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Abstract In this perspective, we explore hybrid

approaches to nanometer-scale patterning, where the

precision of molecular self-assembly is combined

with the sophistication and fidelity of lithography.

Two areas––improving existing lithographic tech-

niques through self-assembly and fabricating

chemically patterned surfaces––will be discussed in

terms of their advantages, limitations, applications,

and future outlook. The creation of such chemical

patterns enables new capabilities, including the

assembly of biospecific surfaces to be recognized

by, and to capture analytes from, complex mixtures.

Finally, we speculate on the potential impact and

upcoming challenges of these hybrid strategies.

Keywords Self-assembly � Nanolithography �
Chemical patterning � Soft lithography �
Intermolecular Interactions � Future science

challenges

Introduction

Currently, one of the great engineering challenges is to

gain the ability to fabricate nanoscale structures at the

supramolecular (1–50 nm) length scale with high

precision, throughput, and reproducibility. In micro-

electronics, speed and density have been the driving

forces to increase the final resolution of traditional top-

down methodologies utilizing deposition, etching, or

modification of thin layers on semiconductor substrates.

However, the impetus to create features with molecular-

scale structures, properties, and interactions has

motivated and expanded research into fields outside

traditional semiconductor nanofabrication. One

approach has been the development of hybrid patterning

strategies for a wide range of applications. These utilize

self- and directed assembly in conjunction with existing

nanofabrication infrastructure (Xia et al. 1999; Lewis

et al. 2001a; Smith et al. 2004; Srinivasan et al. 2007).

The initial motivation for the development of micro-

and nanoscale patterning came from the fabrication

needs of the semiconductor industry. In 1965, when

Moore first predicted that the number of components

on a silicon wafer would double every year and a half,

there were only 30 microscale transistors on a single
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microprocessor, and the extrapolated growth was

expected for a single decade (Moore 1965). Amaz-

ingly, this trend, referred to as ‘‘Moore’s Law,’’ has

been sustained for over 40 years and silicon substrates

now contain billions of nanoscale devices (Moore

1995). To attain nanoscale features, the complexity and

the cost of nanofabrication facilities have grown

tremendously. Figure 1 shows the growth of the cost

of a semiconductor fabrication facility over the past

30 years (Thompson and Parthasarathy 2006). If this

trend were to continue for the next half century, the cost

of a single facility would be greater than the current

gross domestic product of the United States (Manner-

ing and Hodge 2007). Over the same time period, the

price-per-transistor has decreased seven-fold, enabling

cheaper, smaller, and more efficient devices. These

two factors underlie many of the advances in the

semiconductor industry (Thompson and Parthasarathy

2006). However, this type of scaling will eventually

taper off, not only because of fabrication costs, but also

due to the physical limitations of the materials and

methods currently used to create semiconductor nano-

scale features (Lundstrom 2003). In contrast, self-

assembly methodologies exploit the inherent chemical

and physical properties of molecules to direct and to

control their arrangements and locations on surfaces

with nanometer or better precision. By engineering

molecules with varying structures, intermolecular

interaction strengths, and terminal groups, the proper-

ties of these chemical films, such as surface reactivity

and screening properties, can be tailored (Kumar et al.

1994; Smith et al. 2001; Smith et al. 2004; Dameron

et al. 2005a). Despite the ability of self-assembly

strategies to control the structures of chemical films,

the direct placement and the fabrication of complex

multicomponent structures via bottom-up assembly

are limited and require further development to become

viable alternatives to traditional lithographic tech-

niques (Xia et al. 1999; Mullen et al. 2007b).

In this perspective, we specifically examine and

highlight the advantages, limitations, applications, and

future outlook of several hybrid patterning technolo-

gies where the sophistication and control of

lithography are coupled with the molecular precision

of self-assembly. A number of comprehensive reviews

on hybrid patterning strategies have been published

(Xia et al. 1999; Hammond 2004; Gates et al. 2005;

Love et al. 2005; Rogers and Nuzzo 2005; Henzie

et al. 2006; Saavedra et al. 2008). We first describe

how self-assembly can be used to improve the resolu-

tion of existing lithographic technologies. Next, we

discuss chemically patterned surfaces created by

hybrid strategies where the strengths are maximized

and the limitations are minimized in terms of ease of

use, reproducibility, resolution, and precision. Finally,

we explore the potential impact of and future outlook

for hybrid strategies.

Structures with molecular precision

Initially, we anticipate that hybrid strategies will need

to be adapted to transfer the intrinsic molecular

precision of self-assembly to established nanofabrica-

tion infrastructure and technology. Although the

placement and alignment of microscale structures with

nanometer-scale precision is difficult using most

lithographic techniques, the additional requirement of

patterning over large areas (tens of cm2) for industrial

applications makes it extremely challenging using only

current top-down strategies (Henzie et al. 2006). For

example, photolithography is commonly used to

fabricate surface features for integrated circuits in

semiconductor manufacturing because of its ability to

create reproducible structures with high throughput

and relatively low cost (Rai-Choudhury 1997). This

parallel methodology fabricates surface structures by

patterning a light-sensitive polymer via photon expo-

sure through a mask. The pattern is then developed via

wet chemistry methods and etched into the underlying

substrate. However, feature sizes resulting from
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Fig. 1 Traditional semiconductor costs. The cost of a single

semiconductor fabrication facility (red circles) and a single

transistor (blue squares) over the past 30 years is shown. Graph

is adapted from Thompson and Parthasarathy 2006
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photolithography are diffraction limited at *100 nm

without resolution enhancement techniques (Brunner

2003). To fabricate smaller features, electron-beam

lithography has been utilized. This technology

employs high-energy electrons to write a pattern

directly into an electron-sensitive polymer, which is

then developed, translating the pattern into the under-

lying substrate. Electron-beam lithography has higher

resolution than photolithography, and features down

to *20 nm can now be routinely fabricated. How-

ever, because electron-beam lithography is a serial

technique, it is expensive and slow compared to

photolithography, and thus, is not practical for indus-

trial-scale fabrication applications except in specific

highly leveraged circumstances such as photolitho-

graphic mask fabrication (Brunner 2003). With hybrid

techniques, molecular-scale features can be rapidly

created over large areas using conventional top-down

lithography to create microscopic features combined

with molecular self-assembly to control supramolec-

ular organization (Smith et al. 2004).

One example of this type of hybrid strategy is the

molecular-ruler process, where conventional litho-

graphy is coupled with selective deposition of

multilayers of bifunctional organic molecules and

coordinated metal ions. Ultimately, the chemical

multilayer film defines the nanometer-scale spacings

of the lithographically patterned surface structures

(Evans et al. 1991; Hatzor and Weiss 2001; Haes

et al. 2004). Figure 2 shows a schematic of the

molecular-ruler assembly process. Initially, a litho-

graphically defined gold parent structure is fabricated

on an oxidized Si substrate. The molecular ruler,

consisting of sequential alternating layers of a,x-

mercaptoalkanoic acid and cupric ions (Cu2+), is then

deposited onto the gold parent structure. After the

desired thickness of the molecular-ruler stack is

achieved via multiple molecular layer deposition

steps, a daughter metal is deposited across the entire

substrate. The molecular ruler, along with the

daughter metal atop the molecular resist, is removed

by chemical lift-off, leaving precisely defined spac-

ings (4–100 nm) between the parent and daughter

structures. This scheme has the advantage that defects

in SAMs (Tiberio et al. 1993; Poirier and Pylant

1996; Jager et al. 1997; Bent 2007) are mitigated

through multilayer assembly via the varying stoichio-

metry possible between the molecules and the ionic

ligands (Daniel et al. 2007; Hatzor de Picciotto et al.

2007). This process can also be combined with

photolithography (Anderson et al. 2006) or electron-

beam lithography (Tanaka et al. 2004) to create

patterns at multiple scales. This combination of

established patterning methods with a novel chemical

processing technique demonstrates the compatibility

and robustness of hybrid strategies and holds promise

for further miniaturizing electronic devices.

As opposed to exploiting chemical multilayer

films to create precise supramolecular spacings,

self-assembled block copolymers, consisting of cova-

lently bonded hydrophobic and hydrophilic units, can

(a)

parent metal

Si substrate

parent metal

Si substrate

(b)

daughter metal

parent metal
daughter metal

Si substrate

(c)

parent metal
daughter metal

Si substrate

4 - 100 nm

(d)

Fig. 2 Molecular-ruler assembly process. (a) Initially, a gold

parent structure is fabricated by conventional lithography. (b)

Subsequently, the molecular ruler, consisting of alternating

layers of a,x-mercaptoalkanoic acid (green lines) and cupric

ions (Cu2+, blue circles), is deposited onto the gold parent

structure until the desired multilayer thickness is achieved. (c)

Daughter metal is then deposited across the entire substrate. (d)

The molecular ruler and the daughter metal atop of it are

removed with a chemical lift-off process, leaving a precisely

defined spacing (1–100 nm) between the parent and daughter

structures. Schematic is not to scale
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enhance the critical dimensions and fidelity of surface

features fabricated by lithography (Mansky et al.

1997; Park et al. 1997; Thurn-Albrecht et al. 2000;

Hawker and Russell 2005; Stoykovich and Nealey

2006; Black 2007; Stoykovich et al. 2007). Figure 3

depicts the use of block-copolymer-directed assembly

to improve the line-edge roughness of a pattern

fabricated by conventional lithography. Initially,

chemical functionality is patterned on a substrate by

conventional lithography, such as electron-beam

lithography, and subsequent oxygen plasma treat-

ment. A thin film (\100 nm) of block copolymer is

then cast across the patterned substrate and thermally

treated such that microphase separation of the block

copolymer produces domains that register with the

underlying substrate. However, because the block-

copolymer assembly is thermodynamically con-

trolled, the defects and irregularities in the

underlying chemical pattern are self-corrected in the

block-copolymer layer. Finally, the enhanced regis-

tration of the block copolymer domains is transferred

into the underlying substrate (Stoykovich et al.

2005). This self-healing process is in contrast to

current chemically amplified resists, which are based

on diffusion-limited processes, where the final pat-

terned features are sensitive to small variations in

processing conditions (Tanaka et al. 1998).

Self-assembled monolayers (SAMs) can also spon-

taneously phase separate into nanoscale domains when

two or more molecular species with differing intermo-

lecular interaction strengths are coadsorbed (Stranick

et al. 1994; Lewis et al. 2001b; Smith et al. 2001).

These interaction strengths can be controlled by

selecting the head groups, backbones, and/or tail

groups of the deposited molecules (Mullen et al.

2007b). Further, nanoscale domains can be artificially

fabricated and manipulated by exploiting the molec-

ular exchange into and displacement of a labile

monolayer (Bumm et al. 1999; Dameron et al.

2005a; Mullen et al. 2006). This displacement process

has been exploited to improve existing chemical

patterning strategies (vide infra). Even small multi-

component patches of molecules (*15 nm) can be

made to separate on the nanoscale (Salaita et al. 2005).

In many cases, phase separation can be controlled by

the selection of the molecules and processing condi-

tions, which determine the dynamics of the structures

created (Bumm et al. 1999, Smith et al. 2004). As with

block copolymers, separated SAMs enable chemical

patterns to be created at the few to tens of nanometers

scale.

These examples highlight how self-assembly might

be used to improve and to enhance existing lithography

techniques. An advantage of these hybrid techniques is

their ability to interface with and to utilize existing

infrastructure. Another advantage is that these tech-

niques are independent of both resolution and the

top-down patterning methods employed, allowing

them to be adapted to future lithographic technologies.

(c)

Si substrate

(b)

block copolymer

Si substrate

(d)

Si substrate

(a)

Si substrate

1 - 50 nm

Fig. 3 Block-copolymer-directed assembly. (a) A chemical

pattern is placed across a substrate via conventional lithography.

(b) Next, a thin film (\100 nm) of block copolymer is deposited

onto the patterned surface and (c) thermally annealed such that

microphase separation of the block copolymer produces domains

that align with the patterned chemical surface. (d) The registra-

tion and alignment of the block-copolymer domains are

translated with molecular-scale precision onto the underlying

substrate. Schematic is not to scale
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However, despite the advantages of these hybrid

strategies, there are challenges that prevent their

immediate translation into industry. First, the majority

have only been developed recently and for specialized

applications. It is difficult for the semiconductor

industry to adopt techniques that have not been

demonstrated and optimized for its own specific

applications. Additionally, in some instances, the self-

and directed assembly strategies employed in hybrid

patterning are not yet compatible with the types of

materials and processes used in existing semiconductor

infrastructure. While efforts have been made to

migrate these strategies so that they can be applied

directly to technological materials, much remains to be

done on this front (Bent 2007).

One of the ultimate goals of combining the intrinsic

molecular precision of self-assembly with lithography

is to fabricate precise features and to produce structures

with higher resolution and lower production costs than

structures made using conventional lithographic

techniques alone. The molecular-ruler process dem-

onstrates the utility of multilayer chemical films and

how they can be used to create precise and proximate

nanoscale structures. With self-assembling block

copolymers, the domains of the block copolymer

enhance the pattern transfer into the underlying

substrate. Currently, self-assembled block copolymers

are not aimed at improving the resolution of conven-

tional lithography, but rather are intended to improve

process control, such as line-edge roughness, and

information transfer from the exposure tool to the

substrate. In the near term, the continuing research

goals for coupling self-assembly to lithography are to

develop more diverse approaches to fabricate precise

nanoscale structures. By identifying the advantages

and limitations of different strategies, the potential for

large-scale implementation can be advanced.

Chemically patterned surfaces

Above, we had described how self-assembly can be used

to improve existing lithographic techniques. Hybrid

strategies are also being employed to create chemically

patterned surfaces that make possible a range of new

applications. A recent example is the fabrication of

biospecific surfaces that recognize and capture specific

biomolecules from complex environments. Functional-

ization of chemically patterned surfaces adds new

degrees of utility by enabling surface reactivity to be

patterned at the nanometer scale. This has led to

nanoscale films being used as biocompatible/bioactive

scaffolds, molecular-sized electronic components, selec-

tive molecular resists, and other types of surfaces where

both patterned structure and molecular interactions are

necessary (Chen et al. 1997; Xia and Whitesides 1998a;

Smith et al. 2004; Srinivasan et al. 2007). As processes

are developed for creating such chemical patterns,

metrology tools and methods must be developed in

lockstep in order to follow the patterning steps and to

optimize the quality of the surfaces obtained. These

metrology methods remain in their infancy (Allara and

Nuzzo 1985; Porter et al. 1987; Nuzzo et al. 1990;

Lopez et al. 1993; Pertsin and Grunze 1994; Lahiri et al.

1999a; Srinivasan et al. 2007; Mrksich 2008).

One technique to fabricate chemically patterned

surfaces is lithography-assisted chemical patterning

(LACP), where conventional lithography is employed in

conjunction with SAMs to create chemical patterns with

high fidelity (Anderson et al. 2006; Srinivasan et al.

2007). This is accomplished by exploiting a commer-

cially available lift-off resist that can withstand the self-

assembly process without disrupting the underlying

SAM. Figure 4a shows an example of the LACP

process. Initially, a bilayer resist consisting of an

underlying lift-off resist and an overlayer photoresist

is cast over a preexisting SAM. This bilayer resist is then

patterned via conventional lithography. The photoresist

is then removed, leaving behind the underlying lift-off

resist; the lift-off resist withstands the solvents used in

further self-assembly. Exposed regions can be stripped

of the existing monolayer and backfilled with a new

monolayer, or molecules can be inserted into the

exposed regions of the SAM via solution deposition.

The lift-off resist is then removed, leaving the original

SAM undisturbed in the underlying regions. Because of

the close integration with conventional lithography,

LACP is capable of creating 1:1 registered chemical

patterns over large areas and enables feature dimensions

to be readily scaled down, which is difficult by other

chemical patterning strategies.

Soft lithography is another strategy used to fabricate

chemically patterned surfaces. This encompasses

microcontact printing (lCP) and related techniques.

In lCP, an elastomeric stamp coated with molecules is

applied to a substrate, and a chemical pattern is formed

in the regions where the stamp and substrate are in

contact (Kumar and Whitesides 1993; Xia and

J Nanopart Res (2008) 10:1231–1240 1235
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Whitesides 1998a; Xia and Whitesides 1998b;

Smith et al. 2004). One limitation of lCP is the

requirement for patterned molecules to have sufficient

intermolecular interaction strengths to prevent lateral

diffusion and hence pattern dissolution, both during

and after patterning (Delamarche et al. 1998; Dameron

et al. 2005b). Microdisplacement printing (lDP) cir-

cumvents this limitation by utilizing a preexisting

monolayer that is sufficiently labile when exposed to

other thiolated molecules via the stamping process but

nonetheless prevents lateral diffusion of the patterned

molecules (Dameron et al. 2005b, c; Srinivasan et al.

2007). However, in both lCP and lDP, the molecular

composition of a patterned film is determined by and

restricted to the feature size of the elastomeric stamp.

In contrast, the molecular composition of chemically

patterned films created by microcontact insertion

printing (lCIP) is controlled by other factors such as

the density of defects in the initial substrate, the

stamping duration, and the concentration of the

patterned molecules. Microcontact insertion printing

enables dilute and isolated molecules to be patterned

within a background SAM matrix, in a way that is not

possible by other lithographic strategies (Mullen et al.

2007a; Srinivasan et al. 2007). Diffusion of the

inserted molecules is also prevented, as in lDP.

Figure 4b depicts the lCIP process. Initially, a

patterned molecularly coated elastomeric stamp is

brought into contact with a substrate coated with a

preexisting monolayer that is not easily displaced; the

molecules on the stamp then insert into the defects in

the monolayer only in places where the stamp and

substrate are in contact (Bumm et al. 1996; Cygan

et al. 1998). Together, these soft-lithographic strate-

gies offer straightforward, versatile, and low-cost

methods to fabricate chemical patterns over large

areas without the requirement of specialized facilities.

Both LACP and soft lithography can be employed to

fabricate functionalized surfaces that exhibit selective

molecular recognition. In most cases, fabrication of

these surfaces begins with a SAM deposited across a

Au substrate engineered to resist non-specific protein

adsorption (Prime and Whitesides 1993; Wang et al.

1997; Sigal et al. 1998; Ostuni et al. 2001). In some

applications, where proteins or peptides are eventually

anchored to SAMs, low percentages of tether mole-

cules are codeposited to form a mixed monolayer.

Large biomolecules are then either covalently bound

to tethers or specifically oriented by high-affinity

linkers (Lahiri et al. 1999a; Lahiri et al. 1999b; Yousaf

and Mrksich 1999; Hodneland et al. 2002). In other

applications, precursor tether molecules with distinct

(a)

Au substrate

Au substrate

Au substrate

photoresist

lift-off resist

lift-off resist

(b)

molecularly-inked PDMS stamp

Au substrate

Au substrate

Fig. 4 (a) Lithography-assisted chemical patterning. A bilayer

resist consisting of lift-off resist and photoresist is deposited

across a preexisting SAM and patterned via conventional

lithography, leaving behind a chemically robust lift-off layer.

Molecules are then inserted into the SAM via solution deposition

in regions not protected by the lift-off resist. Finally, the

remaining lift-off resist is removed, leaving a patterned SAM.

(b) Microcontact insertion printing. A patterned elastomeric

stamp coated with the molecules to be patterned is brought into

contact with a substrate coated with a preexisting monolayer that

is not easily displaced; the molecules on the stamp insert into the

defects in the preexisting monolayer where the stamp and

substrate are in contact. Schematics are not to scale
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terminal functionalities from the preexisitng SAM are

inserted into its defect sites (Weck et al. 1999; Mullen

et al. 2007b; Shuster et al. 2008). Subsequently, the

terminal groups of the tether molecules are function-

alized with small-molecule ligands. This type of

biospecific surface is currently being developed to

separate proteins from biological mixtures (e.g., tissue

homogenates, serum, etc.), to elucidate molecular

interactions between known proteins and their small-

molecule targets, and to identify unknown proteins that

bind selectively to small-molecule ligands (Mullen

et al. 2007b; Mrksich 2008; Shuster et al. 2008).

Further, these surfaces are not limited to functionali-

zation with small biomolecules, but can present other

small molecules such as chemical warfare agents and

toxic industrial chemicals. In addition to patterning

biologically relevant molecules, surfaces bearing

tethers with different classes of functional groups can

be created, enabling the attachment of many different

small molecules, particles, and clusters.

In our recent work, we have utilized this scheme to

fabricate chemical films of the neurotransmitter sero-

tonin for creating small-molecule functionalized

surfaces. These surfaces have been employed to

demonstrate biospecific recognition by serotonin-spe-

cific antibodies (Shuster et al. 2008). Figure 5a and b

shows inserted tether molecules isolated within a

oligo(ethylene glycol)-terminated SAM before and

after functionalization of the tether carboxylic acid

terminal group with serotonin via EDC/NHS coupling

chemistry (Hermanson 1996). Not only were these

surfaces shown to discriminate between the capture of

proteins specific for serotonin versus those specific for

other closely related small molecules, such as dopa-

mine, but they also prevented non-specific recognition

of ‘‘ubiquitous’’ proteins such as fibrogen, fibronectin,

and bovine serum albumin. The ability to discriminate

between large biomolecule binding partners based on

their specific non-covalent interactions sets the stage

for the creation of multiplexed surfaces, as shown

schematically in Figure 5c, where a number of isolated

small-molecule probes can be sequentially patterned

on the same surface in order to capture multiple types

of biomolecules based on their interactions in a

competitive environment. It is important to note that

in the overlapping patterned regions, the tether

molecules (which are functionalized with small-

molecule probes) are isolated such that they do not

interact with other probe molecules in the surrounding

region. This molecular isolation can be controlled and

influenced by many factors and has been confirmed by

both ensemble and localized analytical techniques

(Mullen et al. 2007a; Shuster et al. 2008).

Current traditional lithographic techniques are not

capable of producing chemical patterns with this level

of precision. Serial techniques have been devised to

manipulate and to arrange single atoms as well as to

draw molecular patterns on a surface with a scanning

probe tip (Eigler and Schweizer 1990; Weiss and

Eigler 1992, 1993; Piner et al. 1999; Xu et al. 1999).

Although recent work has made creative and inventive

efforts to create massive arrays of tips, these techniques

require further development and will likely be utilized

for specialized applications in analogy to electron-

beam lithography (Salaita et al. 2006; Mirkin 2007). A

key advantage of LACP, lCIP, and related techniques

is the ability to fabricate chemical films of isolated

single molecules or bundles of molecules diluted

within a background matrix over large areas. The

molecular composition of the chemical pattern is

influenced by the extent of insertion of the patterned

molecules, which can be controlled by tuning the

patterning duration, the concentration of the patterned

molecules, the quality of the preexisting SAM, and the

intermolecular interaction strengths of both the preex-

isting SAM and the patterned or inserted molecules

(Mullen et al. 2007a). This control of molecular

composition and isolation is particularly critical for

small-molecule functionalized surfaces. If tether mol-

ecules linked to small-molecule probes are spaced too

closely, non-specific binding increases; whereas if

derivatized tethers are spaced too far apart, then the

efficiency of capturing large biomolecules is

diminished.

It is also important to anticipate the limitations of

these hybrid approaches for fabricating patterned small

molecules. First, the small-molecule probe must be

covalently coupled to the patterned tether molecule via a

functional group. This covalent attachment could hinder

recognition and capture of larger target analytes. Another

limitation of this hybrid strategy is that the patterned

molecules are statistically distributed rather than directly

placed. This could result in under-utilized areas where no

patterned molecules are present or regions where clusters

of molecules are inserted. Despite such limitations,

insertion self-assembly and lCIP have the potential to be

applied to a wide variety of chemical systems and to

enable capabilities not previously possible.
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Future prospects and conclusions

When Moore first noted the scaling of semiconductor

devices 40 years ago, he could not have imagined the

influence and implications it would have on applica-

tions outside the semiconductor industry. Incremental

improvements continue in the manufacturing pro-

cesses used in the mature and established

semiconductor industry. However, with the hybrid

techniques highlighted in this perspective, along with

similar strategies, it will become routine to fabricate,

to manipulate, and to visualize structures at the

1–50 nm supramolecular scale. For example, hybrid

patterning techniques enable access to biological

systems with unprecedented molecular precision,

allowing for the study and characterization of single

and groups of biomolecules in various environments.

With this structural and functional resolution of

biomolecules, the underlying mechanisms can begin

to be understood, enabling structures and devices to

be developed and fabricated on the same scales as

biological systems. These systems can then be

mimicked, engineered, and improved.

The underlying theme for this perspective has been

that there is no universal strategy or technique for

every application; rather, for each application, there

are several possible methods to create patterned

surfaces, most of which are just now being devel-

oped. It is important to understand the specific

requirements and how they relate and can be applied

to each technique’s advantages and limitations. It is

likewise critical to develop the metrology tools and

methods to test and to optimize the patterns created.

All these hybrid techniques stem from the idea that

molecular assembly can be coupled to the fidelity and

sophistication of lithography. As our understanding

and control of self- and directed assembly increase,

the stringency of the underlying lithography will

diminish, enabling wider access to and larger utili-

zation for a greater number of applications.
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Fig. 5 Patterning Diluted Biospecific Small-Molecule Probe

Surfaces. Inserted tether molecules isolated within an oligo(eth-

ylene glycol)-terminated self-assembled monolayer (a) before

and (b) after selective functionalization of carboxylic acid
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N’-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS)
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represents a different small-molecule ligand
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