Skip to main content
Log in

Preparation and performance of CsPbBr3 nanocrystals in a fluorophosphate glass matrix

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The encapsulation of CsPbBr3 nanocrystals (NCs) in oxide glass can effectively avoid contact of the external environment with the halide perovskite. However, the effects of hydroxyl and oxygen on NCs cannot be completely excluded because of the nature of oxide glass itself. Here, we proposed a new solution to solve these problems by using fluorophosphate (FP) glass as the embedding matrix. The composition (Br concentration) and heat treatment conditions (temperature and time) of the glass matrix were designed and optimized to improve the optical properties of CsPbBr3 NCs. The results showed that highly pure green light with an emission peak of 534 nm and a full-width at half-maximum (FWHM) of approximately 19 nm was achieved using CsPbBr3 NCs@glass and a light-emitting diode (LED)/laser diode (LD). The Commission Internationale de l'Eclairage (CIE) coordinates of the two devices were (0.243, 0.723) and (0.239, 0.739), with very high color purities of 96.6% and 97.3%, respectively. The photoluminescence quantum yields (PLQYs) of the samples excited at 365 nm and 450 nm wavelengths were 34.54% and 38.85%, respectively. Additionally, the chemical stability of CsPbBr3 NCs was significantly improved by the encapsulation in FP glass, retaining 88% of the original PL intensity after 30 days of storage in deionized water. This work provides a new choice to improve the stability of a halide perovskite in a matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contacting the corresponding author.

References

  1. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15(6):3692–3696. https://doi.org/10.1021/nl5048779

    Article  CAS  Google Scholar 

  2. Tong Y, Wang Q, Liu XT, Mei ER, Liang XJ, Xiang WD (2022) The promotion of TiO2 induction for finely tunable self-crystallized CsPbX3 (X=Cl, Br and I) nanocrystal glasses for LED backlighting display. Chem Eng J 429:132391. https://doi.org/10.1016/j.cej.2021.132391

    Article  CAS  Google Scholar 

  3. Wei Y, Cheng Z, Lin J (2019) An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev 48:310–350. https://doi.org/10.1039/c8cs00740c

    Article  CAS  Google Scholar 

  4. Dong Y, Wang YK, Yuan F, Johnston A, Liu Y, Ma D, Choi MJ, Chen B, Chekini M, Baek SW, Sagar LK, Fan J, Hou Y, Wu M, Lee S, Sun B, Hoogland S, Quintero-Bermudez R, Ebe H, Todorovic P, Dinic F, Li P, Kung HT, Saidaminov MI, Kumacheva E, Spiecker E, Liao LS, Voznyy O, Lu ZH, Sargent EH (2020) Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol 15:668–674. https://doi.org/10.1038/s41565-020-0714-5

    Article  CAS  Google Scholar 

  5. Veldhuis SA, Boix PP, Yantara N, Li M, Sum TC, Mathews N, Mhaisalkar SG (2016) Perovskite materials for light-emitting diodes and lasers. Adv Mater 28(32):6804–6834. https://doi.org/10.1002/adma.201600669

    Article  CAS  Google Scholar 

  6. Zheng X, Yuan S, Liu J, Yin J, Yuan F, Shen WS, Yao K, Wei M, Zhou C, Song K, Zhang BB, Lin Y, Hedhili MN, Wehbe N, Han Y, Sun HT, Lu ZH, Anthopoulos TD, Mohammed OF, Sargent EH, Liao LS, Bakr OM (2020) Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient Rec. 2020 blue light-emitting diodes. ACS Energy Lett 5(3):793–798. https://doi.org/10.1021/acsenergylett.0c00057

    Article  CAS  Google Scholar 

  7. Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Seok SII, Lee J, Seo J (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3:682–689. https://doi.org/10.1038/s41560-018-0200-6

    Article  CAS  Google Scholar 

  8. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J (2019) Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567:511–515. https://doi.org/10.1038/s41586-019-1036-3

    Article  CAS  Google Scholar 

  9. Shang QY, Li ML, Zhao LY, Chen DW, Zhang S, Chen SL, Gao P, Shen C, Xing J, Xing GC, Shen B, Liu XF, Zhang Q (2020) Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett 20(9):6636–6643. https://doi.org/10.1021/acs.nanolett.0c02462

    Article  CAS  Google Scholar 

  10. Fan F, Voznyy O, Sabatini RP, Bicanic KT, Adachi MM, McBride JR, Reid KR, Park YS, Li X, Jain A, Quintero-Bermudez R, Saravanapavanantham M, Liu M, Korkusinski M, Hawrylak P, Klimov VI, Rosenthal SJ, Hoogland S, Sargent EH (2017) Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544:75–79. https://doi.org/10.1038/nature21424

    Article  CAS  Google Scholar 

  11. Jia Y, Kerner RA, Grede AJ, Rand BP, Giebink NC (2017) Continuous-wave lasing in anorganic–inorganic lead halide perovskite semiconductor. Nat Photonics 11:784–788. https://doi.org/10.1038/s41566-017-0047-6

    Article  CAS  Google Scholar 

  12. Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov AA, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh DBL, All AH, Mohammed OF, Bakr OM, Wu T, Bettinelli M, Yang H, Huang W, Liu X (2018) All-inorganic perovskite nanocrystal scintillators. Nature 561:88–93. https://doi.org/10.1038/s41586-018-0451-1

    Article  CAS  Google Scholar 

  13. Gao H, Feng J, Pi Y, Zhou Z, Zhang B, Wu Y, Wang X, Jiang X, Jiang L (2018) Bandgapengineering of single-crystalline perovskite arrays for high-performance photodetectors. Adv Funct Mater 28(46):1804349. https://doi.org/10.1002/adfm.201804349

    Article  CAS  Google Scholar 

  14. Zhang X, Bai X, Wu H, Zhang X, Sun C, Zhang Y, Zhang W, Zheng W, Yu WW, Rogach AL (2018) Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew, Chem. Int. Ed 57(13):3337–3342. https://doi.org/10.1002/anie.201710869

  15. Gomez L, Weerd CD, Hueso JL, Gregorkiewicz T (2017) Color-stable water-dispersed cesium lead halide perovskite nanocrystals. Nanoscale 9:631–636. https://doi.org/10.1039/C6NR08892A

    Article  CAS  Google Scholar 

  16. Li S, Lei D, Ren W, Guo X, Wu S, Zhu Y, Rogach AL, Chhowalla M, Jen AKY (2020) Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nat Commun 11:1192. https://doi.org/10.1038/s41467-020-15016-2

    Article  CAS  Google Scholar 

  17. Xu YS, Zhao XD, Xia ML, Zhang XH (2021) Perovskite nanocrystal doped all-inorganic glass for X-ray scintillators. J Mater Chem C 9:5452–5459. https://doi.org/10.1039/D0TC05979J

    Article  CAS  Google Scholar 

  18. Palazon F, Akkerman QA, Prato M, Manna L (2016) X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and Water. ACS Nano 10(1):1224–1230. https://doi.org/10.1021/acsnano.5b06536

    Article  CAS  Google Scholar 

  19. Zhang H, Wang X, Liao Q, Xu Z, Li H, Zheng L, Fu H (2017) Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv Funct Mater 27(7):1604382. https://doi.org/10.1002/adfm.201604382

    Article  CAS  Google Scholar 

  20. Xia ML, Zhu SJ, Luo JJ, Xu YS, Tian PF, Niu GD, Tang J (2021) Ultrastable perovskite nanocrystals in all-Inorganic transparent matrix for high-speed underwater wireless optical communication. Adv Optical Mater 9(12):2002239. https://doi.org/10.1002/adom.202002239

    Article  CAS  Google Scholar 

  21. Ai B, Liu C, Wang J, Xie J, Han J, Zhao X (2016) Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. J Am Ceram Soc 99(9):2875–2877. https://doi.org/10.1111/jace.14400

    Article  CAS  Google Scholar 

  22. Ai B, Liu C, Deng Z, Wang J, Han J, Zhao X (2017) Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. Phys Chem Chem Phys 19:17349–17355. https://doi.org/10.1039/c7cp02482g

    Article  CAS  Google Scholar 

  23. Pang X, Zhang H, Xie L, Xuan T, Sun Y, Si S, Jiang B, Chen W, Zhuang J, Hu C, Liu Y, Lei B, Zhang X (2019) Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. J Mater Chem C 7:13139–13148. https://doi.org/10.1039/C9TC04732H

    Article  CAS  Google Scholar 

  24. Di X, Hu Z, Jiang J, He M, Zhou L, Xiang W, Liang X (2017) Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs. Chem Commun 53:11068–11071. https://doi.org/10.1039/c7cc06486a

    Article  CAS  Google Scholar 

  25. Konidakis I, Brintakis K, Kostopoulou A, Demeridou I, Kavatzikidou P, Stratakis E (2020) Highly luminescent and ultrastable cesium lead bromide perovskite patterns generated in phosphate glass matrices. Nanoscale 12:13697–13707. https://doi.org/10.1039/D0NR03254A

    Article  CAS  Google Scholar 

  26. Liu S, He M, Di X, Li P, Xiang W, Liang X (2018) Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X = Br, I) QDs in borosilicate glass. Ceram Int 44(4):4496–4499. https://doi.org/10.1016/j.ceramint.2017.12.012

    Article  CAS  Google Scholar 

  27. Yuan S, Chen D, Li X, Zhong J, Xu X (2018) In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl Mater Interfaces 10(22):18918–18926. https://doi.org/10.1021/acsami.8b05155

    Article  CAS  Google Scholar 

  28. Chen D, Liu Y, Yang C, Zhong J, Zhou S, Chen J, Huang H (2019) Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X= Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale 11:17216–17221. https://doi.org/10.1039/c9nr07307h

  29. Chen D, Yuan S, Chen J, Zhong J, Xu X (2018) Robust CsPbX3 (X = Cl, Br, and I) perovskite quantum dot embedded glasses: nanocrystallization, improved stability and visible full-spectral tunable emissions. J Mater Chem C 6:12864–12870. https://doi.org/10.1039/C8TC04786C

    Article  CAS  Google Scholar 

  30. Huang X, Guo Q, Yang D, Xiao X, Liu X, Xia Z, Fan F, Qiu J, Dong G (2019) Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photonics 14:82–88. https://doi.org/10.1038/s41566-019-0538-8

    Article  CAS  Google Scholar 

  31. Kolobkova EV, Kuznetsova MS, Nikonorov NV (2021) Perovskite CsPbX3 (X=Cl, Br, I) nanocrystals in fluorophosphate glasses. J Non-Cryst Solids 563:120811. https://doi.org/10.1016/j.jnoncrysol.2021.120811

    Article  CAS  Google Scholar 

  32. Piquette AP, Hannah ME, Mishra KC (2012) An investigation of self-absorption and corresponding spectral shift in phosphors. ECS Trans 41:37. https://doi.org/10.1149/1.3697439/pdf

    Article  Google Scholar 

  33. Brennan MC, Herr J, Nguyen-Beck TS, Zinna J, Draguta S, Rouvimov S, Parkhill J, Kuno M (2017) Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J Am Chem Soc 139(35):12201–12208. https://doi.org/10.1021/jacs.7b05683

    Article  CAS  Google Scholar 

  34. Li W, Hu L, Ma J, Jiang C, Zhang S, Chen Y, Hu J, Liu X, Wu T, Li D (2022) Enhancing self-trapped exciton emission via energy transfer in two-dimensional/quantum dot perovskite heterostructures. ACS Photonics 9(6):2008–2014. https://doi.org/10.1021/acsphotonics.2c00113

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant 61905119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Fu.

Ethics declarations

Competing interests

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Gao, Y., Zheng, R. et al. Preparation and performance of CsPbBr3 nanocrystals in a fluorophosphate glass matrix. J Nanopart Res 25, 80 (2023). https://doi.org/10.1007/s11051-023-05736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05736-z

Keywords

Navigation