Skip to main content

Advertisement

Log in

Hollow multishelled structural ZnO fillers enhance the ionic conductivity of polymer electrolyte for lithium batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Composite polymer electrolyte (CPE) with ceramic fillers has gained great attention for lithium batteries with high energy density and safety. However, the agglomeration of ceramic fillers and weak polymer-ceramic interaction induces limited ionic conductivity and hinders its implementation. Here, hollow multishelled structure (HoMS) ZnO with a size range of 700 ~ 900 nm is designed as fillers for polyethylene oxide (PEO)-based CPE. Strong chemical and mechanical interaction between PEO and ZnO HoMS enable a high ionic conductivity and good electrochemical and mechanical stability. Wherein, double-shelled ZnO HoMS exhibits a good ionic conductivity of 1.04 × 10−4 S∙cm−1 and 1.2 × 10−3 S∙cm−1 at 30 ℃ and 60 ℃. Additionally, all-solid-state LiFePO4/Li full cell adopted with ZnO HoMS filled CPE exhibits a high initial specific capacity of 169 mAh∙g−1 and good cycling stability and withstands abuse test. The enhanced performance is due to that HoMS provides PEO with faster ion transport channels, more effective Lewis acid-based interaction sites, suppressed PEO crystallinity, and improved ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The original data are available from corresponding authors upon reasonable request.

References

  1. Fan LZ, He H, Nan CW (2021) Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat Rev Mater 6:1003–1019. https://doi.org/10.1038/s41578-021-00320-0

    Article  CAS  Google Scholar 

  2. Li BQ, Peng HJ, CX et al (2019) Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium-sulfur batteries. CCS Chem 1: 128–137. https://doi.org/10.31635/ccschem.019.20180016

  3. Rameez R, Nana Z, Ying X et al (2020) Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow N-doped carbon flowers for Li-S batteries. EcoMat 2:e12020. https://doi.org/10.1002/eom2.12020

    Article  CAS  Google Scholar 

  4. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191. https://doi.org/10.1016/S0378-7753(99)00529-7

    Article  CAS  Google Scholar 

  5. Guo Y, Wu SC, He YB et al (2022) Solid-state lithium batteries: safety and prospects. eScience 2: 138–163. https://www.sciencedirect.com/science/article/pii/S2667141722000209?via%3Dihub. Accessed 2 Jan 2023

  6. Hong Y, Jia L, Yang L et al (2020) Toward practical all-solid-state batteries with sulfide electrolyte: a review. Chem Res Chinese Universities 36:377–385. https://doi.org/10.1007/s40242-020-0103-5

    Article  CAS  Google Scholar 

  7. Kairui G, Shao QL, Gong C et al (2022) One-pot synthesis of polyester-based linear and graft copolymers for solid polymer electrolytes. CCS Chem 4:3134–3149. https://doi.org/10.31635/ccschem.021.202101364

    Article  CAS  Google Scholar 

  8. Li L, De CZ, Xi JX et al (2021) Challenges and development of composite solid electrolytes for all-solid-state lithium batteries. Chem Res Chinese Universities 37:210–231. https://doi.org/10.1007/s40242-021-0007-z

    Article  CAS  Google Scholar 

  9. Xu SJ, Sun ZH, Sun CG (2020) Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv Funct Mater 30:2007172. https://doi.org/10.1002/adfm.202007172

    Article  CAS  Google Scholar 

  10. Zhang XD, Yue FS, Liang JY et al (2020) Structure design of cathode electrodes for solid-state batteries: challenges and progress. Small Struct 1:2000042. https://doi.org/10.1002/sstr.202000042

    Article  Google Scholar 

  11. Croce F, Appetecchi GB, Persi L et al (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458. https://doi.org/10.1038/28818

    Article  CAS  Google Scholar 

  12. Jia Z, Yuan W, Zhao H et al (2014) Composite electrolytes comprised of poly (ethylene oxide) and silica nanoparticles with grafted poly (ethylene oxide)-containing polymers. RSC Adv 4:41087–41098. https://doi.org/10.1039/C4RA07262F

    Article  CAS  Google Scholar 

  13. Wan J, Xie J, Kong X et al (2019) Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol 14:705–711. https://doi.org/10.1038/s41565-019-0465-3

    Article  CAS  Google Scholar 

  14. Xiong HM, Zhao X, Chen JS (2001) New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. J Phys Chem B 105:10169–10174. https://doi.org/10.1021/jp0103169

    Article  CAS  Google Scholar 

  15. Ding WQ, Lv F, Xu N et al (2021) Polyethylene oxide-based solid-state composite polymer electrolytes for rechargeable lithium batteries. ACS Appl Energy Mater 4:4581–4601. https://doi.org/10.1021/acsaem.1c00216

    Article  CAS  Google Scholar 

  16. Li B, Bi R, Yang M et al (2022) Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. Appl Surf Sci 586:152836. https://doi.org/10.1016/j.apsusc.2022.152836

    Article  CAS  Google Scholar 

  17. Li B, Wang J, Bi RY et al (2022) Accurately localizing multiple nanoparticles in a multishelled matrix through shell-to-core evolution for maximizing energy-storage capability. Adv Mater 34:2200206. https://doi.org/10.1002/adma.202200206

    Article  CAS  Google Scholar 

  18. Wang J, Cui Y, Wang D (2020) Hollow multishelled structures revive high energy density batteries. Nanoscale Horiz 5:1287–1292. https://doi.org/10.1039/D0NH00311E

    Article  CAS  Google Scholar 

  19. Dong Z, Lai X, Halpert JE et al (2012) Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv Mater 24:1046–1049. https://doi.org/10.1002/adma.201104626

    Article  CAS  Google Scholar 

  20. Wang J, Wang Z, Mao D et al (2022) The development of hollow multishelled structure: from the innovation of synthetic method to the discovery of new characteristics. Sci China Chem 65:7–19. https://doi.org/10.1007/s11426-021-1097-9

    Article  CAS  Google Scholar 

  21. Wang J, Yang M, Wang D (2022) Progress and perspectives of hollow multishelled structures. Chinese J Chem 40:1190–1203. https://doi.org/10.1002/cjoc.202100932

    Article  CAS  Google Scholar 

  22. Wang L, Wan J, Wang J et al (2020) Small structures bring big things: performance control of hollow multishelled structures. Small Struct 2:2000041. https://doi.org/10.1002/sstr.202000041

    Article  CAS  Google Scholar 

  23. Yang M, Bi R, Wang J et al (2022) Decoding lithium batteries through advanced in situ characterization techniques. Int J Min Met Mater 29:965–989. https://doi.org/10.1007/s12613-022-2461-0

    Article  Google Scholar 

  24. Zhang X, He Y, Wei Y et al (2021) Carving the shell thickness of tungsten trioxide hollow multi-shelled structures for enhanced photocatalytic performance. Mater Chem Front 5:8010–8017. https://doi.org/10.1039/D1QM01124C

    Article  CAS  Google Scholar 

  25. Zhao D, Yang N, Wei Y et al (2020) Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nature Commun 11:1–7. https://doi.org/10.1038/s41467-020-18177-2

    Article  CAS  Google Scholar 

  26. Wang J, Tang H, Zhang L et al (2016) Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat Energy 1:16050. https://doi.org/10.1038/nenergy.2016.50

    Article  CAS  Google Scholar 

  27. Cong W, Jiang YW, Wen PH et al (2020) Controllable synthesis of hollow multishell structured Co3O4 with improved rate performance and cyclic stability for supercapacitors. Chem Res Chinese Universities 36:68–73. https://doi.org/10.1007/s40242-019-0040-3

    Article  CAS  Google Scholar 

  28. Zhao J, Wang J, Bi R et al (2020) General synthesis of multiple-cores@ multiple-shells hollow composites and their application to lithium–ion batteries. Angew Chem Int Ed 60:25719–25722. https://doi.org/10.1007/s40242-019-0040-3

    Article  CAS  Google Scholar 

  29. Zhao J, Yang M, Yang N et al (2020) Hollow micro-/nanostructure reviving lithium-sulfur batteries. Chem Res Chinese Universities 36:313–319. https://doi.org/10.1007/s40242-020-0115-2

    Article  CAS  Google Scholar 

  30. Wang J, Wan J, Yang N et al (2020) Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour. Nat Rev Chem 4:159–168. https://doi.org/10.1038/s41570-020-0161-8

    Article  CAS  Google Scholar 

  31. Wei Y, Wan J, Yang N et al (2020) Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl Sci Rev 7:1638–1646. https://doi.org/10.1093/nsr/nwaa059

    Article  CAS  Google Scholar 

  32. Mao D, Wan J, Wang J et al (2018) Sequential templating approach: a groundbreaking strategy to create hollow multishelled structures. Adv Mater 31:1802874. https://doi.org/10.1002/adma.201802874

    Article  CAS  Google Scholar 

  33. Holzwarth U, Gibson N (2011) The Scherrer equation versus the’Debye-Scherrer equation’. Nat Nanotechnol 6:534–534. https://doi.org/10.1038/nnano.2011.145

    Article  CAS  Google Scholar 

  34. ElBellihi AA, Bayoumy WA, Masoud EM (2012) Preparation, characterizations and conductivity of composite polymer electrolytes based on PEO-LiClO4 and Nano ZnO filler. B Korean Chem Soc 33:2949–2954. https://doi.org/10.5012/bkcs.2012.33.9.2949

    Article  CAS  Google Scholar 

  35. Paranjape N, Mandadapu PC, Wu G et al (2017) Highly-branched cross-linked poly (ethylene oxide) with enhanced ionic conductivity. Polymer 111:1–8. https://doi.org/10.1016/j.polymer.2017.01.014

    Article  CAS  Google Scholar 

  36. Appetecchi GB, Henderson W, Villano P et al (2001) PEO-LiN(SO2CF2CF3)2 Polymer electrolytes: I. XRD, DSC, and ionic conductivity characterization. J Electrochem Soc 148:A1171–A1178. https://doi.org/10.1149/1.1403728

    Article  CAS  Google Scholar 

  37. Li Y, Yu YC, Han CY et al (2020) Sustainable blends of poly (propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance. Chinese J Polym Sci 38:1267–1275. https://doi.org/10.1007/s10118-020-2408-8

    Article  CAS  Google Scholar 

  38. Stolwijk NA, Heddier C, Reschke M et al (2013) Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes. Macromolecules 46:8580–8588. https://doi.org/10.1021/ma401686r

    Article  CAS  Google Scholar 

  39. Homann G, Stolz L, Nair J et al (2020) Poly (ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-61373-9

    Article  CAS  Google Scholar 

  40. Ma Y, Wan J, Yang Y et al (2022) Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv Energy Mater 12:2103720. https://doi.org/10.1002/aenm.202103720

    Article  CAS  Google Scholar 

  41. Qiu J, Liu X, Chen R et al (2020) Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv Funct Mater 30:1909392. https://doi.org/10.1002/adfm.201909392

    Article  CAS  Google Scholar 

  42. Jiao Y, Li F, Jin X et al (2021) Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-Ion batteries. Adv Funct Mater 31:2107652. https://doi.org/10.1002/adfm.202107652

    Article  CAS  Google Scholar 

  43. Liu Y, Zhao Y, Lu W et al (2021) PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 88:106205. https://doi.org/10.1016/j.nanoen.2021.106205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Kai Liu’s laboratory of Tsinghua University for the technical guidance of sample preparation provided in this study.

Funding

This work was financially supported by the Natural Science Foundation of China (Grant No.: 51932001, 51872024, 21820102002, 21931012, 22111530178, 51972305, 51972306), the National Key R&D Program (Grant No.: 2018YFA0703503, 2021YFC2902500, 2022YFA1504100), the Cooperation Fund of the Institute of Clean Energy Innovation, Chinese Academy of Sciences (Grant No.: DNL202020), the Zhongke-Yuneng Joint R&D Center Program (No.: ZKYN2022008).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. D.W., R.Y., and J.W. conceived the idea and supervised the research. Y.M. performed experiments and basic characterizations. D.W., R.Y., J.W., Y.M., R.B., M.Y., J.Q., and P.W. analyzed and discussed the experimental data. Y.M. and J.W. drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jiangyan Wang, Ranbo Yu or Dan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Self-assembled Functional Nanomaterials and Devices in Asia

Guest Editosr: Zhixiang Wei and Yong Yan

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 790 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Bi, R., Yang, M. et al. Hollow multishelled structural ZnO fillers enhance the ionic conductivity of polymer electrolyte for lithium batteries. J Nanopart Res 25, 14 (2023). https://doi.org/10.1007/s11051-022-05661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05661-7

Keywords

Navigation