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Abstract Two transport pathways (interendothelial and
transendothelial routes) have long been proposed for
entry of nanoparticles from the blood circulation into
solid tumors. We examine and discuss available evi-
dence supporting interendothelial and transendothelial
transport processes and suggest new avenues for re-
evaluating these pathways. Understanding of integrative
mechanisms controlling nanoparticle extravasation into
tumors is important for improving engineering and per-
formance of anti-cancer nanopharmaceuticals.
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Introduction

The enhanced permeability and retention effect (EPR) has
become an equivocal concept in the targeting and devel-
opment of anti-cancer nanomedicines. This concept has
been recently scrutinized due to disappointing therapeutic
efficacy and limited clinical success with anti-cancer
nanomedicines compared with excellent results in small
animal xenograft models (Anchordoquy et al. 2017,
Bjornholm et al. 2017; Moghimi and Farhangrazi 2014;
Nel et al. 2017; Park 2013). The complexities and hetero-
geneity associated with the EPR effect have now been
confirmed in high-resolution imaging studies in dogs with
primary tumors, but these attempts have yet to resolve
nanomedicine transport pathways into tumors as well as
their variability within the same tumor mass (Hansen et al.
2015). Two transport pathways for translocation of nano-
particles from the blood circulation into the solid tumors
(interendothelial and transendothelial pathways) have
been proposed (Bjornholm et al. 2017; Chauhan et al.
2012; Cabral et al. 2011; Dvorak and Feng 2001; Fang
and Nakamura 2011; Gerlowski and Jain 1986; Hobbs
et al. 1998; Liu et al. 2017; Matsumura and Maeda 1986;
Taurin et al. 2012; Yuan et al. 1995). The interendothelial
pathway considers nanomedicine extravasation from the
blood into tumor interstitium through the pores or open
fenestrations in the tumor blood vessels, whereas the latter
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relies on transcytosis by tumor endothelial cells. What are
the evidence supporting these pathways?

Transendothelial route

Limited morphological evidence support operation of
transendothelial route in some tumors, and biomarkers
supporting transendothelial transport are becoming avail-
able (Dvorak and Feng 2001; Thurston et al. 1998; Liu
etal. 2017). For instance, one study reported the presence
of more fluorescently labeled cationic liposomes in the
endosomes and multivesicular bodies of the tumor-
associated endothelial cells than in adjacent normal ves-
sels in a {3 cell carcinoma model spontaneously devel-
oped in the pancreas of RIP-Tag transgenic mice
(Thurston et al. 1998). More recently, ultrastructural
and functional studies in an orthotopic tumor model in
mice strongly supported dominant involvement of a
transcytosis pathway involving a vesicular network of
similar appearance to vesiculo-vascular organelles (Dvor-
ak and Feng 2001) (and triggered by neurophilin-1,
which is expressed on tumor blood vessels) in nanopar-
ticle transport into solid tumors (Liu et al. 2017). The
vascular neurophilin-1 expression apparently regulates
the extent of nanoparticle translocation into tumors
(Pang et al. 2014) and may serve as a biomarker for
predicting the tumor response to nanopharmaceutical
delivery (Liu et al. 2017).

Mouse tumor xenografts often have high vascular
density with notable contributions from cutaneous
vascular network, since tumor cells are usually inoc-
ulated subcutaneously (Anchordoquy et al. 2017;
Bjornholm et al. 2017; Moghimi and Farhangrazi
2014; Nel et al. 2017; Park 2013; Taurin et al.
2012). Recently, we demonstrated rapid skin deposi-
tion of intravenously injected liposomes regardless of
their lipid composition and circulatory half-lives
(Griffin et al. 2017). This process presumably in-
volved liposome translocation across the skin capil-
laries, with an active role for endothelial cells in
uptake and transcytosis. Therefore, it is plausible that
in xenografts, the rich cutaneous vascular network
may increasingly contribute to transvascular transport
of nanoparticles through active particle uptake and
transcytosis by endothelial cells, and account for the
major difference seen in particle accumulation kinet-
ics between human tumors and mouse xenograft
models.
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Interendothelial route

It has been difficult to trace nanoparticle transport
through interendothelial fenestrations, and this may have
been due to technological deficiencies (such as poor
resolution of intravital microscopy in observing nano-
particle dynamics) as well as many pathophysiological
factors such as size heterogeneity seen in tumor vessel
fenestrae (100-1200 nm), pore frequency/density, other
architectural abnormalities, and stochastic intratumoral
pressure (Fang and Nakamura 2011; Hobbs et al. 1998).
The indirect evidence in favor of interendothelial trans-
port pathway, however, has been based on the observa-
tion that large-sized particles (> 250 nm) can extravasate
into various tumors (Yuan et al. 1995; Lee et al. 2013;
Key et al. 2015), but the size range of some of these
particles still fits the dimensions of endocytic compart-
ments. Nevertheless, in Kaposi sarcoma, where tumor
vessels are highly “leaky,” an electron microscopy study
did not find direct evidence of nanoparticle migration
across the pores (Huang et al. 1993). Others have also
questioned whether pore-dependent mechanism of ex-
travasation is truly operative, and have argued that ex-
travasation may not solely be controlled by nanoparticle
size (Smith et al. 2012). Similar to tumor blood vessels,
sinusoidal capillaries in the liver also contain pores,
allowing particle extravasation into the hepatic paren-
chyma (Wisse et al. 1985). Studies evaluating particle
extravasation into hepatic parenchyma have identified a
number of parameters controlling interendothelial trans-
port, which may also be relevant to tumors. For instance,
liposome size was shown not to be a decisive factor
regulating passage across the pores (Daemen et al.
1997; Romero et al. 1999; Scherphof and Kamps
2001). On the other hand, liposome rigidity and phos-
pholipid headgroup structure were playing modulatory
roles. Liposomes, depending on their extent of
deformability, could pass through the narrow fenestra-
tions by forced “extrusion” involving red blood cells
(Daemen et al. 1997; Romero et al. 1999; Scherphof
and Kamps 2001). This is analogous with a process that
regulates fluid exchange between the sinusoid and the
space of Disse (“endothelial massaging”) (Wisse et al.
1985). However, not all fluid liposome types were
“squeezable” through the fenestrations. This led to the
hypothesis that for successful extravasation some inter-
actions between liposomes and endothelium are neces-
sary to retain vesicles (and hence the role of phospholipid
headgroup structure) and drive extrusion by fast flowing
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erythrocytes (Daemen et al. 1997; Romero et al. 1999;
Scherphof and Kamps 2001). On this basis, particle
extravasation through open fenestrations in the tumor
blood vessels may not only depend on nanoparticle
dimensions and the extent of particle deformability/ri-
gidity, but also on weak/moderate interaction with endo-
thelium to enable “retention.” If particle retention on
tumor endothelium is a prerequisite for successful
erythrocyte-mediated forced extravasation, then the effi-
ciency of endothelial massaging will not only be depen-
dent on local fluid dynamics, such as the apparent blood
viscosity, blood flow rates in the tumor capillaries, and
intratumoral pressure gradient, but also on particle shape
(as this may modulate the extent of particle rolling on
vessel walls), capillary diameter (which may control
erythrocyte stretching and deformability, and hence col-
lision rates with nanoparticles), and surface modifica-
tion. Nevertheless, some surface strategies (e.g., ligand
and polymer grafting) that promote particle retention on
endothelium might also increase particle transport via
transcytosis. The modulatory role of nanoparticle ac-
quired blood protein corona (Moghimi et al. 2012) on
endothelial retention and transcytosis also remains to be
elucidated.

There have been many other recent studies mapping
particle extravasation mechanisms into tumors, and yet
none has resolved transport pathways satisfactorily. For
instance, one study has proposed vascular bursts as an
alternative explanation, but this study could not exclude
the role of transendothelial transport as the explanation
for bursts (Matsumoto et al. 2016). Mathematical
models of size-dependent nanoparticle extravasation
have also been built, showing that reducing the sizes
of pores through vessel normalization decreases the
interstitial fluid pressure in tumors and allows small
nanoparticles to enter more rapidly (Chauhan et al.
2012). Collectively, these models a priori are based on
pore hypothesis and could not differentiate between
interendothelial and transendothelial transport pathways
(Sykes et al. 2014).

Conclusions

The widespread use of xenograft models and complex-
ities surrounding tumor endothelial cell biology and
vessel architecture (e.g., vascular structural disorganiza-
tion, irregular branching, and uneven distribution den-
sity) has contributed to ambiguity in transport pathways

across tumor endothelium. Furthermore, the interaction
between nanoparticles and vessel walls (and subsequent
extravasation processes) might be controlled by the
perfusing concentration of nanoparticles (temporal di-
mension) as well as capillary architecture, and integrated
mechanical and fluid dynamic factors that modulate
local blood cell (e.g., erythrocyte) stretching. Here,
nanoparticle physicochemical properties such as size,
shape, deformability, and surface characteristics all play
important roles in establishing nanoparticle impaction
with blood cells, contact with endothelium, and rolling
on vessel walls. Recent developments in nanoparticle
engineering include precision control of particle shape,
mechanical stiffness, and surface properties (Moghimi
et al. 2012). These technological developments could
offer an important tool for revisiting transport pathways
in tumors systematically. In addition to these, some
nanoparticles can physically adsorb to erythrocytes,
and when injected intravenously exhibit prolonged cir-
culation times in the blood (Pan et al. 2018; Wibroe et al.
2017). Accordingly, erythrocyte-bound particles (of dif-
ferent morphologies and dimensions) may also prove
useful at least in assessing the endothelial massaging
phenomenon in nanoparticle extravasation. Understand-
ing the mechanisms of extravasation of nanoparticulate
systems is key to improving pharmacokinetics and tu-
mor targeting of anti-cancer nanomedicines.
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