Skip to main content

Advertisement

Log in

3DOM N/TiO2 composite modified by CdS QDs with Z-scheme: enhanced photocatalytic degradation and hydrogen evolution

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

3DOM CdS QDs-N/TiO2 composite was synthesized by CdS quantum dots (QDs) modified on the surface of 3DOM N/TiO2, of which the main component is anatase TiO2. The crystallinity of TiO2 is improved by using polystyrene (PS) colloidal microspheres as the template. The introduction of CdS QDs not only expands the light absorption range of 3DOM N/TiO2, but also a Z-scheme heterojunction optimizing the charge transfer is formed. The results of photoluminescence spectroscopy and electrochemical impedance show that the lifetime of photogenerated charge carrier is prolonged in the composite 3DOM CdS QDs-N/TiO2, and the recombination of photogenerated electron–hole pairs is suppressed effectively. Compared with the main catalyst TiO2, the photocatalytic activity of 3DOM CdS QDs-N/TiO2 is significantly enhanced. In the photohydrogen production experiment, the photohydrogen production capacity of 3DOM CdS QDs-N/TiO2 composite material (2247 μmol·g−1, 8 h) is 172.8 times that of the commercially available P25. After using 2.0 wt% Pt as a co-catalyst, the amount of hydrogen evolution (16,663 μmol·g−1, 8 h) increases ca. 7.4 times. Through capture experiments, the possible photocatalytic reaction mechanism and the reason for the enhanced photocatalytic performance were speculated and discussed.

Graphical abstract

Using polystyrene colloidal microspheres as the template, a three-dimensional ordered macroporous composite 3DOM CdS QDs-N/TiO2 was synthesized by vacuum impregnation and hydrothermal deposition. The quantum effect of CdS QDs, the unique 3DOM structure and the synergy between the Z-type heterojunction further increase the light absorption range of 3DOM CdS QDs-N/TiO2, which show the better perform of multi-mode photocatalytic degradation and photocatalytic hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C 12:237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001

    Article  CAS  Google Scholar 

  2. Serrà A, Philippe L, Perreault F, Garcia-Segura S (2020) Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. Water Res 188:116543. https://doi.org/10.1016/j.watres.2020.116543

    Article  CAS  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  4. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/C3CS60378D

    Article  CAS  Google Scholar 

  5. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371. https://doi.org/10.1038/nature15371

    Article  CAS  Google Scholar 

  6. Teoh WY, Scott JA, Amal R (2013) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 5:629–639. https://doi.org/10.1021/jz3000646

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  8. Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc 99:303–304. https://doi.org/10.1021/ja00443a081

    Article  CAS  Google Scholar 

  9. Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  10. Rajagopal G, Maruthamuthu S, Mohanan S, Palaniswamy N (2006) Biocidal effects of photocatalytic semiconductor TiO2. Colloids Surf B 51:107–111. https://doi.org/10.1016/j.colsurfb.2006.06.003

    Article  CAS  Google Scholar 

  11. Sarkar D, Ghosh CK, Mukherjee S, Chattopadhyay KK (2013) Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Appl Mater Inter 5: 331–337. https://pubs.acs.org/doi/pdf/10.1021/am302136y

  12. Yang X, Xu J, Wong T, Yang QD, Lee CS (2013) Synthesis of In2O3–In2S3 core–shell nanorods with inverted type-I structure for photocatalytic H2 generation. Phys Chem Chem Phys 15:12688–12693. https://doi.org/10.1039/c3cp51722e

    Article  CAS  Google Scholar 

  13. Liu JC, Zhu WY, Yu SY, Yan XL (2014) Three dimensional carbogenic dots/TiO2, nanoheterojunctions with enhanced visible light-driven photocatalytic activity. Carbon 79:369–379. https://doi.org/10.1016/j.carbon.2014.07.079

    Article  CAS  Google Scholar 

  14. Wang T, Yan XQ, Zhao SS, Lin B, Xue C (2014) A facile one-step synthesis of three-dimensionally ordered macroporous N-doped TiO2 with ethanediamine as the nitrogen source. J Mater Chem A 2:15611–15619. https://doi.org/10.1039/c4ta01922a

    Article  CAS  Google Scholar 

  15. Zhang J, Wu YM, Xing MY, Leghari SAK, Sajjad S (2010) Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci 3:715–726. https://doi.org/10.1039/b927575d

    Article  CAS  Google Scholar 

  16. Ma YJ, Yuan B, Liu Y, Zhu AQ, Wu H (2018) Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum Dots/CeO2 nanorods heterojunction. ACS Sustain Chem Eng 6:2552–2562. https://doi.org/10.1021/acssuschemeng.7b04049

    Article  CAS  Google Scholar 

  17. Marandi M, Mirahmadi FS (2019) Aqueous synthesis of CdTe-CdS core shell nanocrystals and effect of shell-formation process on the efficiency of quantum dot sensitized solar cells. Sol Energy 188:35–44. https://doi.org/10.1016/j.solener.2019.05.070

    Article  CAS  Google Scholar 

  18. Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177. https://doi.org/10.1021/ja8007825

    Article  CAS  Google Scholar 

  19. Jang JS, Li W, Oh SH, Lee JS (2006) Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chem Phys Lett 425:278–282. https://doi.org/10.1016/j.cplett.2006.05.031

    Article  CAS  Google Scholar 

  20. Hou JG, Yang C, Cheng HJ, Wang Z, Jiao SQ, Zhu HM (2013) Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys Chem Chem Phys 15:15660–15668. https://doi.org/10.1039/C3CP51857D

    Article  CAS  Google Scholar 

  21. Li X, Zhu J, Li HX (2012) Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS. Appl Catal B 123:174–181. https://doi.org/10.1016/j.apcatb.2012.04.009

    Article  CAS  Google Scholar 

  22. Wu LP, Zhang YL, Li XJ, Cen CP (2014) CdS nanorod arrays with TiO2 nano-coating for improved photostability and photocatalytic activity. Phys Chem Chem Phys 16:15339–15345. https://doi.org/10.1039/c4cp01347f

    Article  CAS  Google Scholar 

  23. Zhang JY, Xiao FX, Xiao GC, Liu B (2015) Assembly of a CdS quantum dot–TiO2 nanobelt heterostructure for photocatalytic application: towards an efficient visible light photocatalyst via facile surface charge tuning. New J Chem 39:279–286. https://doi.org/10.1039/C4NJ01346H

    Article  CAS  Google Scholar 

  24. Kandi D, Martha S, Thirumurugan A, Parida KM (2017) Modification of BiOI microplates with CdS QDs for enhancing stability, optical property, electronic behavior toward Rhodamine B decolorization, and photocatalytic hydrogen evolution. J Phys Chem C 121:4834–4849. https://doi.org/10.1021/acs.jpcc.6b11938

    Article  CAS  Google Scholar 

  25. Li L, Huang XD, Hu TY, Wang JX, Zhang WZ, Zhang JQ (2014) Synthesis of three-dimensionally ordered macroporous composite Ag/Bi2O3–TiO2 by dual templates and its photocatalytic activities for degradation of organic pollutants under multiple modes. New J Chem 38:5293–5302. https://doi.org/10.1039/c4nj01002g

    Article  CAS  Google Scholar 

  26. Lu L, Li L, Hu TY, Zhang WZ, Huang XD, Zhang JJ, Liu X (2014) Preparation, characterization, and photocatalytic activity of three-dimensionally ordered macroporous hybrid monosubstituted polyoxometalate K5[Co(H2O)PW11O39] amine functionalized titanium catalysts. J Mol Catal A: Chem 11:283–294. https://doi.org/10.1016/j.molcata.2014.06.037

    Article  CAS  Google Scholar 

  27. Tian Y, Yang X, Li L, Zhu YW, Wu QQ, Li Y, Ma FY, Yu Y (2021) A direct dual Z-scheme 3DOM SnS2–ZnS/ZrO2 composite with excellent photocatalytic degradation and hydrogen production performance. Chemosphere 279:130882. https://doi.org/10.1016/j.chemosphere.2021.130882

    Article  CAS  Google Scholar 

  28. An MZ, Li L, Cao YZ, Ma FY, Liu DX, Gu F (2019) Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance. Mol Catal 475:110482. https://doi.org/10.1016/j.mcat.2019.110482

    Article  CAS  Google Scholar 

  29. Huang XD, Li L, Wei QY, Zhang WZ (2013) Preparation of three-dimensionally ordered macroporous composite Bi2O3/TiO2 and its photocatalytic degradation of crystal violet under multiple modes. Acta Phys-Chim Sin 12:2615–2623. https://doi.org/10.3866/PKU.WHXB201310221

    Article  CAS  Google Scholar 

  30. Li L, Huang XD, Zhang JQ, Zhang WZ, Ma FY (2015) Multi-layer three-dimensionally ordered bismuth trioxide/titanium dioxide nanocomposite: synthesis and enhanced photocatalytic activity. J Colloid Interface Sci 443:13–22. https://doi.org/10.1016/j.jcis.2014.11.062

    Article  CAS  Google Scholar 

  31. Zhang XY, Li L, Wen SS, Luo HX, Yang CL (2017) Design and synthesis of multistructured three-dimensionally ordered macroporous composite bismuth oxide/zirconia: Photocatalytic degradation and hydrogen production. J Colloid Interface Sci 499:159–169. https://doi.org/10.1016/j.jcis.2017.03.100

    Article  CAS  Google Scholar 

  32. Zhang JQ, Li L, Liu D, Zhang JJ, Hao YT, Zhang WZ (2015) Multi-layer and open three-dimensionally ordered macroporous TiO2–ZrO2 composite: diversified design and the comparison of multiple mode photocatalytic performance. Mater Des 86:818–828. https://doi.org/10.1016/j.matdes.2015.07.166

    Article  CAS  Google Scholar 

  33. An MZ, Li L, Tian Y, Yu H, Zhou QL (2018) The three-dimensional ordered macroporous structure of the Pt/TiO2-ZrO2 composite enhanced its photocatalytic performance for the photodegradation and photolysis of water. RSC Adv 8:18870–18879. https://doi.org/10.1039/C8RA00998H

    Article  CAS  Google Scholar 

  34. Sun SD, Song P, Cui J, Liang SH (2019) Amorphous TiO2 nanostructures: synthesis, fundamental properties and photocatalytic applications. Catal Sci Technol 9:4198–4215. https://doi.org/10.1039/C9CY01020C

    Article  CAS  Google Scholar 

  35. Dong Y, Wang YH, Cai TH, Kou L, Yang GD, Yan ZF (2014) Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity. Ceram Int 40:11213–11219. https://doi.org/10.1016/j.ceramint.2014.03.161

    Article  CAS  Google Scholar 

  36. Xian JJ, Li DZ, Chen J, Li XF, He M (2014) TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. ACS Appl Mater Inter 6: 13157–13166. https://doi.org/10.1021/am5029999

  37. Saha M, Ghosh S, De SK (2020) Nanoscale kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr(VI) reduction. Catal Today 340:253–267. https://doi.org/10.1016/j.cattod.2018.11.027

    Article  CAS  Google Scholar 

  38. Asahi R, Morikawan T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. https://doi.org/10.1126/science.1061051

    Article  CAS  Google Scholar 

  39. Kadeer K, Tursun Y, Dilinuer T, Okitsu K, Abulizi K (2018) Sonochemical preparation and photocatalytic properties of CdS QDs/Bi2WO6 3D heterojunction. Ceram Int 12:13797–13805. https://doi.org/10.1016/j.ceramint.2018.04.223

    Article  CAS  Google Scholar 

  40. Burda C, Chen XB (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019. https://doi.org/10.1021/ja711023z

    Article  CAS  Google Scholar 

  41. Zhang YY, Lan XF, Wang LL, Liu PZ, Zhang YL, Shi JS (2019) Novel precursor-reforming strategy to the conversion of honeycomb-like 3DOM TiO2 to ant nest-like macro-mesoporous N-TiO2 for efficient hydrogen production. Sol Energy 194:189–196. https://doi.org/10.1016/j.solener.2019.10.083

    Article  CAS  Google Scholar 

  42. Li YX, Zhang WZ, Li L, Yi CX, Lv HY, Song Q (2016) Litchi-like CdS/CdTiO3-TiO2 composite: synthesis and enhanced photocatalytic performance for crystal violet and hydrogen production. Rsc Adv 6:51374–51386. https://doi.org/10.1039/C6RA05631H

    Article  CAS  Google Scholar 

  43. Hasan MM, Allam NK (2018) Unbiased spontaneous solar hydrogen production using stable TiO2–CuO composite nanofiber photocatalysts. RSC Adv 8:37219–37228. https://doi.org/10.1039/C8RA06763E

    Article  CAS  Google Scholar 

  44. Chu JY, Han XJ, Yu Z, Du YC, Song B, Xu P (2018) Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures. Acs Appl Mater Inter 10:20404–20411. https://doi.org/10.1021/acsami.8b02984.s001

    Article  CAS  Google Scholar 

  45. Maslakov KI, Teterin YA, Popel AJ, Ivanov KE (2018) XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl Surf Sci 448:154–162. https://doi.org/10.1016/j.apsusc.2018.04.077

    Article  CAS  Google Scholar 

  46. Zhou Y, Wang Y, Qin Y, Li M, Li X, Deng P, Yan H (2013) Three-dimensional (3D) sea-urchin-like hierarchical TiO2 microspheres: growth mechanism and highly enhanced photocatalytic activity. Mater Sci Mater Electron 25:4156–4162. https://doi.org/10.1016/j.materresbull.2013.02.051

    Article  CAS  Google Scholar 

  47. Aziz MI, Mughal F, Naeem HM, Zeb A, Tahir MA, Basit MA (2019) Evolution of photovoltaic and photocatalytic activity in anatase-TiO2 under visible light via simplistic deposition of CdS and PbS quantum-dots. Mater Chem Phys 229:508–513. https://doi.org/10.1016/j.matchemphys.2019.03.042

    Article  CAS  Google Scholar 

  48. Khan UA, Liu JJ, Pan JB, Ma HC, Zuo SL, Yu YC, Ahmad A, Ullah S, Li BS (2019) Fabrication of highly efficient and hierarchical CdS QDs/CQDs/H-TiO2 ternary heterojunction: surpassable photocatalysis under sun-like illumination. Ind Eng Chem Res 58:79–91. https://doi.org/10.1021/acs.iecr.8b04627.s001

    Article  CAS  Google Scholar 

  49. Lim SP, Pandikumar A, Huang NM, Lim HN (2015) Facile synthesis of Au@TiO2 nanocomposite and its application as a photoanode in dye-sensitized solar cells. RSC Adv 5:44398–44407. https://doi.org/10.1039/C5RA06220A

    Article  CAS  Google Scholar 

  50. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  51. Chang Y, Xuan Y, Zhang CX, Hao H, Yu K, Liu SX (2018) Z-scheme Pt@CdS/3DOM-SrTiO3 composite with enhanced photocatalytic hydrogen evolution from water splitting. Catal Today 327:315–322. https://doi.org/10.1016/j.cattod.2018.04.033

    Article  CAS  Google Scholar 

  52. Zhou JJ, Huang HP, Xuan J, Zhang JR, Zhu JJ (2011) Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP. Biosens Bioelectron 26:834–840. https://doi.org/10.1016/j.bios.2010.05.021

    Article  CAS  Google Scholar 

  53. Lv YR, Zhai XJ, Wang S, Xu H, Wang R, Zang SQ (2021) 3D-ordered macroporous N-doped carbon encapsulating Fe-N alloy derived from a single-source metal-organic framework for superior oxygen reduction reaction. Chinese J Catal 42:490–500. https://doi.org/10.1016/S1872-2067(20)63667-1

    Article  CAS  Google Scholar 

  54. Wang HL, Zhang LS, Chen ZG, Hu JQ, Li SJ, Wang SH (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5245. https://doi.org/10.1039/c4cs00126e

    Article  CAS  Google Scholar 

  55. Yu JG, Wang SH, Low JX, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883–16890. https://doi.org/10.1039/C3CP53131G

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (21376126), the Heilongjiang Provincial Natural Science Foundation of China (LH2021B031), Government of Heilongjiang Province Postdoctoral Grants, China (LBH-Z11108), the Fundamental Research Fundsin Heilongjiang Provincial Universities of China (145109104), Innovation Project of Qiqihar University Graduate Education (YJSCX2020037), College Students’ Innovative Entrepreneurial Training Program Funded Projects of Qiqihar University (202220232124, 202220232037), and Qiqihar University in 2020 College Students Academic Innovation Team Funded Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1984 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Tian, Y., Li, L. et al. 3DOM N/TiO2 composite modified by CdS QDs with Z-scheme: enhanced photocatalytic degradation and hydrogen evolution. J Nanopart Res 24, 168 (2022). https://doi.org/10.1007/s11051-022-05550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05550-z

Keywords

Navigation