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to 0.48–55  μM for the coumarin itself. The lower 
limit of detection and extended range were achieved 
with a smaller amount of coumarin and no traces 
of organic solvents used to help coumarin dissolu-
tion. Characterization suggested that under applied 
test conditions at pH = 5, SiO2 nanoparticles with 
negative surface charges adsorbed coumarin and 
then (when present) Cu(II) ions. The SiO2-coumarin 
nanohybrid was then applied for the determina-
tion of Cu(II) levels in aqueous soil extracts reach-
ing over 94% recovery rates when used against the 
standard soil analysis method by inductively cou-
pled plasma mass spectrometry (ICP-MS).

Keywords  Coumarin · SiO2 nanoparticles · 
Fluorescence · Cu(II) sensing · Soil sensing

Abstract  A SiO2-coumarin nanohybrid was inves-
tigated for its Cu(II) sensing performance in aqueous 
media, and in comparison with the Cu(II)-selective 
coumarin used alone. Fluorescence of both cou-
marin itself and the nanohybrid, λex/λem 435/481 nm, 
was selectively quenched by Cu(II) when tested 
against a range of multivalent cations. The nanohy-
brid had enhanced Cu(II) sensing properties when 
compared to the coumarin including (i) improved 
limit of detection from μM-level (0.48 μM) of Cu(II) 
using coumarin alone to nM-level (0.033  μM) and 
(ii) an extended linear detection range of 0.033–
260  μM (0.0005–4.1  mg/mL) Cu(II) compared 
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Introduction

Copper is an essential trace element that plays a 
significant role in biological and environmental 
applications. In the human body, Cu(II)- and Cu(II)-
dependent enzymes are involved in critical biological 
processes to ensure normal cellular function (Grasso 
et  al. 2013; Domaille et  al. 2010). However, exces-
sive copper intake can lead to imbalance and harmful 
effects in living organisms (Hao et  al. 2015; Zhang 
et al. 2014). In animals and humans, Cu(II) has been 
shown to have a role in the development of neurode-
generative disorders such as Menkes, Wilson’s, and 
Alzheimer’s diseases, and influence the development 
of certain cancers (Ge et al. 2021). Copper exposure 
can occur via contamination of soil and drinking 
water originating mostly from human activities, such 
as corrosion (Jakeria et  al. 2021; Tang et  al. 2021), 
mining, or lackadaisical waste management prac-
tices. Thus, easy-to-use, affordable, and sustainable 
sensing methods for Cu(II) are highly sought after in 
clinical, food/water, and environmental industries (Ji 
et al. 2017; Zhu et al. 2012). In addition, the allowa-
ble Cu(II) is highly regulated in many environmental 
media, such as in soil (e.g. 100 mg/kg in Australia) 
(He et al. 2015) and drinking water (e.g. 2.0 mg/mL 
in Australia) (Tang et al. 2021; Seeley et al. 2013).

Among existing sensing techniques, optical 
sensing using colorimetric or fluorescent molecu-
lar probes is readily available and non-expensive 
tool for the analysis of liquid samples and dis-
solved Cu(II) levels. An often employed sub-class 
of fluorescent chemosensors for Cu(II) (Zhang 
et  al. 2014; Ramdass et  al. 2017; Sivaraman et  al. 
2018) sensing are coumarin derivatives (Kraljević 
et  al. 2016; Seo et  al. 2011) due to their sufficient 

photostability, tuneable sensitivity, and selectivity 
(Geißler et  al. 2005; Li et  al. 2019). For example, 
hydrazine derivative 1 was developed as a “turn-
on” fluorescent probe for the detection of Cu(II) in 
aqueous acetonitrile with a limit of detection (LOD) 
of 0.058 μM (Table 1) (Zhang et al. 2019). In com-
parison, the coumarin-N-acylhydrazone derivative 2 
was utilized for both colorimetric and fluorometric 
detection of Cu(II) in CH3CN/H2O (v/v, 9/1) with a 
LOD of 8 μM (Table 1) (Li et al. 2019). While there 
are a large number of fluorescent probes reported 
for the sensing of particular metal ions in solution, 
and despite their satisfactory selectivity, they are 
often limited by insufficient water solubility reduc-
ing their ease of use and applicability for environ-
mentally friendly, on-site sensing (Huang et  al. 
2014; Wang et al. 2016) Another limiting factor is 
their inability to selectively distinguish the copper 
cations from a mixture containing multiple metal 
cations with similar electronic properties, such as in 
the case of soil extracts.

One way to overcome mentioned shortfalls is 
to use nanomaterials that can be surface modified 
with molecular probes, and that facilitates the dis-
persion of analyte-selective dyes in aqueous solu-
tions while preserving the sensing performance, 
especially selectivity (Lin et  al. 2006). Such 
approaches often result in improvements in the 
limit of detection (LOD) due to the changes in sur-
face to mass ratio of the hybrid sensing materials 
(Meiling and Guowen 2017) Among others, SiO2 
nanoparticles (SiO2 NPs) are water dispersible and 
non-toxic with well-established, facile synthesis 
methods via, for example, the the Stöber method 
(Stöber et  al. 1968). A previously reported com-
bination using negatively charged SiO2 NPs and 

Table 1   Examples of fluorescent Cu(II) sensors and their reported excitation and emission wavelengths, and limits of detection in 
given solvents
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positively charged molecular probe 4 (Table 1) was 
demonstrated for its use as a metal ion sensor in 
aqueous media (Peng et al. 2018). The authors dis-
cussed that electrostatic interactions between the 
dye 4 and the SiO2 NP surface resulted in a locally 
increased concentration of 4 while an enhancement 
of the fluorescence intensity was recorded. For 
Cu(II) in tap water, use of 0.25 mg/mL SiO2-4 was 
delivering a sensing range of 11.2–100 nM and an 
LOD of 0.2 nM, an improvement from the LOD of 
10 μM when 4 was used alone (Peng et al. 2018). A 
fluorescent, covalently appended SiO2-naphthalin 
sensor was also reported for Hg(II) detection with 
a sensing range of 0.1–1 μM and LOD of 6.8 nM in 
water between pH 4.5 and 8 (He et al. 2009).

The current study aimed to improve the aque-
ous dispersibility and Cu(II) sensing performance of 
previously reported coumarin 3 (Qian et al. 2019) by 
coupling to non-toxic SiO2 NPs to form SiO2-3 nano-
hybrid. The aim of this work is for on-site, facile, 
low-cost measurements of water and soil quality that 
can be conducted by non-trained personnel.

Synthesis of coumarin 3, SiO2 NPs, and the 
SiO2-3 nanohybrid is described. Then relevant 
optical, physical, and chemical properties are dis-
cussed and compared for each material in aqueous 
media and in the absence and presence of Cu(II) 
and other metal ions. While the interaction of 
Cu(II) with coumarin 3 is well studied, here the 
focus is given to its interaction with SiO2 NPs and 
Cu(II) to understand how these affect the observed 
sensing properties. Finally, the SiO2-3 nanohybrid 
was tested on aqueous extracts of soil samples 
and its Cu(II) sensing performance was validated 
against the industry standard, inductively coupled 
plasma mass spectrometry (ICP-MS) method.

Experiment

Materials and instrumentations

Ammonia solution (30%) was purchased from Chem-
supply. Tetraethyl orthosilicate (TEOS, 99%), diethyl 
malonate (99%), piperidine (99.5%), 4-(diethylamino)-
2-hydroxybenzaldehyde (AR), and trifluoroacetic acid 
(99%) were purchased from Sigma-Aldrich (USA). 

2-(Aminomethyl) pyridine (99%) was obtained from 
Acros Organics (Belgium, USA). All chemicals were 
used as received without further purification. Benzotri-
azol-1-(yloxy)tripyrrolidinophosphonium hexafluoro-
phosphate (PyBOP (PF6−)) was purchased from Oak-
wood Chemical (West Columbia, USA).

Infrared spectra were recorded on Nicolet 6700 
FTIR (Thermo Scientific, USA). UV–vis and fluo-
rescence spectra were measured on a Cary Eclipse 
5G UV–Vis-NIR spectrometer and a Cary Eclipse 
fluorescence spectrophotometer (USA), respec-
tively. Nuclear magnetic resonance and mass spec-
tra were recorded on Bruker Ascend 400  Hz and 
Thermo Q Exactive in a high-resolution electro-
spray mode mass spectrometer, respectively. The 
SiO2 NP separation process was conducted using 
an Eppendorf Mini Spin centrifuge. A Jeol 1010 
TEM instrument was used for the imaging of SiO2 
NPs and SiO2-3 complex structure. Size distribu-
tion and surface charge were studied using a Mal-
vern ZEN3600 Zetasizer instrument. Elemental 
analyses of the SiO2 NP surface were characterized 
by X-ray photoelectron spectroscopy (Thermo Sci-
entific K-Alpha XPS). Thermogravimetric analysis 
(TGA) was conducted on Mettler Toledo micro bal-
ances. ICP-MS (Agilent with laser ablation capa-
bility) was used for the quantification of metal ion 
concentration in soil extracts and ICP-OES (Varian 
Vista-Pro) was applied for the Cu(II) concentration 
before and after the interaction with SiO2 NPs.

Synthesis of coumarin 3 and SiO2 nanoparticles

Coumarin 3 (Table  1) was synthesized via cou-
maric acid precursors as previously published 
(Nielsen and Houlihan 2004) (and detailed in 
the Supporting Information), followed by amide 
bond formation using PyBOP as a coupling agent 
(Scheme SI 1). The moderate yield was coun-
ter balanced by a simple work-up procedure by 
the removal of water-soluble by-products (SI 
Scheme 1) (Qian et al. 2019). After the preparation 
of SiO2 NPs via Stöber synthesis (Fors et al. 2013), 
the SiO2-3 nanohybrid was assembled as described 
in the “Experiment” section. The color of the as-
received nanohybrid was yellow compared to the 
white SiO2 NPs due to the presence of coumarin 3.
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Preparation of SiO2‑3 nanohybrid

The preparation of coumarin 3 and SiO2 NPs 
can be found in the supporting information (SI 
1.1–1.3). To assemble SiO2-3, SiO2 NP (50  mg) 
was mixed into an aqueous 250-μM suspension 
of 3 (100  mL). The pH was adjusted to 5 using 
0.01  M hydrochloric acid, and the resulting mix-
ture was incubated at 37 ℃ for 2  h while gently 
stirred. The SiO2-3 nanohybrid was separated 
from the mixture by centrifuging the solution at 
13,000  rpm and decanting the liquid phase and 
retaining the supernatant. The resulting particles 
were washed with Milli-Q water (3 × 1.5 mL) and 
pH = 5 was adjusted using hydrochloric acid, to 
remove the non-adsorbed coumarins. The obtained 
nanohybrid solution was centrifuged at 13,000 rpm 
and dried in a vacuum oven at 50 °C.

Preparation of Cu(II), coumarin 3, and SiO2‑3 
nanohybrid solutions for optical measurements

CuCl2 dihydrate stock solution (1  mM) was pre-
pared in Milli-Q water and used for further dilu-
tion as required. Coumarin 3 was dissolved in 
DMSO/HEPES buffer (1:9, v/v, 20  mM, pH = 5) 
at 80  µM. Then, 50  mg SiO2-3 nanohybrid was 
dissolved in 50  mL HEPES buffer (pH = 5) to 
form the stock solution.

Concentration dependence of fluorescence intensities

Fluorescence spectra of 3 (40  μM) was recorded 
at pH 5 at concentrations of 5–80  μM in DMSO/
HEPES buffer (1:9, v/v, 20  mM, pH = 5) at 
λex = 435 nm with slit width of 5 nm. Meanwhile, 
for the fluorescence intensity of SiO2-3 nanohy-
brid, the stock solution was diluted into the con-
centrations from 5 to 50 mg/L using HEPES buffer 
(20 mM, pH = 5) and tested using the same instru-
ment settings.

pH dependence of fluorescence intensities

Fluorescence intensity of 3 (40  μM) and SiO2-3 
nanohybrid (7.5  mg/L) at λex = 435  nm with slit 

widths of 5 nm was recorded, respectively, across 
the pH range of 3–13, which was adjusted by 
1 mmol NaOH and 1 mmol HCl solution.

Optical properties of coumarin 3, SiO2 NP, and 
SiO2‑3 nanohybrid in the presence of various Cu(II) 
concentrations

Fluorescence spectra were recorded in the pres-
ence of CuCl2 for 3 (40  μM) in DMSO/HEPES 
buffer (1:9, v/v, pH = 5, 20 mM) and SiO2-3 nano-
hybrid (7.5  mg/L) in HEPES buffer (pH = 5) at 
λex = 435 nm with slit widths of 5 nm. The concen-
tration of added CuCl2 dihydrate was 0–80 μM for 
3 and 0–260 μM for SiO2-3 nanohybrid. The fluo-
rescence intensity of SiO2 NPs (7.5 mg/L, pH = 5) 
was also recorded.

Quantitation of surface‑adsorbed Cu(II) on SiO2 NPs 
and SiO2‑3 nanohybrid by ICP‑OES

A 30 mg/L stock solution of SiO2 NPs (10 mL) was 
mixed with 300  μM CuCl2 solution (10  mL) and 
then incubated at 37 ℃ for 2 h. The final concentra-
tion of SiO2 NPs was 15 mg/L and Cu(II) concentra-
tion was 9.4  mg/L. Then, the SiO2 NPs were sepa-
rated from the mixture by centrifuging the solution 
at 13,000 rpm. The resulting solution (top layer) was 
sent to ICP-OES for the measurement of residual 
Cu(II) concentration. The same process was applied 
for the SiO2-3 nanohybrid.

Interference studies

Fluorescence intensity of SiO2-3 nanohybrid 
(7.5  mg/L) in HEPES buffer (20  mM, pH = 5) 
was recorded in the presence of selected metal 
chlorides, including Cu(II), Al(III), Ca(II), 
Cd(II), Co(II), Fe(III), Mn(II), Pb(II), Hg(II), 
Ni(II), Zn(II), Mg(II), Cu(I), and Fe(II); both in 
the absence and presence of CuCl2 (80  μM) at 
λex = 435  nm with slit width of 5  nm. A solution 
containing all these metal ions (200 μM each) was 
also prepared and fluorescence intensity of SiO2-3 
nanohybrid was recorded under the same condition.

J Nanopart Res (2022) 24: 114Page 4 of 12 114
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Cu(II) sensing in real soil samples

Surface soil samples were taken from roadsides in 
the west of Melbourne, Victoria, Australia. Each 
soil sample (2.5  g) was dispersed in water (25  mL) 
and shaken for 1 week to extract water-soluble con-
stituents, including copper. The extracts were filtered 
through a nylon filter membrane with a pore size of 
0.45  μm and analyzed for Cu using ICP-MS. The 
extracts were also measured for their Cu(II) concen-
tration via fluorescence as described previously.

Results and discussion

Characterization of SiO2 NPs and SiO2‑3 nanohybrid

Coumarin 3 is well-described in the literature, and 
its coordination with Cu(II) has been reported before 
(Qian et  al. 2019; Jung et  al. 2009). Based on the 
TEM images, both the SiO2 NPs (Stöber et al. 1968) 
and the SiO2-3 nanohybrid showed spherical and 
apparently identical morphology with a particle diam-
eter of around 100 nm (Fig. S9). The presence of cou-
marin 3 in the SiO2-3 nanohybrid was confirmed by 
XPS (Fig. 1). SiO2 NPs both prior and after surface 
modification with coumarin 3 displayed characteristic 
peaks of C1s (285 eV), O1s (533 eV), Si2s (154 eV), 
and Si2p (103 eV), with the additional signal of N1s 
(~ 400 eV broad) appearing in the SiO2-3 nanohybrid, 
indicating the presence of 3. (Note: During the syn-
thesis process of SiO2 NPs, there was only ammonia 

involved as N source which was fully removed by the 
washing and drying process.)

Next, ATR-FTIR spectra of both SiO2 and SiO2-3 
nanohybrid were recorded in solid state (Fig.  2, 
Fig.  S10), where additional peaks originating from 
coumarin 3 (Fig. S7) were observed in the spectra of 
the SiO2-3 nanohybrid: stretching vibration of cou-
marin carbonyl group (1698  cm−1), pyridine C-N 
(1617  cm−1), amide N–H (1543  cm−1), and -C = C- 
bond in pyridine (1419 cm−1).

Comparison of the thermogravimetric analy-
sis (TGA) curves recorded for SiO2-3 nanohybrid 
(black line) and SiO2 NPs (red line) at a heating rate 
of 5 °C/min (Fig. 3) provided approximation of the 
quantity of surface-adsorbed coumarins as 3 has a 
lower decomposition temperature than SiO2 NPs. 
For the SiO2-3 nanohybrid, weight loss of 18% (100 
to 82%) was observed between room temperature 
to about 200  °C, attributed to the evaporation of 
physically bound water (Tham et al. 2020). Beyond, 
the SiO2-3 nanohybrid displayed 7.0% weight loss 
(82 to 75%) in the range from 200 to 450 °C which 
may be correlated to the combination of the SiO2 
NP surface functional groups degrading (mainly 
-OC2H5 and –OH (Zhuravlev 2000)) amounting to 
3% (based on the SiO2 NP TGA, 88 to 85%) and 
the amount of the surface bound coumarin 3 of 
4% (7 to 3%). This allows for a coarse comparison 
between the loading capacity of the SiO2-3 nano-
hybrid and their fluorescence versus the use of the 
standalone coumarin 3. This means when 7.5 mg/L 
SiO2-3 nanohybrid is used in the experiments, the 

Fig. 1   XPS spectra of (a) SiO2 NPs and insert: N1s scan of SiO2 NPs and (b) SiO2-3 nanohybrid and insert: N1s scan of SiO2-3 
nanohybrid
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concentration of 3 will be about 0.8 μM but instead 
of an even distribution of coumarin 3 in the whole 
solution, now it would be adsorbed and concen-
trated on the surface of SiO2 NPs. This localized 3 

concentration increase would then expectedly lead 
to changes in optical properties.

Zeta potential of the SiO2 NPs was − 30.5  mV 
(7.5  mg/L in HEPES buffer, 20  mM, pH 5) due 

Fig. 2   ATR-FTIR spectra 
of SiO2 NPs and SiO2-3 
nanohybrid in the 2000–
1300 cm−1 range

Fig. 3   Thermogravimetric 
analysis of SiO2 NPs and 
SiO2-3 nanohybrid

J Nanopart Res (2022) 24: 114Page 6 of 12 114
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to the abundant and deprotonated surface silanol 
groups at testing pH of 5 when prepared using 
TEOS (Table  2) (Qiao et  al. 2018). Upon sur-
face adsorption of the coumarins to form SiO2-3 
nanohybrid, the hydrodynamic size of the par-
ticles increased from 114.2 to 122.1  nm, and the 
zeta potential changed from -30.5 to -28.4  mV, 
a slight increase. Upon the addition of Cu(II) (at 
the final concentration of 40  μM) to the SiO2-3 
nanohybrid solution, the zeta potential dropped 
to − 22.8 mV. As for comparison, when SiO2 NPs 
were treated with Cu(II) at the same concentration, 
the zeta potential displayed an even more obvious 
change to − 13.2  mV, suggesting significant sur-
face adsorption of Cu(II) on the surface of SiO2 as 
expected due to the presence of negatively charged 
hydroxylate as well as -OH surface groups (Chen 
et al. 2021). Cu(II) adsorption by SiO2 surface as a 
reason behind improved sensing performance as it 
is another evidence of Cu(II) adsorbing onto SiO2.

Fluorescence study of coumarin 3 in the absence and 
presence of Cu(II)

The pH and concentration dependence of the fluo-
rescence properties of the coumarin 3 were studied 
in aqueous solution to find the optimum conditions 
for their application for Cu(II) sensing. Fluorescence 
intensity of the coumarin 3 was studied across the pH 
range from 3 to 11 (Fig. S11 (a)) showing that, in the 
range of pH 5–8, the molecule exhibited the high-
est intensity. However, when fluorescence intensities 
at concentrations of 0–80  µM dissolved coumarin 3 
were recorded (Fig.  S11(b)), no significant differ-
ences were observed above 40 µM.

Fluorescence titration of 3 (40  µM) with CuCl2 
dihydrate (0–80  µM) in DMSO/HEPES buffer (v/v, 
1/9) was conducted (Fig.  4) to identify the linear 

range and limit of detection. Coumarin 3 responded 
with gradually quenched fluorescence intensities 
upon addition of increasing amounts of CuCl2 at the 
emission maximum of 481  nm (λex = 435  nm). The 
fluorescence intensity response of 3 within the range 
of 0–80 µM of Cu(II) lacked satisfactory linear cor-
relation (R2 = 0.96, in 0–40 µM range) contrary to the 
previously published work (Jung et al. 2009).

Fluorescence study of SiO2‑3 nanohybrid in the 
absence and presence of Cu(II)

Fluorescence of the SiO2 NPs was negligible in 
HEPES buffer (20  mM, pH = 5, λex = 435  nm) 
(Fig.  S12). To find the optimal working param-
eters, the fluorescence intensity of the SiO2-3 nano-
hybrid was recorded at the excitation wavelength 
of 3, 435  nm, and across the pH range of 3–11 
(Fig.  S13(a)). The highest fluorescence emission 
intensity occurred at pH 4. In addition, various con-
centrations of the SiO2-3 nanohybrid (50 to 0.5 mg/L) 
(Fig.  S13(b) and (c)) in HEPES buffer were con-
sidered. The fluorescence emission intensity of the 
SiO2-3 nanohybrid was highest at 7.5 mg/L.

Although the greatest fluorescence intensity was 
observed at pH 4, at this pH, SiO2-3 nanohybrid does 
not respond to Cu(II) (Fig. S14). However, at pH 4.5 
or 5, the fluorescence quenching of SiO2-3 nanohy-
brid by Cu(II) was more significant. Thus, pH 5 was 
selected as the working pH in the following studies. 
The pH dependence of the fluorescence quenching of 
coumarin 3 by Cu(II) was also assessed (Fig.  S15), 
and similarly, the extent of fluorescence quenching 
was greater with increasing basicity of the solution in 
the presence of equal amounts of Cu(II) added.

Fluorescence titration of both 3 (40  μM) 
and SiO2-3 nanohybrid (7.5  mg/L) with CuCl2 
(0–260  µM) in HEPES buffer was conducted 
(Fig.  5). The SiO2-3 nanohybrid displayed lin-
ear correlation between fluorescence quenching 
and Cu(II) concentration over the 0.033–55 and 
55–260  μM ranges (R2 = 0.98), though the sen-
sitivities (slope) (inset of Fig.  5) were different 
for each range. This is a valuable extension of the 
sensing range when compared to coumarin 3, espe-
cially as the regulatory limit for Cu(II) in drinking 
water is specified by the Australian Drinking Water 

Table 2   Hydrodynamic size (nm) and zeta potential (mV) of 
SiO2 NPs (7.5 mg/L) before and after surface interaction with 
coumarin 3 (7.5 mg/L) in HEPES buffer (20 mM, pH = 5), and 
in the absence or presence of Cu(II)(40 μM)

Samples Size (nm) Zeta potential (mV)

SiO2 NPs 114.2  − 30.5 ± 0.5
SiO2-3 nanohybrid 122.4  − 28.4 ± 0.2
SiO2-3 nanohybrid + Cu(II) 123.1  − 22.8 ± 0.4
SiO2 NPs + Cu(II) 114.8  − 13.2 ± 0.6
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Guidelines at 30 µM (NHMRC N 2011) and 10 mg/
kg in soil. The LOD was 0.033  μM, tenfold lower 
than that of coumarin 3 at 0.48 μM.

Interference study of SiO2‑3 nanohybrid

To study the influence of other metal ions on the 
Cu(II)/SiO2-3 nanohybrid interaction, interference 
study was conducted with a variety of metal ions 

applied at an excess concentration (200 μM each) to 
SiO2-3 nanohybrid (7.5  mg/L) and Cu(II) (80  μM). 
Such additional ions were Al(III), Ca(II), Cd(II), 
Co(II), Fe(III), Mn(II), Pb(II), Hg(II), Ni(II), Zn(II), 
Mg(II), Cu(I), and Fe(II). Fluorescence emission 
spectra were examined with and without the addi-
tion of Cu(II) (Fig.  6). The measurements indicated 
no significant interference apart from Fe(III), which 
means the selectivity of 3 was successfully preserved.

Fig. 4   (a) Fluorescence spectra of 3 (40 µM, λex = 435 nm) and (b) fluorescence intensity changes of 3 with addition of CuCl2 from 
0 to 80 μM in HEPES/DMSO buffer (20 mM, pH 5)

Fig. 5   Fluorescence 
emission intensity change 
(λex = 435 nm) of cou-
marin 3 (red, 40 μM) and 
SiO2-3 nanohybrid (black, 
7.5 mg/L, n = 3) upon the 
addition of various concen-
trations of CuCl2 in HEPES 
buffer (pH = 5, 20 mM)
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Cu(II) adsorption by SiO2 surface as a reason behind 
improved sensing performance

ICP-OES was employed to determine the amount of 
Cu(II) adsorbed on both SiO2 NPs and SiO2-3 nano-
hybrid (both presenting (-OH/-O− surface groups) 
using the back-titration procedure described in the 
“Experiment” section (Table  S1). SiO2 NPs and 
SiO2-3 nanohybrid were used at 15  mg/L, respec-
tively, with Cu(II) added at 9.4  mg/L. ICP-OES 
results showed the residual Cu(II) in the mother liq-
uor as 7.0 mg/L in both cases. This means the SiO2 
NP has a 2.4 mg/L Cu(II) adsorption. This is slightly 
lowered when coumarin 3 is adsorbed in SiO2-3 
nanohybrid at a ~ 4% (weight ratio). Hence, interac-
tion of Cu(II) with both the coumarin 3 and the SiO2 
NP surface results in the less steep slope/increased 
sensitivity of the sensing observed upon addition of 
Cu(II) when compared to that of the coumarin 3 itself 
(Fig. 5). This results in an extended linear detection 
range of SiO2-3 nanohybrid for Cu(II) sensing in the 

range of 0.033–260  μM. Moreover, approximately 
tenfold less amount of coumarin 3 was present in 
the SiO2-3 nanohybrid versus when coumarin 3 used 
alone. This allows for less organic dye to be used 
while achieving improved applicable sensing range.

Application of SiO2‑3 nanohybrid on real soil 
samples

Roadside surface soil samples were collected in 
the western parts of Melbourne, Victoria, Aus-
tralia (Li et  al. 2016). The soil samples were dis-
persed in water and digested while shaken for 
7  days to ensure maximal dissolution of all the 
soluble metals. The soil samples were analyzed for 
their Cu content by the industry standard quanti-
fication: inductively coupled plasma mass spec-
trometry (ICP-MS). Next, fluorescence titration 
using 15 mg/mL SiO2-3 nanohybrid (1.5 mL) was 
conducted at pH 5. Then the soil extracts (1.5 mL) 
were then merged with the SiO2-3 nanohybrid 

Fig. 6   Fluorescence 
emission intensities 
(λex = 435 nm) of SiO2-3 
nanohybrid (7.5 mg/L) in 
the presence (red bars) and 
absence (black bars) of 
Cu(II) (40 μM) when pre-
mixed with various cations 
(200 μM) in HEPES buffer 
(pH = 5, 20 mM, n = 3)

Table 3   Determination 
of Cu(II) concentration 
and recovery values in soil 
extracts (n = 3 for each 
sample)

Cu(II) by ICP-
MS (μM)

Fluorescence intensity
λem = 481 nm (a.u.)

Cu(II) by SiO2-3 (μM) Recovery

Sample 1 1.25 ± 0.13 468.47 ± 2.36 1.31 ± 0.02 104.8%
Sample 2 1.38 ± 0.21 468.5 ± 1.72 1.30 ± 0.02 94.2%
Sample 3 1.73 ± 0.27 465.62 ± 1.45 1.69 ± 0.02 97.6%
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solution resulting in a concentration of 7.5  mg/
mL. The background fluorescence of the soil 
extracts is shown on Fig. S16. Fluorescence inten-
sities were converted into Cu(II) concentrations 
based on the titration curves (Fig.  5). The results 
obtained were then compared against the ICP-MS 
results. The recovery of Cu(II), directly from the 
water extract without further sample preparation, 
was between 105 and 94% for all three soil sam-
ples tested (Table 3) (Qian et al. 2019).

Conclusions

SiO2-3 nanohybrid was designed, synthesized, charac-
terized, and evaluated for their use for Cu(II) sensing 
in aqueous media while omitting any organic solvent 
carrier (required for 3 used alone). SiO2-3 nanohy-
brid exhibited equal selectivity towards Cu(II) in the 
presence of other multivalent metal ions compared to 
coumarin 3. The sensing signal of SiO2-3 nanohybrid 
versus Cu(II) concentration was linear in the range 
of 0.033–260 μM, which is in good correspondence 
with the relevant WHO and Australia standards for 
Cu(II) content in soil and water, and even intra-cel-
lular imaging. This linear sensing range of the nano-
hybrid was significantly extended when compared to 
that of 3 (0–20 μM) from μM to nM level. The limit 
of detection in aqueous media was 0.033 μM, a more 
than tenfold improvement from LOD 0.48 μM of 3. 
SiO2-3 nanohybrid also outperforms some of the pre-
viously reported surface-modified SiO2 NP systems 
used for Cu(II) sensing (Table S2).

The impact of this work is the demonstrated (i) 
improvement of Cu(II) sensing performance; (ii) use 
of tenfold reduction amounts of organic molecular 
probe used when loaded onto the SiO2 nanoparti-
cles while achieving superior sensing performance; 
and (iii) omission of organic solvents, when SiO2-3 
nanohybrid was used and compared to 3 alone. This 
approach offers reduced cost of synthesis and poten-
tially the amount of (in some cases toxic) organic dye 
used. SiO2-3 nanohybrid was validated on real soil 
samples against the industry standard ICP-MS tech-
nique and showed satisfactory accuracy. Therefore, 
the concept of SiO2-3 nanohybrid offers a conveni-
ent and customizable strategy for the use of organic 
sensing probes in fully aqueous media with the added 

benefit of improved optical sensing properties, such 
as linear sensing range and detection limit.
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