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Surface modification of cadmium-based nanoparticles
with D-penicillamine—study of pH influence on ligand
exchange reaction
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Abstract Semiconducting nanoparticles (NPs) find
applications in many fields, with a recent focus on
medicine and biology. Functionalization of the sur-
face of NPs is necessary, and one of the most com-
monly employed techniques is ligand exchange (LE).
In this paper, the study of pH influence on LE reac-
tion for different types of cadmium-based NPs (quan-
tum dots, nanorods, and nanoplates) is presented.
Hydrophobic NPs were transferred to the non-
organic medium by functionalization with D-penicil-
lamine (DPA). The LE procedure was conducted at
four different pH levels (4, 7, 9, and 11), and obtain-
ed hydrophilic NPs were dispersed in phosphate buff-
er. Results show that the most effective procedure
resulted from a reaction carried at pH = 4; however,
NPs with higher photoluminescence intensity were
obtained when pH = 11 was used. Comparable emis-
sion was achieved from samples at pH = 4 and pH =

9. The least effective transfer, resulting in unstable
NPs, occurred when the procedure was conducted at
pH = 7.
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Introduction

Nanoparticles (NPs) are nanoscale semiconducting
nanocrystals with specific optical properties, controlled
by the size and structure of NPs. This effect is described
as the quantum confinement. It can occur in one
(nanoplates), two (nanorods), or three dimensions
(quantum dots, QDs). Each type of these NPs, due to
their unique optical properties, can find application in
various fields of science and industry, e.g., for the
creation of optoelectronic devices, in bioassays, or in
bioimaging (Smith and Nie 2010; Thovhogi et al. 2018;
Jamieson et al. 2007; Vasudevan et al. 2015; Klostranec
and Chan 2006).

Nowadays, the biomedical field shows a great inter-
est in nanotechnology. Nanoscience can be applied in
drug delivery, where NPs serve as nanocarriers or
nanodrugs (Zahin et al. 2019); in bioimaging because
of the optical properties (e.g., gold NPs can enhance
luminescence, QDs can be used for near-infrared imag-
ing, which is desirable for deep-tissue optical imaging);
or in biosensors, allowing to achieve a low limit of
detection of relevant molecules. However, these appli-
cations require adjustment of the properties of NPs, e.g.,
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in terms of stability, solubility in aqueous solution, and
non-toxicity (Matea et al. 2017).To achieve that, surface
modification (functionalization) of NPs is necessary
(Blanco-Canosa et al. 2014). This process is based on
the binding of (or replacing) chemical or biological
molecules to the surface of NPs (Liu and Luo 2014).
Functionalization can be performed using several, both
chemical and physical, methods, such as ligand ex-
change (Karakoti et al. 2015; Lim et al. 2016; Wang
et al. 2013;Wang et al. 2012; Hu et al. 2016; Smith et al.
2006), silanization (Karakoti et al. 2015; Wang et al.
2012; Zhou et al. 2017), encapsulation in amphiphilic
polymer, micellar phospholipid, microsphere, or
dendrimeric coatings (Liu and Luo 2014; Wang et al.
2012; Zhou et al. 2017; La Rosa et al. 2017).

The ligand exchange (LE) method is the most com-
mon technique used for the stabilization of NPs in
aqueous solutions, as it is simple, is fast, and results in
non-aggregated particles with preserved size (Smith
et al. 2006; La Rosa et al. 2017). This method involves
replacing the hydrophobic molecules present on the
surface of NPs (e.g., trioctylphosphine (TOP) and its
oxide (TOPO), oleic acid (OA)) with molecules
(ligands) containing a minimum of two functional
groups at opposite ends: first for anchoring to the sur-
face of NPs (usually a thiol group because of its affinity
to the surface of NPs (Liu and Luo 2014)) and second
for ensuring water solubility (e.g., carboxyl, hydroxyl,
amino groups—often occurring in the anionic form)
(Karakoti et al. 2015; Lim et al. 2016; Wang et al.
2013; Wang et al. 2012; Hu et al. 2016). The challenge
of this method is to obtain a stable shell after the LE. The
ligands are in a state of dynamic equilibrium with the
solution. Because of that, the existing NP-ligand bond
can be broken and replaced with a new one. When a
new, different ligand (usually shorter than the initial
ligand) is introduced, it competes for the free surface
space, affecting the state of equilibrium. To exchange
ligands on the surface of NPs, the concentration and
surface affinity of the new molecules should be higher
than the concentration and affinity of the original ligand
(Karakoti et al. 2015). The ligands often used for surface
modification to obtain hydrophilic, non-aggregating
NPs include polymers (e.g., polyethylene glycol (Liu
and Luo 2014; Wenger et al. 2017)), amines, phos-
phines, or compounds containing thiol groups (Lee
et al. 2010) (such as 3-mercaptopropionic acid and its
derivatives (Liu and Luo 2014), glutathione (Wang et al.
2012), dihydrolipoic acid (La Rosa et al. 2017)).

Biocompatible molecules are used for functionalization
to minimize the toxicity of NPs (Matea et al. 2017).

The presence of ligands on the surface of NPs affects
the size, shape, and properties (both optical and physi-
cochemical) of NPs. Surface modification with various
ligands allows controlling the colloidal stability of NPs
and their dispersion in polar (organic solvents usually
used during synthesis) and non-polar environments
(e.g., water). The type of attached ligands also deter-
mines the possibility of the conjugation of additional
biological molecules to the surface of NPs and the
reduction of toxicity, making NPs suitable for biomed-
ical applications (Matea et al. 2017; Blanco-Canosa
et al. 2014; Zhou et al. 2017). This is why the optimi-
zation of the functionalization process is crucial.

This study presents the procedure of preparation of
hydrophilic Cd-based NPs (i.e., QDs, nanorods,
nanoplates) coated by DPA using a LE method. The
experiments were conducted at different pH levels
(close to pKa values of DPA functional groups) to
determine optimal conditions for the surface modifica-
tion process. The results may be potentially applied in
further research concerning bioconjugations and biosen-
sors (Lesiak et al. 2019).

Materials and methods

Materials

For NPs’ synthesis, the following chemicals were used:
cadmium oxide (CdO, 99.5%), selenium (Se, 99.5%),
sulfur (S, 99.98%), trioctylphosphine (TOP, 97%), oleic
acid (OA, 90%), 1-octadecene (ODE, 90%),
t r i o c t y l p h o s p h i n e o x i d e ( TOPO , 9 0% ) ,
oc t adecy lpho sphon i c ac i d (ODPA, 99%) ,
hexylphosphonic acid (HPA, 99%), toluene (99.5%),
isopropanol (99.5%), methanol (99.9%), cadmium ace-
tate (anhydrous, 99.99%), nonanoic acid (≥ 96%), and
1-octanethiol (99.9%). These chemicals and D-penicil-
lamine (DPA) (99%) used for LE reaction were pur-
chased from Sigma-Aldrich Co. Ethanol (96%), n-
hexane (95%), hydrochloric acid (98.5%), sodium hy-
droxide (98.8%), potassium dihydrogen phosphate, and
disodium hydrogen phosphate were purchased from
Chempur. All chemicals were used as received without
any purification. High-purity water was used throughout
all the experiments.
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Synthesis of CdS quantum dots

Synthesis of CdS QDs was conducted based on the
procedure presented by Čapek et al. (Čapek et al.
2010) with minor changes. For the synthesis of Cd–
OA stock solution precursor, 1027 mg of cadmium
oxide (8 mmol) and 8 ml of OA (25 mmol) were loaded
into a 50-ml three-neck flask, degassed for 10 min at
room temperature, and heated to 250 °C. After 30 min,
the colorless solution was cooled to 90 °C and 16 ml of
ODE was added to prevent solidification. The final
solution was degassed under vacuum for 20 min. S–
ODE suspension was prepared by mixing 23.7 mg
(0.3 mmol) of elemental S powder with 1 ml of ODE.
The mixture was sonicated for 10 min and then loaded
into the syringe inside the glovebox. To synthesize CdS
NPs, a reaction mixture composed of 1.2 ml of Cd–OA
stock solution and 18 ml of ODE was degassed for
20 min at room temperature. The temperature of the
solution was raised to 240 °C, and then S–ODE suspen-
sion was rapidly injected under N2 atmosphere. The
reaction was stopped after 20 min by cooling down the
solution. NPs were precipitated with an excess of
isopropanol and dispersed in toluene for further
analysis.

Synthesis of CdSe/CdS quantum dots

CdSe nanocrystals seeds were synthesized by the heat-
up method (Chen et al. 2013). Together with 3.8 ml of
ODE and 2 ml of OA, 256.8 mg of cadmium oxide
(2 mmol) and 79 mg of selenium (1 mmol) were loaded
into a 50-ml three-neck flask and degassed for 30 min at
room temperature. After that, the temperature was raised
to 240 °C, and nanocrystals’ growth proceeded for
10 min. The solution was cooled down, and CdSe seeds
were purified three times using isopropanol and then
dispersed in cyclohexane at a high concentration of 1.5
10−4 mmol/ml, which was determined from the absor-
bance spectrum.

For the synthesis of CdSe/CdS core-shell NPs, 3 10−4

mmol (2 ml) CdSe seeds and 6 ml of ODE were loaded
into a 50-ml flask and degassed for 1 h at room temper-
ature to remove the solvent. Then, the temperature was
set to 310 °C, and when it raised to 240 °C, 6 ml of Cd–
OA solution (1.6 ml of Cd–OA stock solution in ODE)
and 6 ml of sulfur precursor (110 μl of 1-octanethiol in
ODE) were slowly infused at the rate of 3 ml/h to form
CdS shell. After 2 h, shell growth was finished, and the

solution was allowed to slowly cool down to room
temperature. CdSe/CdS core-shell nanocrystals were
purified using isopropanol and dispersed in toluene.

Synthesis of CdSe/CdS nanorods

Wurtzite CdSe QDs were synthesized following a pro-
cedure of Carbone et al. (Carbone et al. 2007). Briefly,
TOPO (3 g), CdO (60 mg), and ODPA (280 mg) were
loaded into a 50-ml three-neck flask, degassed for 1 h at
150 °C, and then heated to 300 °C under argon atmo-
sphere. After 20 min, the colorless solution was heated
to 380 °C and TOP-Se solution (58 mg Se in 360 mg
TOP) was injected rapidly. The synthesis was stopped
after 30 s and cooled immediately to the temperature of
150 °C, followed by an injection of nonanoic acid (2ml)
and toluene (2 ml) to prevent solidification. CdSe/CdS
seeded nanorods were prepared by mixing TOPO (3 g),
CdO (60 mg), ODPA (280 mg), and HPA (80 mg) in a
flask, followed by degassing at 150 °C for 1 h. The
mixture was heated to 300 °C under argon atmosphere
and maintained at this temperature for 5 min. Afterward,
the temperature was raised to 350 °C and a solution of
TOP-S (60 mg S in 1.5 g TOP) and 200 nmol of purified
CdSe cores dissolved in TOP (0.5 ml) was rapidly
injected. The synthesis proceeded for 8 min, and then
the solution was cooled to 150 °C, followed by an
injection of toluene (2 ml). Obtained CdSe/CdS nano-
rods were precipitated with methanol and dispersed in
toluene.

Synthesis of CdS nanoplates

CdS nanoplates were prepared based on the proce-
dure described by Ithurria et al. (Ithurria et al. 2011)
with minor changes. The following were placed in a
flask at room temperature: 424.2 mg cadmium ace-
tate, 26.3 mg sulfur, and 4 ml cadmium oleate
(0.4 M) with 20 ml octadecene. The solution was
mixed and connected to a vacuum-gas apparatus.
The flask was degassed by vacuum-argon exchange
for 10 min at room temperature and then set to argon
circulation and a thermocouple was connected. Two-
stage heating was applied: first, the solution was
heated for 20 min at 120 °C, and then, the temper-
ature was increased to 230 °C for 25 min. Obtained
CdS nanoplates were dispersed in toluene.
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Ligand exchange procedure

Based on the modified literature procedure (Pong et al.
2008; Shen et al . 2013) , four react ions of
functionalization of NPs using DPA were prepared:
CdS QDs, CdSe/CdS QDs, CdSe/CdS nanorods, and
CdS nanoplates. Before modification, all NPs had hy-
drophobic ligands on the surface. As the study aimed to
assess the effect of pH on the LE reaction, the pH value
of the solution was the only variable in the experiments.
First, the aqueous phase was prepared as follows: 10 ml
of DPA solution (30.5 mg/ml) in phosphate buffer (pH =
7.4); this solution was then divided into 4 equal parts
(2.5 ml each), and each was adjusted to the appropriate
pH (pH = 4, pH = 7, pH = 9, and pH = 11, respectively)
with 0.1MHCl or 0.1MNaOH. Each sample contained
76.25 mg of DPA. To prepare the organic phase,
0.25 ml of the appropriate NPs was added to 3.75 ml
of toluene. One milliliter of this mixture was then added
to each of the four previously prepared DPA solutions.
Samples were shaken for 24 h at room temperature. NPs
were purified with ethanol:n-hexane (3:1) mixture using
vortex and centrifugation (5 min × 6000 rpm). These
operations were repeated, adding 1 ml of methanol until
complete precipitation of NPs from the solution was
achieved. The liquid phase from the NP sediment was
removed by decantation. The precipitate was dissolved
in 1 ml of phosphate buffer (pH = 7.4) and transferred
into a vial through a 0.45 μm PTFE syringe filter.

Quantum dot characterization

Photoluminescence (PL) was induced by 405 nm laser
(CNI laser, 1 mW). The emission was collected with an
optical fiber, and PL spectra were recorded using CCD
spectrometer (AvaSpec-ULS2048XL). Absorbance
spectra (ABS) were measured on JASCO V-570 spec-
trophotometer. Transmission electron microscopy
(TEM) was performed on carbon-copper grids on
Hitachi H-800 microscope.

Results and discussion

DPA, also called β,β-dimethylcysteine, is a derivative
of an amino acid—cysteine (Wilson and Martin 1971).
It has three functional groups—carboxyl, amine, and
thiol—and corresponding dissociable protonation sites
(pKCOOH = 1.8, pKNH2 = 7.9, pKSH = 10.5) (Al-Majed
et al. 2005). The process of protonation and deproton-
ation of the amino acids in an aqueous solution depends
on the pH level. The ionization process of DPA is
presented in Fig. 1 (El Ibrahimi et al. 2018). Due to
its structure, DPA may participate in such reactions as
metal chelation, formation of disulfide bridges, or sur-
face modification of cadmium-based NPs (Al-Majed
et al. 2005; Mohammad-Rezaei et al. 2013).

In order to verify the pH-dependent efficiency of the
LE process, four experiments were conducted at pH
equal to 4, 7, 9, and 11. Due to the protonation of
functional groups, which depends on the pKa value,
and thus on the pH of the solution, examples of values
corresponding to individual forms of the DPA molecule
were selected. The experiment was not carried out at pH
lower than the pKa of the carboxyl group because a
strongly acidic environment could break down the struc-
ture of investigated materials (Aldana et al. 2005).

Experimental pH of DPA solution was measured and
amounted to 6.6. The pH level of the aqueous phase was
adjusted to 4 by adding 0.1 M HCl and to 7, 9, or 11 by
adding 0.1MNaOH. On top of the non-organic phase, an
organic phase was formed by placing OA-capped NPs
dispersed in toluene and the LE procedure was conducted.

Figure 2a–d shows collected ABS and PL spectra of
Cd-based NPs before surface modification. As can be
seen, CdS QDs, CdSe/CdS QDs, and CdSe/CdS nano-
rods were characterized by the presence of PL emission
that was not significantly affected by defects states.
However, in the case of CdS nanoplates, there was no
emission detected, due to typical for this geometry high
surface area and a number of defects present at the
surface (Tessier et al. 2013).

OH SH

O CH3 CH3

NH3
+

-O SH

O CH3 CH3

NH3
+

-O SH

O CH3 CH3

NH2

-O S-

O CH3 CH3

NH2

pKa=1,8 pKa=7,9 pKa=10,5

Protonated
(RSH2

+)
Zwitterion

(RSH)
Deprotonated (I)

(RS-)
Deprotonated (II)

(RS2-)

Fig. 1 DPA ionization at different pH levels of the aqueous medium
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The variety of NPs used was confirmed (El-Bially
et al. 2012; Adel et al. 2017; Kormilina et al. 2017) by
TEM measurements (Fig. 2 A–D). The morphological
display of NPs showed that they were nearly homoge-
neous and monodisperse. Spherical in shape CdS QDs
and CdSe/CdSQDs had sizes approximately 2.5 nm and

4.5 nm, respectively. The average length of CdS nano-
rods was 10 nm. CdS nanoplates had a size of approx-
imately 10 × 18 nm and the thickness of a single mono-
layer. This could cause interactions, resulting in the NPs
“rolling-up,” which was observed especially along the
shorter axis of NPs.

Fig. 2 (a–d) ABS and PL spectra
and (A–D) TEM pictures of NPs
before surface modification: (a,
A) CdS QDs. (b, B) CdSe/CdS
QDs. (c, C) CdSe/CdS nanorods.
(d, D) CdS nanoplates

Page 5 of 9     238J Nanopart Res (2020) 22: 238



The measurements were performed for DPA-coated
NPs, after the LE reaction as well (Fig. 3). It was
observed that the most efficient transfer of ligands dur-
ing the LE process occurred at pH = 4. When the LE
procedure was performed under alkaline conditions, it
was noticed that a more recommended solution for
phase transfer was containing a higher concentration
of OH− ion (pH = 11). pH = 7 was the least preferred
environment during LE. It may be explained by the fact
that during the LE performed at pH = 7, DPA occurs in a
relatively high concentration (compared to the reaction
at pH = 4) in the form of a zwitterion, and in this form
amino acids have the lowest solubility (Howard-Lock
et al. 1991). Additionally, NPs functionalized at pH =
7were not stable in time. The aggregates of NPs ap-
peared 1 day after the LE process and were visible
without specific apparatus (an example of CdSe/CdS
nanorods is shown in Fig. 4). After mixing, they
underwent a total dispersion in an aqueous medium.
All samples after LE were transferred to the phosphate
buffer (pH = 7.4), which—in case of the samples

prepared in similar conditions—could promote en-
hancement of the zwitterionic form of the ligand. Breus
et al. discovered that longer exposure to mixing condi-
tions during the LE reaction (under conditions in which
ligand molecule takes the form of a zwitterion) may lead
to additional reaction between ionic forms of carboxylic
and amino groups of different DPAmolecules, resulting
in dissociation of the ligand from the surface of NPs.
The LE reaction in the conducted experiment was car-
ried out for 24 h, which might have influenced the
precipitation of NPs during storage (Breus et al. 2009).

The presence of DPA on the surface of NPs influ-
enced their PL properties. Based on the results presented
in Fig. 5, it can be concluded that despite the more
effective LE conducted at pH = 4 (proving that more
NPs passed into the aqueous medium), higher PL inten-
sity was observed for CdSe/CdS QDs and CdSe/CdS
nanorods if the transfer reactions were carried at pH =
11. Moreover, the samples of NPs obtained at pH = 4
and pH = 9 showed comparable emission. For CdS QDs
samples, regardless of the LE conditions, no PL emis-
sion after the process was noticed. In the case of CdS
QDs, the phase transfer promotes new defect formation
on the surface of QDs. This enhances nonradiative
recombination processes and reflects in quenching of
the emission intensity (Spanhel et al. 1987). Based on
obtained results, it can be concluded that during the LE
process for core-shell structures (CdSe/CdS QDs, CdSe/
CdS nanorods) run under extremely alkaline conditions
(pH = 11), lower chemical interference in the structure
occurs, which causes fewer defects (than under acidic
conditions), i.e., higher PL emission values.

Fig. 3 Absorbance of DPA-coated NPs after LE reaction con-
ducted under various pH conditions

Fig. 4 CdSe/CdS nanorods in phosphate buffer (pH = 7.4) after
the LE reaction. Labels on the vials describe pH value during
modification process

Fig. 5 PL intensity of DPA-coated NPs after LE reaction con-
ducted under various pH conditions.
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Since the most effective LE reaction was observed at
pH = 4, representative absorbance spectra for NPs mod-
ified under these conditions are presented in Fig. 6.
Comparing the absorbance results obtained for CdS
QDs, CdSe/CdS QDs, and CdSe/CdS nanorods before
and after DPA-coating, no significant influence on the
shape of the spectra by the process can be observed.
However, for CdS nanoplates, the LE induced evident
changes in the absorption spectrum: before LE reaction,
two absorption peaks were observed (375 nm and
410 nm); after DPA coating, only one absorption peak,
with maximum absorbance at 402 nm, was observed. It
suggests that during the surface modification with DPA,
the distribution of nanoplate thickness was improved
and the bi-modal distribution (5 and 6 monolayers)
was converted to a single-mode distribution (6 mono-
layers) (Ithurria et al. 2011). However, due to the com-
plexity of this scientific problem, deeper discussion on
these results is out of the scope of this paper and will be
reported elsewhere.

Conclusions

The influence of pH conditions on the LE process for
different types of semiconducting Cd-based NPs was
investigated. LE procedure was performed at various pH
levels (4, 7, 9, 11), and in result, hydrophilic NPs coated
by DPA were obtained. The results show that regardless
of the structure of NPs, the surface modification occurs
to a small extent or does not occur at all, if neutral
conditions (pH = 7) are applied, giving the least stable
NPs. Additionally, it can be concluded that although the

most NPs was successfully transferred under acidic
conditions, an increase in PL intensity was observed at
the highest concentrations of OH− ions (pH 11).

NPs obtained in the experiment can later be
bioconjugated to various biomolecules in a reaction
influenced by the pH level. NPs-biomolecule complexes
can find biomedical and sensory applications.
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