Skip to main content
Log in

Roles of BiOCl(001) in face-to-faced BiOI(010)/BiOCl(001) heterojunction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to have an insight into the internal electric field (IEF) of BiOCl(001), we design a novel wide-spectrum responsive BiOI(010)/BiOCl(001) heterojunction composite by a facile method. The system could shield the photocatalysis of BiOCl(001) under visible light due to its large Eg (3.41 eV), thus specifying role of the BiOCl(001) in BiOI(010)/BiOCl(001). The XRD and TEM results show that the composites exhibit a coexistence of both tetragonal BiOI(010) and BiOCl(001) phases. The as-prepared BiOI(010)/BiOCl(001) samples exhibit higher BET surface area than those of BiOI(010) and BiOCl(001). The UV, visible, and simulated sunlight photocatalytic activities of composites for methyl orange (MO) were greatly enhanced compared to either pure BiOI(010) or BiOCl(001). Especially, under the visible light, an enhancement of photocatalytic activity (MO, acid fuchsin) was found for BiOI(010)/BiOCl(001), suggesting an IEF of BiOCl(001) plays a key role on the photo-generated carrier separation of BiOI(010). Specifying the IEF role of BiOCl(001) in BiOI(010)/BiOCl(001) is expected to inspire the further exploration, developing efficient photocatalysts with potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bai S, Jiang WY, Li ZQ, Xiong YJ (2015) Surface and interface engineering in photocatalysis. Chemnanomat 1:223–239

    Article  Google Scholar 

  • Cai Y, Fan HQ, Xu MM, Li Q (2013) Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloid Surf A 436:787–795

    Article  Google Scholar 

  • Cao J, Xu B, Lin H, Luo B, Chen S (2012) Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Trans 41:11482–11490

    Article  Google Scholar 

  • Dong F, Sun YJ, Fu M, Wu ZB, Lee SC (2012) Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J Hazard Mater 219–220:26–34

    Article  Google Scholar 

  • Duan F, Wang XF, Tan TT, Chen MQ (2016) Highly exposed surface area of {001} facets dominated BiOBr nanosheets with enhanced visible light photocatalytic activity. Phys Chem Chem Phys 18:6113–6121

    Article  Google Scholar 

  • Fan WJ, Li HB, Zhao FY, Xiao XJ, Huang YC, Ji HB, Tong YX (2016) Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem Commun (Camb) 52:5316–5319

    Article  Google Scholar 

  • Fu HB, Pan CS, Zhang LW, Zhu YF (2007) Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Mater Res Bull 42:696–706

    Article  Google Scholar 

  • Guo W, Qin Q, Lei G, Wang D, Guo YH, Yang YX (2016) Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt-BiOBr heterostructures. J Hazard Mater 308:374–385

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Hou RJ, Gao Y, Zhu HJ, Yang GX, Liu WH, Huo YN, Xie ZL, Li HX (2017) Coupling system of Ag/BiOBr photocatalysis and direct contact membrane distillation for complete purification of N-containing dye wastewater. Chem Eng J 317:386–393

    Article  Google Scholar 

  • Huang HW, He Y, Du X, Chu PK, Zhang YH (2015) A general and facile approach to heterostructured core/shell BiVO4/BiOI p–n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustainable Chem Eng

  • Jiang J, Zhang LZ, Li H, He WW, Yin JJ (2013) Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale 5:10573–10581

    Article  Google Scholar 

  • Jiang GH, Li X, Wei Z, Jiang TT, Du XX, Chen WX (2015) Effects of N and/or S doping on structure and photocatalytic properties of BiOBr crystals. Acta Metall Sin 28:460–466

    Article  Google Scholar 

  • Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed 41:2811–2813

    Article  Google Scholar 

  • Kim WJ, Pradhan D, Min B-K, Sohn Y (2014) Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Appl Catal B Environ 147:711–725

    Article  Google Scholar 

  • Li TB, Chen G, Zhou C, Shen ZY, Jin RC, Sun JX (2011) New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans 40:6751–6758

    Article  Google Scholar 

  • Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C (2013) Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat Commun 4:1432–1438

    Article  Google Scholar 

  • Li L, Salvador PA, Rohrer GS (2014a) Photocatalysts with internal electric fields. Nanoscale 6:24–42

    Article  Google Scholar 

  • Li J, Zhang LZ, Li YJ, Yu Y (2014b) Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high {001} facet exposure percentages. Nanoscale 6:167–171

    Article  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  • Liu G, Wang L, Yang HG, Cheng H-M, Lu GQ (2010) Titania-based photocatalysts-crystal growth, doping and heterostructuring. J Mater Chem 20:831–843

    Article  Google Scholar 

  • Long B, Huang YC, Li HB, Zhao FY, Rui ZB, Liu ZL, Tong YX, Ji HB (2015) Carbon dots sensitized BiOI with dominant {001} facets for superior photocatalytic performance. Ind Eng Chem Res 54:12788–12794

  • Myung Y, Wu F, Banerjee S, Park J, Banerjee P (2015) Electrical conductivity of p-type BiOCl nanosheets. Chem Commun (Camb) 51:2629–2632

    Article  Google Scholar 

  • Pan J, Liu G, Lu GQ, Cheng HM (2011) On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137

    Article  Google Scholar 

  • Park Y, Na Y, Pradhan D, Min BK, Sohn Y (2014) Adsorption and UV/Visible photocatalytic performance of BiOI for methyl orange, Rhodamine B and methylene blue: Ag and Ti-loading effects. Crystengcomm 16:3155–3167

    Article  Google Scholar 

  • Pradhan GK, Martha S, Parida KM (2011) Synthesis of multifunctional nanostructured zinc–iron mixed oxide photocatalyst by a simple solution-combustion technique. ACS Appl Mater Interfaces 4:707–713

    Article  Google Scholar 

  • Ren PR, Fan HQ, Wang X (2013) Solid-state synthesis of Bi2O3/BaTiO3 heterostructure: preparation and photocatalytic degradation of methyl orange. Appl Phys A Mater Sci Process 111:1139–1145

    Article  Google Scholar 

  • Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    Article  Google Scholar 

  • Shan LW, Liu YT (2016) Er3+, Yb3+ doping induced core-shell structured BiVO4 and near-infrared photocatalytic properties. J Mol Catal A Chem 416:1–9

    Article  Google Scholar 

  • Shan LW, Wang GL, Liu LZ, Wu Z (2015a) Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (001) core–shell heterojunction. J Mol Catal A Chem 406:145–151

    Article  Google Scholar 

  • Shan LW, Wang GL, Suriyaprakash J, Li D, Liu LZ, Dong LM (2015b) Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol–gel method. J Alloys Comp 636:131–137

    Article  Google Scholar 

  • Shan LW, He LQ, Suriyaprakash J, Yang LX (2016a) Photoelectrochemical (PEC) water splitting of BiOI{001} nanosheets synthesized by a simple chemical transformation. J Alloys Comp 665:158–164

    Article  Google Scholar 

  • Shan LW, Liu YT, Ma CG, Dong LM, Liu LZ, Wu Z (2016b) Enhanced photocatalytic performance in Ag+-induced BiVO4/β-Bi2O3 heterojunctions. Eur J Inorg Chem 2016:232–239

    Article  Google Scholar 

  • Shan LW, Liu YT, Suriyaprakash J, Ma CG, Wu Z, Dong LM, Zhu LL (2016c) Highly efficient photocatalytic activities, band alignment of BiVO4/BiOCl {001} prepared by in situ chemical transformation. J Mol Catal A Chem 411:179–187

    Article  Google Scholar 

  • Shan LW, Liu YT, Bi JJ, Suriyaprakash J, Han ZD (2017a) Enhanced photocatalytic activity with a heterojunction between BiVO4 and BiOI. J Alloys Comp 721:784–794

    Article  Google Scholar 

  • Shan LW, Liu YT, Chen HT, Wu Z, Han ZD (2017b) An α-Bi2O3/BiOBr core-shell heterojunction with high photocatalytic activity. Dalton Trans 46:2310–2321

    Article  Google Scholar 

  • Shenawi-Khalil S, Uvarov V, Kritsman Y, Menes E, Popov I, Sasson Y (2011) A new family of BiO(ClxBr1-x) visible light sensitive photocatalysts. Catal Commun 12:1136–1141

    Article  Google Scholar 

  • Slalter JC, Kirkwood JG (1931) The van der waals forces in gases. Phsy Rev 37:682–697

    Article  Google Scholar 

  • Sun LM, Xiang L, Zhao X, Jia CJ, Yang J, Jin Z, Cheng XF, Fan WL (2015) Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catal 5:3540–3551

    Article  Google Scholar 

  • Tan G, Zhang L, Ren H, Huang J, Yang W, Xia A (2014) Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties. Ceram Int 40:9541–9547

    Article  Google Scholar 

  • Wang YJ, Chen J, Xu Q, Li Y, Fu T, Jiang GY, Li YM, Zhao Z, Wei YC (2017) Novel visible-light-driven S-doped carbon dots/BiOI nanocomposites: improved photocatalytic activity and mechanism insight. J Mater Sci 52:7282–7293

    Article  Google Scholar 

  • Weng SX, Pei ZX, Zheng ZY, Hu J, Liu P (2013) Exciton-free, nonsensitized degradation of 2-naphthol by facet-dependent BiOCl under visible light: novel evidence of surface-state photocatalysis. ACS Appl Mater Interfaces 5:12380–12386

    Article  Google Scholar 

  • Weng SX, Fang ZB, Wang ZF, Zheng ZY, Feng WH, Liu P (2014) Construction of teethlike homojunction BiOCl (001) nanosheets by selective etching and its high photocatalytic activity. ACS Appl Mater Interfaces 6:18423–18428

    Article  Google Scholar 

  • Wu XL, Ng YH, Wang L, Du Y, Dou SX, Amal R, Scott J (2017) Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J Mater Chem A 5:8117–8124

    Article  Google Scholar 

  • Xiao X, Hao R, Liang M, Zuo XX, Nan JM, Li LS, Zhang WD (2012) One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater 233-234:122–130

    Article  Google Scholar 

  • Xiong ZG, Wu H, Zhang LH, Gu Y, Zhao XS (2014) Synthesis of TiO2 with controllable ratio of anatase to rutile. J Mater Chem A 2:9291–9297

    Article  Google Scholar 

  • Yaacobi-Gross N, Soreni-Harari M, Zimin M, Kababya S, Schmidt A, Tessler N (2011) Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat Mater 10:974–979

    Article  Google Scholar 

  • Yang JX, DE W, Zhou X, Li C (2013) A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem Eur J 19:1320–1326

    Article  Google Scholar 

  • Ye LQ, Jin XL, Ji XX, Liu C, Su YR, Xie HQ, Liu C (2016) Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chem Eng J 291:39–46

    Article  Google Scholar 

  • Zhang K et al (2011) BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst Growth Des 12:793–803

    Article  Google Scholar 

  • Zhang YN, Fan HQ, Li MM, Tian HL (2013) Ag/BiPO4 heterostructures: synthesis, characterization and their enhanced photocatalytic properties. Dalton Trans 42:13172–13178

    Article  Google Scholar 

  • Zhao ZY, Dai WW (2015) Electronic structure and optical properties of BiOI ultrathin films for photocatalytic water splitting. Inorg Chem 54:10732–10737

    Article  Google Scholar 

  • Zhao K, Zhang LZ, Wang JJ, Li QX, He WW, Yin JJ (2013) Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc 135:15750–15753

    Article  Google Scholar 

  • Zhao Y, Yu T, Tan X, Xie C, Wang SC (2015) SDS-assisted solvothermal synthesis of rose-like BiOBr partially enclosed by {111} facets and enhanced visible-light photocatalytic activity. Dalton Trans 44:20475–20483

    Article  Google Scholar 

  • Zhou DW, Pu CY, He CZ, Zhang FW, Lu C, Bao G (2015) Pressure-induced phase transition of BiOF: novel two-dimensional layered structures. Phys Chem Chem Phys 17:4434–4440

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Education Department Program of Heilongjiang Province (12541111) and Postdoctoral Scientific Developmental Fund of Heilongjiang Province (LBH-Q16122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwei Shan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, L., Bi, J. & Liu, Y. Roles of BiOCl(001) in face-to-faced BiOI(010)/BiOCl(001) heterojunction. J Nanopart Res 20, 170 (2018). https://doi.org/10.1007/s11051-018-4272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4272-9

Keywords

Navigation