures, and materials. Nanoparticles 
(NPs) formed the core of the nanotechnology revo-
lution of the last century and have proven applica-
tions in many fields, such as electronics, aerospace, 
energy, and medicine [1–4]. The increasing demand 
for products containing NPs and the constant discov-
ery of new functions that leverage their beneficial 
effects are accompanied by a potential risk that limits 
the usability of nanoengineered particles in medicine, 
cosmetics, and the food industry. In particular, NPs 
below a critical size brings general concerns since it 
was shown that they could overcome natural cell bar-
riers and cause cytotoxic effect [5–8]. In recent years, 
extensive research has demonstrated that NPs’ size, 
shape, and chemical composition are the main factors 
influencing their toxicity [5–8]. Testing the NPs, with 
a special focus on their size, becomes a crucial step in 
risk assessment to follow the rapid commercialisation 
of nano-enabled products and ensure safe and sustain-
able nanomaterials use.

Consequently, there is an urgent need to develop 
appropriate, cost-effective assessment and predic-
tion methods. The assessment method should provide 
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the best decision criteria to determine whether a 
product is safe or needs better NPs control. Such a 
method could provide researchers, manufacturers 
and regulators with a risk assessment tool that con-
siders essential specifications like speed, simplicity, 
and flexibility. Currently, the main approaches to risk 
assessment depend on the type of sample preparation. 
One direction is to prepare a sample in liquid form 
without processing; in this case, the size and con-
centration of specific NPs are tested and determined 
without removing them from the solution by using 
optical methods such as dynamic light scattering 
(DLS) [9–11]. Another approach requires fixation for 
modern microscopy, where the NPs must be collected 
before removal from the solution. This approach 
includes the drop-casting and/or alignment of the NPs 
[12, 13], with various aggregation dynamics [14, 15]

Li et  al. [16] have summarised various assem-
bly methods and discussed the mechanisms behind 
self-assembly and triggered assembly in standard 
methods. Template-assisted self-assembly (TASA) 
offers reasonable simplicity compared to procedures 
that alter the surface of NPs to enable assembly. A 
glass cover encloses colloidal particles in prefabri-
cated traps so that their self-assembly occurs locally 
[16, 17]. The glass cover later serves as the receiv-
ing substrate onto which the assemblies are stamped. 
Capillary-assisted particle assembly (CAPA) [18–21] 
is another promising, highly efficient, versatile and 
scalable method. It exploits the extensive capillary 
interactions in a colloidal suspension. By bringing a 
droplet of suspension into contact with a structured 
surface, the localisation and organisation of the par-
ticles can be controlled in predefined patterns. Both 
methods have proven valuable for the alignment of 
NPs. TASA incorporates NPs onto a receiving sub-
strate through the use of a template. The template 
supports the nanoparticles, allowing them to attain 
their desired shape before being imprinted onto the 
receiving substrate. This differs from CAPA, which 
utilises capillary forces to organise NPs into selected 
traps.

This manuscript reports a new method, Rapid 
Template-Assisted Self-Assembly (rTASA), a 
unique combination of simplicity and speed, with 
an assembly time of just 10  min, enabling assem-
bly NPs in traps and making them ready for further 
analysis or usage. In contrast to other methods requir-
ing high-precision equipment, rTASA needs only 

consumable-based elastomeric replicas, making it 
an accessible and cost-effective technique. Notably, 
compared to the CAPA method, the rTASA method 
could lead to more accurate and faster detection of 
NPs while minimising the required control param-
eters (i.e. temperature, meniscus velocity and contact 
angle). This process results in a highly precise and 
accurate incorporation of NPs, ultimately enhancing 
the substrate’s properties and functionality, highlight-
ing its novelty and potential for various applications. 
rTASA can be used with simple optical methods, e.g. 
a drop in light transmission of 20–80%, depending on 
the average number of NPs, paving the way for effi-
cient detection and size-selective recognition of NPs. 
Additionally, we proved the usability for SERS, pro-
viding signal enhancement of sulphur-containing spe-
cies on silver nanoparticles.

Materials and methods

Elastomer replicas with well-defined circular arrays 
were used in all subsequent experiments. Electron 
beam lithography (EBL) produced a silicon template 
replicating structured PDMS [13]. A thin layer of poly 
(methyl methacrylate) (PMMA, MicroChem) was 
spin-coated onto a silicon substrate, and then a total 
area of (3 × 1 mm) was subjected to EBL. Si/PMMA 
was then immersed in a mixture of isopropyl alcohol 
(Technic France) and methyl isobutyl ketone (Micro-
Chem) 4:1 for 45 s for development, then rinsed well 
with isopropyl alcohol. After that, 200  nm of tita-
nium was deposited on the Si/PMMA using electron 
beam evaporation using a PVD device (Cryofox 600) 
and dipped in remover PG (MicroChem) to remove 
the PMMA and Ti-layer, leaving only the Ti pillars. 
A non-stick coating of trichloro-(1H,1H,2H,2H-
perfluorooctyl) silane (Sigma Aldrich) was applied 
to the Si template. Surface silanization was carried 
out in a special vacuum chamber at a pressure of 
10 mbar for 10 min, followed by drying on a hot plate 
at 120 °C for 10 min. The PDMS (Sylgard 184) and 
curing agent were mixed in a 10:1 ratio and degassed 
to remove oxygen bubbles. The mixture was dropped 
onto the silicon master moulds and dried at 120  °C 
for 40 min to produce the PDMS image to entrap the 
NPs.

The microstructure and morphology of the NPs 
were characterised using a high-resolution scanning 
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electron microscope (SEM, Hitachi S-4800). The 
SEM also has an electron beam lithography package 
(RAITH GmbH).

For surface-enhanced Raman spectroscopy (SERS) 
measurements, a  10−3 M aqueous solution of 2-Naph-
thalenethiol (NPT, TermoFischer) was prepared in 
ethanol to the required concentration. The substrate 
was cleaned of residues using a 1:2 hydrochloric 
acid (Sigma Aldrich) and ethanol mixture. Samples 
were soaked in a  10−3  M concentrated solution for 
1 h. After drying, the excess of non-bound molecules 
was removed using ethanol. Raman measurements 
were performed on a confocal Raman microscope 
(alpha300 WITec) using a 532-nm laser beam and a 
laser power of 0.1 mW. The integration time was 10 s. 
The Raman signal was recorded using a CCD cam-
era. A 50 nm ag layer on unstructured and structured 
PDMS was used as a reference.

Results and discussion

Rapid templates-assisted self-assembly

The conventional TASA method for assembling 
densely packed clusters has already been described in 
detail [16, 17]. A colloidal NPs dispersion is dropped 
onto a structured surface (e.g. a PDMS surface). A 
hydrophilic cover glass is placed on the PDMS sur-
face to disperse the droplet with the NPs. It traps 
them to self-arrange and controls the evaporation and 
re-deposition to overcome the biggest drop-casting 
challenge related to the coffee ring effect (CRE), first 
observed by Deegan et  al. [21, 22]. The degree of 
hydrophilicity of the glass slide decides whether the 
NPs remain in the traps or are stamped onto the glass 
slide, which serves as the receiving substrate. After 
1–2  h, the colloidal dispersion dries, and the glass 
slide is carefully removed, carrying the well-assem-
bled NPs.

Here, we present a variation of TASA that achieves 
comparable results but is far less complex. The main 
aim is to accelerate the process by bringing the NPs 
into the PDMS traps by dropping them directly on 
the patterned surface without the glass slide agent. 
The biggest challenge when drop-casting a disper-
sion of NPs onto the substrate is CRE, first observed 

by Deegan et al. [20, 21]. The liquid flows from the 
drop’s centre to the edge during evaporation. The NPs 
accumulate at the edges, similar to the ring-shaped 
spot left by a coffee drop on a smooth surface after 
drying. Depending on the contact angle of the liquid 
surface, there are two possible states — Cassie–Bax-
ter and Wenzel — with the latter being relevant for 
PDMS moulds [23]. When a liquid comes into con-
tact with a structured surface (e.g. PDMS), the liquid 
completely wets the surface. In other words, the con-
tact area between liquid and solid is maximised and 
obeys the Wenzel equation:

which states that 𝜃W < 𝜃 when the CA 𝜃 < 90◦ . 
Therefore, rough surfaces trap the fluid in the holes, 
making them immobile. This reduces the fluid flow 
responsible for the coffee ring effect so that the NPs 
are evenly distributed on the surface after completely 
evaporating (Fig. 1).

The self-assembly properties of NPs depend on 
numerous fundamental factors, including interac-
tions between NPs, surface tension and externally 
supported approaches. Interactions such as the van 
der Waals interaction and the Colombian interaction, 
together with forces emanating from the PDMS sur-
face and external factors such as evaporation, are the 
main driving forces in droplet casting [24, 25]. As 
mentioned earlier, the trapping of the NPs is triggered 
by the disturbance of the particles on the PDMS sur-
face to ensure that they are held in the trap and do 
not migrate to the side of the droplet on the PDMS. 
The geometry of the template determines the reten-
tion forces. For a microdroplet of NP on the PDMS 
surface (regardless of geometry), the forces exerted 
on each NP can be expressed as follows:

Fc and FvdW are the Colombian and van der Waals 
interactions between the NPs and represent the resid-
ual attractive or repulsive forces, which are consid-
ered to be among the fundamental mechanisms caus-
ing the self-assembly of individual NPs into different 
nanostructures. A fad is the adhesion force between 
the particle and the substrate and is only slightly 
affected by changing the geometry of the PDMS, as 
it depends on the distance between the NP and the 

(1)cos(�w) = r.cos(�)

(2)Ftot,i = Fad + FvdW + Fc + Ffl



 J Nanopart Res (2023) 25:103

1 3

103 Page 4 of 10

Vol:. (1234567890)

surface. The flow force Ffl is the key that controls the 
motion and pinning of the NPs. A radially outward 
capillary flow from the centre towards the contact 
line is observed, driven by evaporation, as evapora-
tion is strongest at the edge, which is more ‘aerated’ 
than the centre of the droplet, causing the lateral flow 
of NPs. However, nano/microstructures on the surface 
would exert capillary-trapping forces and the outward 
capillary flow. The two compete and change the flow 
from lateral to circular, resulting in less mobility of 
the trapped NPs.

A dispersion of a 5-µl mixture of 3.1010 particles/
ml Ag (Nanocomposix), DMF (Sigma Aldrich) and 
ethanol (1:1:3) was dropped onto the unstructured 
and structured PDMS surface (Fig.  1) under ambi-
ent temperature and air atmosphere; ethanol was used 
owing to its high wettability and ability to facilitate 
evaporation. The droplet volume and ethanol con-
tent in the dispersion determines the time required 
for the dispersion to evaporate. However, it is short, 

(3)Ffl =

{

Fc,evap no traps

Fc,evap + Fc,trap traps

not exceeding 10 min at room temperature. Figure 1 
shows the non-patterned PDMS surface where the 
coffee ring effect occurs. The NPs form a ring-like 
pattern on the PDMS surface, depositing firmly at 
the edges. Their concentration gradually decreases 
towards the centre of the dried droplet, and they do 
not show any pattern or uniformity. Using a patterned 
PDMS surface reduces the coffee ring effect but does 
not eliminate it; a ring of concentrated NPs is still 
present (although less than non-patterned PDMS). 
Unfortunately, a quantitative assessment of the NP 
concentration in the edge region is impossible, but it 
is visible in the Scanning Electron Microscope (SEM) 
image. The crucial area to examine is the centre of 
the droplet, where the holes are located. Figure  1 
shows the NP distribution over the holes. A complete 
filling of the holes with NPs can be observed, and the 
NPs appear densely packed. This contrasts with what 
is observed in the space between the holes, where 
the NPs are present in a lower concentration than in 
the holes. The difference in the distribution of the 
NPs in the holes and on the sides does not contradict 
the Wenzel condition; the holes help keep the liquid 
together with the NPs. Another observation favouring 

Fig. 1  Illustrative represen-
tation of the mechanisms 
of NPs deposition on the 
unstructured PDMS surface 
(left) and the structured 
PDMS surface (right)
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the NPs and attachment is that the outer shape of 
the coffee ring has a wavy profile, and the NPs are 
attached to the holes that are not completely covered 
by the droplet.

The method of rTASA is shown in Fig.  2. The 
starting point is a patterned PDMS surface with cir-
cular traps corresponding to the intended sizes of the 
trapped NPs (Fig. 2a). Then, a droplet containing an 
NPs dispersion is applied to the surface of the PDMS 
shape (Fig.  2b). At this point, the droplet is usually 
covered with a glass slide (TASA) to transport the 
particles onto the glass slide. The rTASA bypasses 
this step, allowing the droplet to dry rapidly and trap 
the NPs in the PDMS holes. When chemicals such as 
ethanol are dried, light and a heat source are used to 
shorten the drying time. The NPs remaining on the 
traps’ edges or the flat PDMS surface (Fig.  2c) are 
removed in the subsequent cleaning step (Fig.  2d), 
where a ‘sticky’ surface can be placed in contact with 
the PDMS top and lifted off with the excess NPs, 
leaving the trapped NPs not altered. This cleaning 
step can be done several times to achieve the desired 
effect (Fig.  2e). Once the cleaning is complete, the 
NPs will be well-packed in the PDMS traps and ready 
for further characterisation.

Following the rTASA process described, a 1:3 
Ag:EtOH mixture was dropped onto the PDMS sur-
face. After completion of the drying step, the traps 
were filled (Fig. 3a), yet the NPs were still sitting on 
the PDMS surface. Here the additional cleaning step 
removes the excess NPs from the surface. A ‘sticky’ 
surface is used to remove the excess NPs. Adhesive 
tape could be a destructive cleaning tool, removing 
the NPs from the traps and leaving polymeric adhe-
sive on them, potentially changing their properties. 
Therefore, the cleaning approach involves hydrating 
a plasma-cleaned glass slide with a mixture of water 
and ethanol. Hydrating the slide improves its adhesive 

properties in a controlled manner so that only the 
excess is removed from the surface. Figure 3b shows 
that, after the surface is cleaned, the traps are filled 
with densely packed NPs, and no excess remains. The 
coffee ring effect is less significant in rTASA, where 
the NPs are dropped onto patterned PDMS. The pat-
terns on the PDMS surface enable the Wenzel condi-
tion, which results in the pinning of the NPs, and the 
additional cleaning step guarantees exclusive depo-
sition of the NPs in the traps. The process is rapid; 
desiccants such as ethanol as a heat source and light 
could further speed up the drying step.

A test was run to compare the novel process 
described in this letter with another particle assem-
bly method CAPA. Although highly precise, CAPA 
is among the most complex and time-consuming 
methods due to the numerous control parameters. 
The overall CAPA process is well described else-
where [18–20]. The following experimental param-
eters were used in CAPA. A mixture of 50  nm Ag-
NPs:ethanol:DMF (1:4:1) was sandwiched between 
PDMS and a glass slide. The glass slide started mov-
ing at a constant rate of 1  mm/s at 35  °C to create 
an accumulation zone and the correct evaporation 
rate. As the meniscus moves, the NPs obey a lami-
nar flow and make their way to the accumulation 
zone, where the concentration of NPs is highest. At 
this moment and during evaporation, the NPs jump 
into the holes, remain behind the meniscus’ capil-
lary forces and become trapped in the holes. Scanning 
electron micrographs (Fig.  3c) show deposited Ag-
NPs in PDMS holes aiming at close packing of the 
NPs. Therefore, the deposition parameters were cho-
sen accordingly, including the height and concentra-
tion in the accumulation zone.

The microscopic images show the long-range 
ordering of the close-packed filling of the holes. 
Looking back at the results of the rTASA method 

Fig. 2  Schematic representation of rTASA: a patterned PDMS, b drop casting of aqueous NP dispersion onto the surface of pat-
terned PDMS, c the drying process, d cleaning the excess NPs from the PDMS surface, and e the traps containing the composite NPs
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reveals similarities between the methods in dense 
packing, high filling and long-range ordering. There 
are only two differences. The first concerns the degree 
of complexity of the methods, as CAPA proves to be 
more complex than rTASA. Second, in CAPA the 
deposition of certain NP sizes is determined not only 
by trap size but also by trap depth, which means that 
larger particles are less likely to settle on the traps 
but may still do so, questioning the size selectivity of 
the method. The additional cleaning step to remove 
excess NP in rTASA ensures that only particles 
smaller than the trap size are captured because the 
trap size is the threshold size of the NPs.

Optical properties

The optical properties of the trapped NPs were fur-
ther assessed by the light transmission drop they 
caused compared to the empty traps. Figure 3d shows 
the transmission in a 300–800-nm wavelength range 
using a low-precision spectrometer. We found that the 
trapped NPs cause a decrease in transmission com-
pared to the empty PDMS. Apart from the minor dif-
ferences in the transmittance drop between rTASA 
and CAPA, the sensitivity of the rTASA method is 
comparable to that of CAPA. To increase the tech-
nique’s sensitivity in NPs detection, smaller pitches 

Fig. 3  Upper panel: representative SEM images of a the 
PDMS surface after drop-casting the NPs, b the deposited NPs 
with rTASA, and c the deposited NPs with CAPA. Bottom 

panel: measured optical transmittance for different deposition 
methods (CAPA and rTASA) at different trap spacings
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were investigated, which showed a sharp drop in light 
transmission. Small pitches can condense the particle 
pocket and improve detection when the NP concen-
tration is low. We present particle detection and risk 
assessment as application examples. Still, the method 
has a wide field of application, especially concerning 
plasmonic (lattice resonances, super crystal arrays, 
etc.) and material detection and/or custom surface-
enhanced Raman spectroscopy (substrate formation, 
custom self-assembly, plasmonic metasurface, etc.).

Surface-enhanced Raman scattering

Surface-enhanced Raman spectroscopy (SERS) is 
an effective analytical technique to study the proper-
ties of molecules on the surface of Ag NPs. By uti-
lising the strong electromagnetic field derived from 
the plasmonic property of Ag, chemical compounds 
bound to the surface of NPs can be detected. The 
Raman scattering from molecules that interact with 
the surface of Ag-NPs is greatly amplified, making 
it possible to identify molecules at extremely low 
concentrations. Many surface molecules, including 
proteins, DNA, lipids, and tiny molecules, have been 
studied using this method. SERS has also been used 
to investigate the surface chemistry of NPs and find 
compounds in the nanomolar range. SERS has given 
researchers new insights into the structure and opera-
tion of molecules on the surface of NPs by harnessing 
the plasmonic characteristics of Ag-NPs. The adsorp-
tion of sulphur-containing species with a concentra-
tion of thiols on the NP surface can further improve 
the SERS of Ag-NPs. Thiols interact with Ag-NPs to 
produce powerful chemisorption interactions that can 
improve the attached molecules’ Raman scattering.

Figure  4 shows Raman spectra of NPT measured 
on different substrates together with the empirical 
approach to SERS EF obtained using Eq. 4.

where ISERS Is the Raman-band intensity correspond-
ing to the concentration CSERS of the substance ana-
lysed on the SERS Substrate, and IRS and CRS The 
intensity and concentration on the non-SERS sub-
strate, respectively.

Compared with the spectrum obtained for NPT, 
an overall improved signal was received for NPT on 

(4)EF =

(

ISERS

CSERS

CRS

IRS

)

all the tested samples. Structured Ag films, consist-
ing of a 50-nm Ag layer evaporated onto PDMS sur-
faces with nanoscale elements (traps), have signifi-
cantly enhanced the Raman signal compared to planar 
Ag films (50  nm). This enhancement is due to the 
increased surface area and charge transfer between 
the metal surface and the analyte molecules. The 
increased surface area allows more analyte molecules 
to interact with the metal surface, increasing Raman 
scattering events. In addition, the nanoscale features 
of the Ag surface create hot spots with an increased 
electric field, which facilitates charge transfer of ana-
lyte molecules. This charge transfer further amplifies 
the Raman signal by increasing the molecule’s popu-
lation of electronically excited states.

The 50 nm and 100 nm have been found to have 
significantly higher surface-enhanced Raman scatter-
ing (SERS) than the structured and unstructured Ag 
films. The trapped Ag-NPs 50  nm had the highest 
Raman enhancement with an enhancement factor of 
up to  104. The 100-nm Ag-NPs show lower enhance-
ment. This increase can be attributed to increased 
surface enhancement due to the larger surface area of 
the small-size NPs. As a result, Trapped Ag NPs are 
advantageous for SERS applications due to their large 
surface area and enhanced charge transfer. These 
results provide insight into the size-dependent Raman 
enhancement of Ag-NPs of sulphur-containing spe-
cies, which can be used to improve the sensitivity 
and selectivity of SERS for sensing and detection 
applications. However, it is not our goal to highlight 
the results obtained in this work as opposed to those 
obtained elsewhere but to emphasise the crucial role 
of the rTASA method in easily arranging NPs for dif-
ferent applications.

Conclusions

In summary, we presented rTASA, a new method for 
nanoparticle assembly based on the drop-casting dis-
persion of nanoparticles in droplet form on collect-
ing traps. The results allow for comparison to high-
precision methods, like CAPA, however, being more 
cost- and time-effective. In addition, using desiccants 
such as ethanol as a heat and light source, the entire 
process could speed it up further. The rTASA has been 
proven to be an efficient method for preparing tailored 
arrays of NPs in traps, where the subsequent cleaning 
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step is crucial for size-selective trapping. In turn, the 
size selectivity depends only on the size of traps, which 
could allow single or more dense NPs arrangements. 
The entrapped NPs cause a drop in light transmission, 
enabling far-field nanoparticle detection.

We have limited our discussion to Ag-NPs; how-
ever, the technique can be applied to other particle 
classes besides metallic particles, e.g. polymers and 

microplastics. We have already successfully imple-
mented the method for polystyrene, magnetic iron 
oxide and polymer-coated gold nanoparticles [26]. 
This effort led to the development of programma-
ble nanoparticle-based devices. Hence the rTASA 
opens the door for future applications like nano-
based drug delivery or general sensing and detec-
tion, including preparing SERS substrates.

Fig. 4  a Raman scattering spectra of NPT on non-SERS and SERS substrates. b SERS enhancement factor (EF) for different NPT 
bands
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