
The structural power of reconfigurable circuits in the amoebot model

Andreas Padalkin1 • Christian Scheideler1 • Daniel Warner1

Accepted: 29 February 2024
� The Author(s) 2024

Abstract
The amoebot model (Derakhshandeh et al. in: SPAA ACM, pp 220–222. https://doi.org/10.1145/2612669.2612712, 2014)

has been proposed as a model for programmable matter consisting of tiny, robotic elements called amoebots. We consider

the reconfigurable circuit extension (Feldmann et al. in J Comput Biol 29(4):317–343. https://doi.org/10.1089/cmb.2021.

0363, 2022) of the geometric amoebot model that allows the amoebot structure to interconnect amoebots by so-called

circuits. A circuit permits the instantaneous transmission of signals between the connected amoebots. In this paper, we

examine the structural power of the reconfigurable circuits. We start with fundamental problems like the stripe computation

problem where, given any connected amoebot structure S, an amoebot u in S, and some axis X, all amoebots belonging to

axis X through u have to be identified. Second, we consider the global maximum problem, which identifies an amoebot at

the highest possible position with respect to some direction in some given amoebot (sub)structure. A solution to this

problem can be used to solve the skeleton problem, where a cycle of amoebots has to be found in the given amoebot

structure which contains all boundary amoebots. A canonical solution to that problem can be used to come up with a

canonical path, which provides a unique characterization of the shape of the given amoebot structure. Constructing

canonical paths for different directions allows the amoebots to set up a spanning tree and to check symmetry properties of

the given amoebot structure. The problems are important for a number of applications like rapid shape transformation,

energy dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows polylogarithmic-

time solutions to all of these problems.

Keywords Progammable matter � Amoebot model � Reconfigurable circuits � Spanning tree � Symmetry detection

1 Introduction

The amoebot model (Derakhshandeh et al. 2014; Daymude

et al. 2023) is a well-studied model for programmable

matter (Toffoli and Margolus 1993)—a substance that can

be programmed to change its physical properties, like its

shape and density. In the geometric variant of this model,

the substance (called the amoebot structure) consists of

simple particles (called amoebots) that are placed on the

infinite triangular grid graph and are capable of local

movements through expansions and contractions.

Inspired by the nervous and muscular system, Feldmann

et al. (2022) introduced a reconfigurable circuit extension

to the amoebot model with the goal of significantly

accelerating fundamental problems like leader election and

shape transformation. As a first step, they showed that

leader election, consensus, compass alignment, chirality

agreement, and various shape recognition problems can be

solved in at most Oðlog nÞ time. This paper continues this

line of work by considering a number of additional

problems:

First, we consider the stripe computation problem

where, given any connected amoebot structure S, an

amoebot u in S, and some axis X, all amoebots belonging to

axis X through u have to be identified. Second, we consider

the global maximum problem, which identifies an amoebot

at the highest possible position with respect to some

direction in some given amoebot (sub)structure. A solution
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to this problem can then be used to solve the skeleton

problem, where a (not necessarily simple) cycle of amoe-

bots has to be found in the given amoebot structure which

contains all boundary amoebots. A canonical solution to

that problem can then be used to come up with a canonical

path, which provides a unique characterization of the shape

of the given amoebot structure. Constructing canonical

paths for different directions will then allow the amoebots

to set up a spanning tree and to check symmetry properties

of the given amoebot structure.

The problems have a number of important applications.

The stripe computation problem is important to avoid

conflicts in joint amoebot contractions and expansions (see

Figs. 1 and 2), which is critical for rapid shape transfor-

mation. A spanning tree is an important step towards

energy distribution from amoebots with access to energy to

amoebots without such access (Daymude et al. 2021), and

canonical skeleton paths as well as symmetry checks are

important for structural monitoring and repair.

1.1 Geometric amoebot model

In the geometric amoebot model (Daymude et al. 2023), a

set of n amoebots is placed on the infinite regular triangular

grid graph GD ¼ ðV ;EÞ (see left side of Fig. 3). An

amoebot is an anonymous, randomized finite state machine

that either occupies one or two adjacent nodes of GD, and

every node of GD is occupied by at most one amoebot. If an

amoebot occupies just one node, it is called contracted and

otherwise expanded. Two amoebots that occupy adjacent

nodes in GD are called neighbors. Amoebots are able to

move through contractions and expansions. However,

since our algorithms do not make use of movements, we

omit further details and refer to Daymude et al. (2023) for

more information.

Each amoebot has a compass orientation (it defines one

of its incident edges as the northern direction) and a chi-

rality (a sense of clockwise or counterclockwise rotation)

that it can maintain as it moves, but initially the amoebots

might not agree on their compass orientation and chirality.

In this paper, we assume that all amoebots share a common

compass orientation and chirality. This is reasonable since

Feldmann et al. (2022) showed that all amoebots are able

to come to an agreement within the considered extension

(see Sect. 1.4).

Let the amoebot structure S � V be the set of nodes

occupied by the amoebots. By abuse of notation, we

identify amoebots with their nodes. We say that S is con-

nected iff GS is connected, where GS ¼ GDjS is the graph

induced by S. In this paper, we assume that initially, S is

connected and all amoebots are contracted. Also, we

assume the fully synchronous activation model, i.e., the

time is divided into synchronous rounds, and every

amoebot is active in each round. On activation, each

amoebot may perform a movement and update its state as a

function of its previous state. However, if an amoebot fails

⇔ u ⇔ u

Fig. 1 Joint movement extension. Feldmann et al. (2022) have

proposed joint movements to the amoebot model where an expanding

amoebot is capable of pushing other amoebots away from it, and a

contracting amoebot is capable of pulling other amoebots towards it.

The figures show a joint expansion (from left to right) resp. a joint

contraction (from right to left) of the yellow amoebots (thick

boundary). The left side of the right figure shows stripe AðS; u;NÞ
(see Sect. 1.3). The stripe can expand without causing any conflicts

Fig. 2 Exemplary conflicts. In the left figure, if the yellow amoebots

(thick boundary) contract, the red amoebots (double boundary) will

collide. In order to avoid the collision, the red amoebots (double

boundary) have to contract as well. In the right figure, if the yellow

amoebots (thick boundary) expand, the amoebot structure will tear

apart. In order to maintain all connections, the red amoebots (double

boundary) have to expand as well

Fig. 3 Amoebot structures and reconfigurable circuits. The first

figure shows an amoebot structure S. The dotted lines indicate the

triangular grid GD. The nodes indicate the amoebots. The arrows

show their chirality and compass orientation. The red edges indicate

the graph GS. The other two figures show an amoebot structure with

k ¼ 2 external links between neighboring amoebots. The amoebots

are shown in gray. The nodes on the boundary are the pins, and the

ones within the amoebots the partition sets. An edge between a

partition set Q and a pin p implies p 2 Q. Each color resp. line pattern

indicates another circuit. The first two figures are taken from

Feldmann et al. (2022)
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to perform its movement, it remains in its previous state.

The time complexity of an algorithm is measured by the

number of synchronized rounds required by it.

1.2 Reconfigurable circuit extension

In the reconfigurable circuit extension (Feldmann et al.

2022), each edge between two neighboring amoebots u and

v is replaced by k edges called external links with endpoints

called pins, for some constant k� 1 that is the same for all

amoebots. For each of these links, one pin is owned by

u while the other pin is owned by v. In this paper, we

assume that neighboring amoebots have a common label-

ing of their incident external links.

Each amoebot u partitions its pin set P(u) into a col-

lection QðuÞ of pairwise disjoint subsets such that the

union equals the pin set, i.e., PðuÞ ¼
S

Q2QðuÞ Q. We call

QðuÞ the pin configuration of u and Q 2 QðuÞ a partition

set of u. Let Q ¼
S

u2S QðuÞ be the collection of all par-

tition sets in the system. Two partition sets are connected

iff there is at least one external link between those sets. Let

L be the set of all connections between the partition sets in

the system. Then, we call H ¼ ðQ; LÞ the pin configuration

of the system and any connected component C of H a

circuit (see center of Fig. 3). Note that if each partition set

of Q is a singleton, i.e., a set with exactly one element, then

every circuit of H just connects two neighboring amoebots.

However, an external link between the neighboring

amoebots u and v can only be maintained as long as both u

and v occupy the incident nodes. Whenever two amoebots

disconnect, the corresponding external links and their pins

are removed from the system. An amoebot is part of a

circuit iff the circuit contains at least one of its partition

sets. A priori, an amoebot u may not know whether two of

its partition sets belong to the same circuit or not since

initially it only knows QðuÞ.
Each amoebot u can send a primitive signal (a beep) via

any of its partition sets Q 2 QðuÞ that is received by all

partition sets of the circuit containing Q at the beginning of

the next round. The amoebots are able to distinguish

between beeps arriving at different partition sets. More

specifically, an amoebot receives a beep at partition set Q if

at least one amoebot sends a beep on the circuit belonging

to Q, but the amoebots neither know the origin of the signal

nor the number of origins. Note that beeps are enough to

send whole messages over time, especially between adja-

cent amoebots. We modify an activation of an amoebot as

follows. As a function of its previous state and the beeps

received in the previous round, each amoebot may perform

a movement, update its state, reconfigure its pin configu-

ration, and activate an arbitrary number of its partition sets.

The beeps are propagated on the updated pin

configurations. If an amoebot fails to perform its move-

ment, it remains in its previous state and pin configuration,

and does not beep on any of its partition sets.

In this paper, we will utilize the dual graph of the tri-

angular grid graph, i.e., a hexagonal tesselation, to visu-

alize amoebot structures (see right side of Fig. 3). Thereby,

we reduce each external link to a single pin. Furthermore,

in order to improve the comparability of circuit configu-

rations, we add pins to each side of the hexagon.

1.3 Problem statement and our contribution

Let Dm ¼ fN;ENE;ESE; S;WSW ;WNWg be the set of all

cardinal directions along the axes of GD, and Dp ¼
fE; SSE; SSW ;W ;NNW ;NNEg the set of all cardinal

directions perpendicular to the axes of GD (see Fig. 4). In

the following, we state the considered problems. An

overview is given by Table 1.

First, we consider the stripe computation problem. Let

Xðv; dÞ � V denote the nodes of GD that lie on the axis

through the node v 2 V into the cardinal direction

d 2 Dm [ Dp. For R � V , we call the set AðR; v; dÞ ¼
R \ Xðv; dÞ a stripe of R (see Fig. 1). Note that a stripe is

not necessarily connected. Let an amoebot u 2 S and a

cardinal direction d 2 Dm [ Dp be given, i.e., each amoe-

bot v 2 S knows the cardinal direction d and whether

v ¼ u. The goal of each amoebot v 2 S is to determine

whether v 2 AðS; u; dÞ. Our stripe algorithm solves the

stripe computation problem after Oðlog nÞ rounds.

Second, we consider the global maxima problem. Let a

cardinal direction d 2 Dm [ Dp and a non-empty set R � S

be given, i.e., each amoebot v 2 S knows the direction d

and whether v 2 R. The goal of each amoebot v 2 S is to

determine whether v 2 argmin w2RfdðR;wÞ where fdðR;wÞ
denotes the number of amoebots in R that lie in direction d

from amoebot w. We call argmin w2RfdðR;wÞ the set of

global maxima of R with respect to d. Our global maxima

algorithm solves the global maxima problem after

Oðlog2 nÞ rounds w.h.p.1

Third, we consider the (canonical) skeleton problem. An

amoebot u is a boundary amoebot iff it is adjacent to an

unoccupied node in V n S. Otherwise, we call u an inner

amoebot. A (potentially non-simple) cycle of amoebots is a

skeleton iff the cycle contains all boundary amoebots in

E
E
N
E

NNE
N

NN
W

W
N
W

W
W
SW

SS
W

S
SSE

E
SE

Fig. 4 Cardinal directions. The

thick arrows indicate the cardi-

nal directions along the main

axes (Dm), and the thin ones the

cardinal directions perpendicu-

lar to the main axes (Dp)
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S. Note that the skeleton may contain inner amoebots. An

amoebot structure computes a skeleton C iff each amoebot

knows its predecessor and successor for each of its

occurrences in C. The goal of the skeleton problem is to

compute an arbitrary skeleton.

Since skeletons are not unique, we define a canonical

skeleton with respect to a cardinal direction d 2 Dm [ Dp

and a sign s 2 fþ;�g (abbreviated as (d, s)-skeleton). We

defer the definition to Sect. 4.1. Let a cardinal direction

d 2 Dm [ Dp and a sign s be given, i.e., each amoebot

v 2 S knows the cardinal direction d and the sign s. The

goal of the canonical skeleton problem is to compute the

canonical skeleton. Our canonical skeleton algorithm

solves the (canonical) skeleton problem after Oðlog2 nÞ
rounds w.h.p.

Our algorithms for the remaining problems are based on

skeletons. However, they split the skeletons into paths that

we call skeleton paths. For the canonical skeletons, we

define a canonical skeleton path by specifying a splitting

point. Our canonical skeleton algorithm determines this

point in parallel to the computation of the canonical

skeleton.

Fourth, we consider the spanning tree problem. A tree is

a cycle-free and connected graph. A spanning tree of an

amoebot structure S is a tree T ¼ ðS;ETÞ with ET � E. An

amoebot structure computes a spanning tree T if each

amoebot u 2 S knows whether fu; vg 2 ET for each

neighbor v 2 NðuÞ. The goal of the spanning tree problem

is to compute an arbitrary spanning tree. Our spanning tree

algorithm solves the spanning tree problem after Oðlog2 nÞ
rounds w.h.p.

Finally, we consider the symmetry detection problem.

The goal of that problem is to determine whether the

amoebot structure features rotational or reflection symme-

tries. Our symmetry detection algorithm solves the the

problem after Oðlog5 nÞ rounds w.h.p. In addition, we show

how to compute the amoebot occupying the symmetry

point and amoebots on the symmetry axis, respectively, if

such exist. Our procedures require Oðlog2 nÞ rounds w.h.p.

Note that our stripe algorithm is deterministic while all

other algorithms are randomized. The global maxima,

canonical skeleton, and spanning tree algorithm only

require randomization for leader election (see

Thereom 2.1).

1.4 Related work

The reconfigurable circuit extension was introduced by

Feldmann et al. (2022). Note that the amoebot model

(Alumbaugh et al. 2019) and its circuit extension (Padilla

et al. 2015; Scalise and Schulman 2019; Shah et al. 2020;

Song et al. 2019) can in principle be realized.

Feldmann et al. (2022) have proposed solutions for

leader election (see Sect. 2), consensus, compass align-

ment, chirality agreement, and various shape recognition

problems. Both, the alignment of the compasses and the

agreement on a chirality requires Oðlog nÞ w.h.p. This

makes our assumption of a common compass orientation

and chirality reasonable.

To our knowledge the stripe computation, global max-

ima, (canonical) skeleton, and symmetry detection problem

have not been considered within the standard amoebot

model. However, regarding the global maxima problem,

Daymude et al. (2020) have considered the related problem

of determining the dimensions of an object (a finite, con-

nected, static set of nodes) in order to solve various convex

hull problems. Their approach can be easily adjusted to

compute the global maxima of the amoebot structure.

However, it requires O(n) rounds.

The spanning tree problem is widely studied in the

distributed algorithms community, e.g., Pandurangan et al.

(2018). The spanning tree primitive is one of the most used

techniques to move amoebots, e.g., Daymude et al. (2019),

Daymude et al. (2020), Derakhshandeh et al. (2015), Luna

et al. (2020). Beyond that, spanning trees were applied to

distribute energy (Daymude et al. 2021). However, since in

the standard amoebot model, information can only travel

amoebot by amoebot, the construction requires XðDÞ
rounds where D is the diameter of the amoebot structure

1 An event holds with high probability (w.h.p.) if it holds with

probability at least 1 � 1=nc where the constant c can be made

arbitrarily large.

Table 1 An overview of our

main algorithmic results
Problem Required pins Runtime Section Theorem

Stripe computation 2 Oðlog nÞ Section 3.3 Theorem 3.7

Global maxima 2 Oðlog2 nÞ w.h.p. Section 3.3 Theorem 3.9

Canonical skeleton 4 Oðlog2 nÞ w.h.p. Section 4.1 Theorem 4.4

Spanning tree 4 Oðlog2 nÞ w.h.p. Section 4.2 Theorem 4.6

Symmetry detection 4 Oðlog5 nÞ w.h.p. Section 4.3 Theorem 4.9
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(e.g., see Daymude et al. (2019)). Since D ¼ Xð
ffiffiffi
n

p
Þ, our

solution is a significant improvement.

Other problems that were considered in the standard

amoebot model include shape formation (e.g., see Der-

akhshandeh et al. 2016; Luna et al. 2020), object coating

(Derakhshandeh et al. 2017), convex hull (Daymude et al.

2020), gathering (Cannon et al. 2016), and bridging

(Arroyo et al. 2018). It would certainly be interesting to

investigate whether the reconfigurable circuit extension can

also be used to significantly speed up solutions to these

problems, but we leave it as future work.

2 Preliminaries

In this section, we enumerate important primitives given in

previous papers.

Global circuit: If each amoebot partitions its pins into

one partition set, we obtain a single circuit that intercon-

nects all amoebots. We call this circuit the global circuit

(Feldmann et al. 2022).

Leader election: We make use of a generalized version

of the leader election algorithm proposed by Feldmann

et al. (2022):

Theorem 2.1 Let C1; . . .;Cm be sets of candidates. For

each i 2 f1; . . .;mg , let Ci be the circuit that connects all

candidates of set Ci. Let Ci \ Cj ¼ ; hold for all i 6¼ j. An

amoebot structure elects a leader from each set of candi-

dates after Hðlog nÞ rounds w.h.p.

In the classical leader election problem, the amoebot

structure S has to elect a leader only from the set C1 ¼ S.

Chains: We call an ordered sequence C ¼
ðu0; . . .; um�1Þ of m amoebots a chain iff (i) all subsequent

amoebots ui; uiþ1 are neighbors, (ii) each amoebot in C

except u0 knows its predecessor, and (iii) each amoebot in

C except um�1 knows its successor.

Boundary sets: We adopt the definition for the

boundary sets from Derakhshandeh et al. (2015): Consider

GVnS ¼ GDjVnS. The connected components of GVnS are

called empty regions. The number of empty regions is

finite since S is finite. Let R1; . . .;Rm denote the empty

regions. For i 2 f1; . . .;mg, the boundary set Bi is the

neighborhood of Ri in S, i.e.,

Bi ¼ fu 2 S j 9v 2 Ri : fu; vg 2 Eg:

There is exactly one infinite empty region since S is finite.

We call the corresponding boundary set the outer boundary

set, and the others inner boundary sets.

Derakhshandeh et al. (2015) showed that the amoebot

structure is able to organize each boundary set into a cycle.

For that, each amoebot u 2 S proceeds as follows. Consider

the intersection of GVnS and the neighborhood of u. For

each connected component in the intersection, amoebot u

can identify the next clockwise neighbor v 2 S and the next

counterclockwise neighbor w 2 S. Amoebot u picks v as its

successor, and w as its predecessor. Since we assume that

the amoebots agree on a common chirality, we obtain a

cycle for each boundary set.

In order to distinguish inner and outer boundaries, we

apply the inner outer boundary test by Derakhshandeh

et al. (2015). They accumulate the angles of the turns while

traversing the cycle of the boundary set once. An outer

boundary set results in a sum of 360�, and an inner

boundary set results in a value of �360�. Note that it is

sufficient to count the turns by 60� modulo 5. This allows

us to accumulate the sum with constant memory. However,

the traversing requires O(n) rounds. We accelerate the

accumulation by the following result by Feldmann et al.

(2022):

Theorem 2.2 Let C ¼ ðv0; . . .; vm�1Þ be a chain within the

amoebot structure where m 2 N denotes the length of the

chain. Let k 2 N be constant. Let xi 2 f0; . . .; k � 1g for all
i 2 f0; . . .;m� 1g. Suppose that for each i 2 f0; . . .;m�
1g , amoebot vi knows the value xi. Then, the chain com-

putes x ¼
P

i2f0;...;m�1g xi mod k after OðlogmÞ rounds.

Corollary 2.3 A boundary set can determine whether it is

an inner boundary set or the outer boundary set within

Oðlog nÞ rounds w.h.p.

Proof In order to accelerate the inner outer boundary test,

we apply Theorem 2.2. Recall that each boundary set can

organize itself into a cycle. We apply Theorem 2.1 on each

cycle to elect a leader. However, each amoebot operates

each of its positions independently of each other. We split

each cycle at the elected position. Each amoebot knows its

predecessor and successor on the cycle and therefore also

within the chain. Let xi denote the angle at amoebot vi and

let k ¼ 5. Finally, note that each boundary has O(n)

amoebots since each amoebot has at most three local

boundaries (e.g., consider the yellow amoebot labelled with

a 0 on the right side of Fig. 14). Thus, the sum of the angles

can be accumulated after Oðlog nÞ rounds. h

Synchronization of procedures: Sometimes, we want

to execute a procedure on different subsets in parallel, e.g.,

we apply the inner outer boundary test on all boundary sets

at once. The execution of the the same procedure may take

different amounts of rounds for each subset. The amoebots

of a single subset are not able to decide when all subsets

have terminated. In order to synchronize the amoebot

structure with respect to the procedures, the amoebots

periodically establish the global circuit. The amoebots of

each subset that has not yet terminated beep on that circuit.

The structural power of reconfigurable circuits...
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The amoebot structure may proceed to the next procedure

once the global circuit was not activated.

3 Computing identifiers

In this section, we assign identifiers in Z to the amoebots.

Let ðxk�1; . . .; x0Þ denote the two’s complement represen-

tation of �xk�1 � 2k�1 þ
Pk�2

i¼0 xi � 2i. By abuse of notation,

we identify the identifiers with their two’s complement

representation. Due to the constant-sized memory of the

amoebots, each amoebot has to compute a two’s comple-

ment representation of its identifier over time, i.e., it will

compute the i-th bit in the i-th iteration of the presented

algorithms.

In the first subsection, we compute successive identifiers

along chains. In the second subsection, we compute spatial

identifiers with respect to a cardinal direction. In the third

subsection, we show two applications for the identifiers. In

the fourth subsection, we compute identifiers equal to the

distances to a given amoebot.

3.1 Successive identifiers along the chain

In this section, we compute successive identifiers along a

chain with respect to an amoebot that we call the reference

amoebot. Let C ¼ ðu0; . . .; um�1Þ be a chain of amoebots.

Let ur be an arbitrary reference amoebot within the chain,

e.g., chosen by position (for example r ¼ 0), or by a leader

election. We assign identifiers id C;ur according to the

following rules:

id C;urðurÞ ¼ 0 ð1Þ

id C;urðuiþ1Þ ¼ id C;urðuiÞ þ 1 for 1� i\m ð2Þ

Note that id C;urðuiÞ ¼ i� r. Also note that the identifiers

might be negative.

In order to compute the identifiers, we utilize a proce-

dure on the chain of amoebots proposed by Feldmann et al.

(2022) that we henceforth refer to as the primary and

secondary circuit algorithm (PASC algorithm). Originally,

the algorithm has been used as a subroutine for

Theorem 2.2.

In the following, we explain how the PASC algorithm

works (see Fig. 5). So, let C ¼ ðu0; . . .; um�1Þ be a chain of

m amoebots. If an amoebot occurs multiple (but constantly

many) times, it operates each position independently of

each other which is possible by using sufficiently many

pins. Each amoebot is either active or passive. Initially,

each amoebot is active. The algorithm iteratively trans-

forms active amoebots into passive amoebots while keep-

ing amoebot ur active.

At the beginning of an iteration, the amoebots establish

two circuits as follows. Each amoebot has two partition sets

that we call the primary and secondary partition set. We

connect the primary and secondary partition sets by the

following two rules2 (see Fig. 5): (i) If an amoebot is

active, we connect its primary partition set to the secondary

partition set of its predecessor, and its secondary partition

set to the primary partition set of its predecessor. (ii) If an

amoebot is passive, we connect its primary partition set to

the primary partition set of its predecessor, and its sec-

ondary partition set to the secondary partition set of its

predecessor.

We obtain two circuits through all amoebots (see

Fig. 5). Each amoebot defines the circuit containing its

primary partition set as its primary circuit, and the circuit

containing its secondary partition set as its secondary cir-

cuit. Clearly, we obtain two disjoint circuits along the

chain. We refer to Feldmann et al. (2022) for a detailed

construction.

After establishing these circuits, the iteration utilizes

two rounds. In the first round, amoebot ur activates its

primary circuit. Each active amoebot that has received the

beep on its secondary circuit beeps in the second round on

its secondary circuit. These amoebots become passive

amoebots in the next iteration. The algorithm terminates

when the second round is silent. At this point, amoebot ur
is the remaining active amoebot. Feldmann et al. (2022)

have proven the following lemma.

Lemma 3.1 The PASC algorithm terminates in dlogme
iterations, resp. OðlogmÞ rounds.

We obtain the identifiers from the PASC algorithm as

follows. Let k ¼ dlogme be the number of iterations. For

0� i\k, let ri be the first round of the ðiþ 1Þ-st iteration.

Note that in each of these rounds, each amoebot of the

chain receives a beep either on its primary circuit or its

secondary circuit. Hence, in round ri, amoebot x interprets

a beep on the primary circuit as xi ¼ 0 and a beep on the

secondary circuit as xi ¼ 1.

Lemma 3.2 Given a chain C of amoebots and an amoebot

ur of the chain, the PASC algorithm computes id C;urðvÞ for
each amoebot v in the chain.

Proof Since the reference amoebot ur activates its primary

circuit, it always receives a beep on its primary circuit.

This implies ðurÞi ¼ 0 for 0� i\k. Thus, Eq. 1 holds.

Let y be the successor of x. We have to show that Eq. 2

holds, i.e., id C;urðyÞ ¼ id C;urðxÞ þ 1.

We have two cases: (i) y never becomes passive, and (ii)

y becomes passive. The first case directly implies

2 In comparison to Feldmann et al. (2022), we have adjusted the rules

by mirroring the connections.
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id C;urðxÞ ¼ ð1; . . .; 1Þ ¼ �1 and idC;ur ðyÞ¼ð0; . . .;0Þ¼0.

For the second case, let l denote the iteration where y

becomes passive. Hence, y has received a beep on its

primary circuit in the first l�2 iterations and a beep on its

secondary circuit in the ðl�1Þ-st iteration, i.e., yl�1 ¼1 and

yi¼0 for 0� i\l�1. Since y is active, x has received a

beep on its secondary circuit in the first l�2 iterations and

a beep on its primary circuit in the ðl�1Þ-st iteration, i.e.,

xl�1 ¼0 and xi¼1 for 0�i\l�1. Since y is passive from

the l-th iteration, xi¼ yi holds for l� i\k. We obtain

id C;urðxÞ ¼ ðxk�1; . . .; xl; 0; 1; . . .; 1Þ
id C;urðyÞ ¼ ðyk�1; . . .; yl; 1; 0; . . .; 0Þ

¼ ðxk�1; . . .; xl; 0; 1; . . .; 1Þ þ 1

since 2l�1 ¼
Pl�2

i¼0 2i þ 1. h

3.2 Spatial identifiers

In this section, we compute identifiers relative to the spatial

positions of the amoebots with respect to a cardinal

direction d 2 Dm [ Dp and a reference amoebot ur 2 S. Let

d0 denote the direction obtained if we rotate d by 90�

counterclockwise, e.g., d0 ¼ N for d ¼ E. First, consider

d 2 Dp (see left side of Fig. 6). Let Ad ¼ fAðS; v; d0Þ j v 2
Sg denote a set of stripes. We first assign identifiers to Ad.

Afterwards, we extend these identifiers to the nodes in S.

Observe that Ad partitions S into disjoint stripes. These

stripes form a chain Cd if we think of the stripes as nodes

such that two nodes are adjacent if the corresponding

stripes are neighbors (see left side of Fig. 6). The order of

the chain is given by the cardinal direction d: The successor

of a stripe is the neighboring stripe in direction d. Let

succ ðAÞ denote the succeeding stripe of stripe A. Let

Ar ¼ AðS; ur; d0Þ. We assign identifiers id Cd ;Ar
according to

the following two rules:

id Cd ;Ar
ðArÞ ¼ 0

id Cd ;Ar
ð succ ðAÞÞ ¼ id Cd ;Ar

ðAÞ þ 1 for all A 2 Ad

Finally, we define id d;urðvÞ ¼ id Cd ;Ar
ðAðS; v; d0ÞÞ for all

nodes v 2 S.

In order to compute the identifiers, we transfer the

concept of primary and secondary circuits from a chain of

amoebots to a chain of stripes (compare with Sect. 3.1):

From a global perspective, each stripe knows its prede-

cessor and its successor, is either active or passive, and has

a primary and secondary partition set. The primary and

secondary partition sets are connected by the following

rules: If a stripe is active, its primary partition set is con-

nected to the secondary partition set of its predecessor, and

its secondary partition set is connected to the primary

partition set of its predecessor. If a stripe is passive, its

primary partition set is connected to the primary partition

set of its predecessor, and its secondary partition set is

connected to the secondary partition set of its predecessor.

There are no further connections. In order to keep the

amoebots within a stripe synchronized, we additionally

require that each amoebot has access to the primary and

secondary partition set of its stripe. In the following, we

explain how to construct the circuits that satisfy the

aforementioned properties.

Note that the neighborhood of each amoebot only con-

tains amoebots of the same stripe, the preceding stripe, and

the succeeding stripe. Since we assume common compass

orientation and chirality, each amoebot is able to determine

to which stripe each neighbor belongs. We now define pin

configurations that satisfy the aforementioned properties.
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Fig. 5 PASC algorithm. Each

figure shows the chain at the

beginning of the i-th iteration.

The circles indicate the primary

(P) and secondary (S) partition

sets. The blue bordered amoebot

denotes the reference amoebot

ur . Yellow amoebots are active,

and gray amoebots are passive.

The solid edges indicate the

primary circuit of ur , and the

dotted edges the secondary

circuit of ur . All primary and

secondary partition sets that are

part of the primary

resp. secondary circuit of ur are

depicted in red resp. cyan
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Each pin configuration has two partition sets that we call

the primary and secondary partition set. We connect the

primary and secondary partition sets of an amoebot to the

primary and secondary partition sets of adjacent amoebots

such that the aforementioned properties are reflected

locally. For example, consider two adjacent amoebots u

and v such that u belongs to an active stripe and v belongs

to u’s preceding stripe. We connect u’s primary partition

set to v’s secondary partition set, and u’s secondary parti-

tion set to v’s primary partition set. Since we assign the

same identifiers to amoebots of the same stripe, we connect

their primary and secondary partition sets, respectively. We

obtain two pin configurations: one for amoebots of active

stripes and one for amoebots of passive stripes (see Fig. 7).

Lemma 3.3 The construction satisfies the aforementioned

properties.

Proof For the sake of analysis, we first consider an infinite

amoebot structure where S ¼ V . Afterwards, we transfer

the results to arbitrary connected amoebot structures.

Consider a single stripe. Let ACTIVE denote the pin

configuration used for amoebots of active stripes, and

PASSIVE denote the pin configuration used for amoebots

of passive stripes. Both pin configurations define a primary

and secondary partition set. All amoebots within the stripe

connect their primary and secondary partition sets, respec-

tively (see Fig. 8). We define the union of all primary resp.

secondary partition sets within a stripe as the primary resp.

secondary partition set of the stripe. Note that each

amoebot has access to both partition sets and is able to

distinguish between them.

Next, consider the connections to the preceding stripe.

The connections within the pin configuration ACTIVE are

selected in such a way that an active stripe connects its

primary partition set exclusively to the secondary partition

set of the preceding stripe, and its secondary partition set

exclusively to the primary partition set of the preceding

stripe (see Fig. 8). Similar, the connections within the pin

configuration PASSIVE are selected in such a way that an

active stripe connects its primary partition set exclusively

to the primary partition set of the preceding stripe, and its

secondary partition set exclusively to the secondary

partition set of the preceding stripe (see Fig. 8). Note that

there are no further connections.

The crucial property of our construction is that any two

amoebots are connected by any arbitrary path of amoebots

in the same fashion, i.e., either both primary partition sets

are connected to the secondary partition set of the other

amoebot, or their primary and secondary partition sets are

connected, respectively (see left side of Fig. 9). This allows

us to remove amoebots without separating the circuits as

long as the amoebot structure stays connected (see right

side of Fig. 9). h

Now, we simply apply the PASC algorithm on the chain

of stripes to compute id Cd ;Ar
, i.e., each amoebot v 2 S

computes id Cd ;Ar
ðAðS; v; d0ÞÞ that equals id d;urðvÞ by

definition.

Lemma 3.4 Given ur 2 S and d 2 Dp , the PASC algo-

rithm computes id d;urðvÞ for each v 2 S.

Proof By Lemma 3.3, we can apply the primitive of pri-

mary and secondary circuits to the chain of stripes as long

as each amoebot knows whether its stripe is active or

passive. This implies that we can perform the PASC

algorithm that by Lemma 3.2, computes id Cd ;Ar
.

It remains to show that each amoebot knows whether its

stripe is active or passive throughout the execution of the

algorithm. Initially, this is trivially true since each stripe is

active. A stripe becomes passive once it receives a beep on

its secondary circuit. Each amoebot of the stripe can

observe this beep since by construction, each amoebot has

access to the secondary partition set of its stripe. There-

after, the stripe stays passive. h

Next, consider d 2 Dm. We discuss the necessary mod-

ifications in comparison to d 2 Dp. Note that an amoebot is

unable to locally determine to which stripe its neighbors

belong (see Fig. 10). We therefore perform the PASC

algorithm on the union of the amoebot structure and its

neighborhood (see right side of Fig. 6). Note that each

neighbor of an amoebot v 2 S belongs either to one of the
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Fig. 6 Spatial identifiers. The left figure show the spatial identifiers

with respect to d ¼ E, and right figure with respect to d ¼ N. Each

color indicates a stripe (in S). The white hexagons indicate the
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amoebot ur
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two preceding stripes or to one of the two succeeding

stripes.

Each amoebot tracks when the stripes of its neighbors

become passive as follows. Recall that all stripes are ini-

tially active. Suppose that each amoebot v 2 S knows

whether (its stripe and) the stripes of its neighbors are

active or passive at the beginning of an iteration of the

PASC algorithm. Hence, v also knows how these stripes are

interconnected. Thus, v can conclude from the signal it

receives on the signals received by the stripes of its

neighbors and with that whether these become passive.

There are two reasons for the tracking. First, some of the

stripes are not occupied by any amoebots. The tracking

allows each amoebot v 2 S to activate the correct circuits

for each of its neighbors. Second, the connections between

an amoebot and its neighbor of the stripe preceding its

preceding stripe depends on the states of its stripe and its

preceding stripe. We obtain four pin configurations (see

Fig. 11).

Lemma 3.5 The construction satisfies the aforementioned

properties.

Proof The proof is similar to the one of Lemma 3.3. For

the sake of analysis, we first consider an infinite amoebot

structure where S ¼ V . Afterwards, we transfer the results

to arbitrary connected amoebot structures.

Consider a single stripe A1. All pin configurations define

a primary and secondary partition set. Note that the

amoebots within the stripe are not adjacent. So, we cannot

connect them directly. However, we still define the union

of all primary resp. secondary partition sets within a stripe

as the primary resp. secondary partition set of the stripe.

Note that each amoebot has access to both partition sets

and is able to distinguish between them.

ACTIVE/ACTIVE PASSIVE/ACTIVE ACTIVE/PASSIVE PASSIVE/PASSIVE

Fig. 8 Connectivity between

adjacent stripes for d ¼ E. The

figures show all possible

combinations of active and

passive stripes

ACT PAS ACT PAS ACT ACT PAS ACT PAS ACT

Fig. 9 Construction for d ¼ E.

The left figure shows a section

of the infinite amoebot

structure, and the right figure an

arbitrary amoebot structure. The

connectivity of the remaining

amoebots is preserved

u

v

u

v

Fig. 10 Neighboring stripes.

Amoebot u is unable to

determine whether amoebot

v belongs to the preceding stripe

(orange, thick boundary) or the

stripe preceding its preceding

stripe (yellow, double

boundary)
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Fig. 11 Utilized pin configurations for d ¼ N. The first argument

denotes the state of the amoebot’s stripe and the second argument

denotes the state of the preceding stripe, respectively
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Next, consider the connections to its preceding stripe A2

and the stripe A3 preceding A2. If A1 and A2 are active, then

A1 utilize pin configuration ðACT ;ACTÞ. The connections

are selected in such a way that A1 connects its primary

partition set exclusively to the secondary partition set of

A2, and its secondary partition set exclusively to the

primary partition set of A2 (see Fig. 12). Further, A1

connects its primary partition set exclusively to the primary

partition set of A3, and its secondary partition set exclu-

sively to the secondary partition set of A3 (see Fig. 12).

If A1 is active and A2 is passive, then A1 utilize pin

configuration ðACT ;PASÞ. The connections are selected in

such a way that A1 connects its primary partition set

exclusively to the secondary partition set of A2, and its

secondary partition set exclusively to the primary partition

set of A2 (see Fig. 12). Further, A1 connects its primary

partition set exclusively to the secondary partition set of

A2, and its secondary partition set exclusively to the

primary partition set of A2 (see Fig. 12).

If A1 is passive and A2 is active, then A1 utilize pin

configuration ðPAS;ACTÞ. The connections are selected in

such a way that A1 connects its primary partition set

exclusively to the primary partition set of A2, and its

secondary partition set exclusively to the secondary

partition set of A2 (see Fig. 12). Further, A1 connects its

primary partition set exclusively to the secondary partition

set of A3, and its secondary partition set exclusively to the

primary partition set of A3 (see Fig. 12).

If A1 and A2 are passive, then A1 utilize pin configu-

ration ðPAS;PASÞ. The connections are selected in such a

way that A1 connects its primary partition set exclusively to

the primary partition set of A2, and its secondary partition

set exclusively to the secondary partition set of A2 (see

Fig. 12). Further, A1 connects its primary partition set

exclusively to the primary partition set of A3, and its

secondary partition set exclusively to the secondary

partition set of A3 (see Fig. 12).

Hence, the aforementioned properties hold between

each stripe and its preceding stripe and between each stripe

and the stripe preceding its preceding stripe. This ensures

that each amoebot connects its primary and secondary

partition set to the primary and secondary partition set of

each of its neighbors. Also note that our construction has

connected all primary and secondary partition sets within

each stripe, respectively (see Fig. 12).

The crucial property of our construction is that any two

amoebots are connected by any arbitrary path of amoebots

in the same fashion, i.e., either both primary partition sets

are connected to the secondary partition set of the other

amoebot, or their primary and secondary partition sets are

connected, respectively (see left side of Fig. 13). This

allows us to remove amoebots without separating the

circuits as long as the amoebot structure stays connected

(see right side of Fig. 13). h

Lemma 3.6 Given ur 2 S and d 2 Dm , the PASC algo-

rithm computes id d;urðvÞ for each v 2 S.

Proof The proof works analogously to the one of

Lemma 3.4. By Lemma 3.5, we can apply the primitive of

primary and secondary circuits to the chain of stripes as

long as each amoebot knows whether its stripe and the

stripe of each of its neighbors are active or passive. Note

that the knowledge about the latter allows each amoebot to

simulate non-occupied nodes in its neighborhood, which

prevents gaps in the chain Cd. This implies that we can

perform the PASC algorithm that by Lemma 3.2, computes

id Cd ;Ar
.

It remains to show that each amoebot knows whether its

stripe and the stripe of each of its neighbors are active or

passive throughout the execution of the algorithm. Initially,

this is trivially true since each stripe is active. A stripe

becomes passive once it receives a beep on its secondary

circuit. Each amoebot of the stripe can observe this beep
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(ACT ,ACT)
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Fig. 12 Connectivity between adjacent stripes for d ¼ N. The left

label indicates whether the stripe is active or passive, and the right

label indicates the utilized pin configuration. We only depict the

combinations of three consecutive stripes where the southernmost

stripe and its preceding stripe are passive, i.e., the southernmost stripe

utilizes pin configuration ðPAS;PASÞ
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since by construction, each amoebot has access to the

secondary partition set of its stripe. Thereafter, the stripe

stays passive.

Further, each amoebot knows how its stripe and the

stripe of each of its neighbors are connected. Thus, it can

conclude from the signal it receives on the signals received

by the stripe of its neighbors and with that when that stripe

becomes passive. Thereafter, the stripe stays passive. h

Note that we can generalize this technique to arbitrary

directions as long as the identifiers within a neighborhood

only differ by some constant.

3.3 Applications

We now consider two applications for the identifiers,

namely the stripe problem and the global maxima problem.

First, consider the stripe problem. Recall that we com-

pute the set of amoebots on the axis through u in direction

d. Let d0 denote the direction obtained if we rotate d by 90�

clockwise, e.g., d0 ¼ E for d ¼ N. Our stripe algorithm

simply executes the PASC algorithm with respect to

direction d0 and with u as the reference amoebot, i.e.,

ur ¼ u. Note that this sets the identifier of u to 0, i.e.,

id d0;uðuÞ ¼ 0. By construction, id d0;uðvÞ ¼ id d0;uðuÞ ¼ 0

holds for all v 2 AðS; u; dÞ. We obtain the following

theorem.

Theorem 3.7 The stripe algorithm solves the stripe com-

putation problem in Oðlog nÞ rounds.

Remark 3.8 By construction, each amoebot in direction d0

from AðS; u; dÞ receives a positive identifier, and each

amoebot in the opposite direction from AðS; u; dÞ receives

a negative identifier (e.g., see Fig. 6). The sign of an

identifier is given by the most significant bit of its two’s

complement representation. More precisely, the identifier

is positive if the most significant bit is 0 and at least one

other bit is 1, and negative if the most significant bit is 1.

Hence, each amoebot v 62 AðS; u; dÞ is able to determine on

which side of the axis Xðu; dÞ it is situated.

Next, consider the global maxima problem. Recall that

we compute the global maxima of a set R � S (see

Sect. 1.3) with respect to direction d. By construction,

argmin w2RfdðR;wÞ ¼ argmax w2R id d;urðwÞ

holds for any reference amoebot ur. The idea of our global

maxima algorithm is therefore to execute the PASC algo-

rithm and to determine the highest identifier.

We first elect an u 2 R by applying a leader election (see

Theorem 2.1). By choosing u as the reference amoebot,

i.e., ur ¼ u, we ensure that the maximal identifier is non-

negative. In order to determine the maximum of non-neg-

ative numbers, we apply the consensus algorithm by

Feldmann et al. (2022) that agrees on the highest input

value. First, the amoebot structure establishes the global

circuit (see Sect. 2). Each amoebot v 2 R with id ðvÞ� 0

transmits its identifier starting from the most significant bit.

If a transmitting amoebot observes a beep in a round it does

not beep, it stops its transmission. Only an amoebot with

the highest identifier is able to transmit its identifier until

the end.

However, since each amoebot can only store a constant

section of its identifier, and since the PASC algorithm

provides the identifiers from the least significant bit to the

most significant bit, we have to partially recompute the

identifiers after each bit. In order to identify the correct bit,

we simply use two binary counters where the first counter

indicates the current bit, and the second counter the current

iteration of the PASC algorithm. We must be able to

increment, decrement, and compare the counters.

We realize the counters along a chain of amoebots as

follows. The i-th amoebot in the chain holds the i-th bit of

both counters, respectively. Initially, each bit is set to 0. In

order to increment (decrement) a counter, we have to flip

the first 0 (1) and all preceding bits. For that, we construct a

circuit along the chain that we cut at each amoebot holding

a 1 (0). Then, the first amoebot in the chain beeps. We

interpret the beep as a carryover. Hence, each amoebot

receiving the beep flips its bit. In order to compare the

counters, we utilize the global circuit. Each amoebot of the

chain holding two different bits beeps on the circuit. The

ACTIVE

PASSIVE

ACTIVE

PASSIVE

ACTIVE

PASSIVE

ACTIVE

Fig. 13 Construction for d ¼ N.

The left figure shows a section

of the infinite amoebot

structure, and the right figure an

arbitrary amoebot structure. The

connectivity of the remaining

amoebots is preserved
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counters are equal iff no amoebot beeps. All three opera-

tions require O(1) rounds. Using a chain along the outer

boundary set ensures a sufficient length of the counters. We

obtain the following theorem.

Theorem 3.9 The global maxima algorithm computes the

global maxima within Oðlog2 nÞ rounds w.h.p.

Proof By Theorem 2.1, the leader election requires

Oðlog nÞ rounds w.h.p. Then, we proceed iteratively. In

each iteration, we apply the PASC algorithm and apply a

single round of the consensus algorithm. By Lemmas 3.4

and 3.6, the PASC algorithm computes the identifiers

within Oðlog nÞ rounds. The consensus algorithm by

Feldmann et al. (2022) only adds a single round to each

iteration. Since we need Oðlog nÞ iterations (one for each

bit), the global maxima algorithm requires Oðlog2 nÞ
rounds w.h.p. h

3.4 Distances in the triangular grid graph

In this section, we compute identifiers equal to the dis-

tances in GD between the amoebots and a reference

amoebot ur 2 S. Let dist Dðu; vÞ denote the distance

between u and v in GD. The idea is to once again apply the

PASC algorithm. In the following, we will focus on the

necessary modifications in comparison to Sect. 3.2. Instead

of a chain of stripes, we utilize a chain of sets with

amoebots of the same distance to the reference amoebot

(see Fig. 14). More precisely, let the k-th set of the chain be

the set of amoebots with distance k � 1 to the reference

amoebot ur. In particular, the first set only contains ur.

Note that a set is not necessarily connected.

In order to correctly interconnect the primary and sec-

ondary partition sets, each amoebot v 2 S has to determine

which of its neighbors belong to the same set, the pre-

ceding set, and the succeeding set. For that, consider the

rays from ur into each direction d 2 Dm. These divide GD

into six triangles. The classification of v’s neighborhood

depends on which ray or triangle it is on.

For example, consider an amoebot on the ray into

direction N (see Fig. 14). The amoebots into directions

WNW , N, and ENE belong to the succeeding set. The

amoebots into directions WSW , and ESE belong to the

same set. The amoebot into direction S belongs to the

preceding set.

For another example, consider an amoebot on a triangle

between the rays into directions ENE and ESE (see

Fig. 14). The amoebots into directions ENE, and ESE

belong to the succeeding set. The amoebots into directions

N, and S belong to the same set. The amoebots into

directions WNW , and WSW belong to the preceding set.

Note that this corresponds to the neighborhood for spatial

identifiers with respect to direction E.

In order to determine the ray or triangle each amoebot is

on, we can simply perform the stripe algorithm with ur as

the reference amoebot and for each d 2 fN;ESE;WSWg.

By Remark 3.8, the received identifiers indicate the posi-

tion of each amoebot (see Fig. 15).

We interconnect the primary and secondary partition

sets by the same rules as for spatial identifiers: If the set is

active, its primary partition set is connected to the sec-

ondary partition set of its predecessor, and its secondary

partition set is connected to the primary partition set of its

predecessor. If the set is passive, its primary partition set is

connected to the primary partition set of its predecessor,

and its secondary partition set is connected to the sec-

ondary partition set of its predecessor. In total, we receive

13 different pin configurations (see Fig. 16). We obtain the

following lemmas.

Lemma 3.10 The construction satisfies the properties

described in Sect. 3.2.

Proof The proof works analogously to the one of

Lemma 3.3. For the sake of analysis, we first consider an

infinite amoebot structure where S ¼ V . Afterwards, we

transfer the results to arbitrary connected amoebot

structures.

Consider a single set. All pin configurations define a

primary and secondary partition set. All amoebots within

the set connect their primary and secondary partition sets,

respectively (see Fig. 17). We define the union of all

primary resp. secondary partition sets within a set as the

primary resp. secondary partition set of the set. Note that

each amoebot has access to both partition sets and is able to

distinguish between them.

Next, consider the connections to the preceding set. The

connections within the pin configurations for active

amoebots are selected in such a way that an active set

connects its primary partition set exclusively to the

secondary partition set of the preceding set, and its

secondary partition set exclusively to the primary partition

set of the preceding set (see Fig. 17). Similar, the
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Fig. 14 Distances in GD. Each color indicates a set of the chain. The

thick boundary indicates the reference amoebot ur
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connections within the pin configuration for passive

amoebots are selected in such a way that an active set

connects its primary partition set exclusively to the primary

partition set of the preceding set, and its secondary

partition set exclusively to the secondary partition set of

the preceding set (see Fig. 17). Note that there are no

further connections.

The crucial property of our construction is that any two

amoebots are connected by any arbitrary path of amoebots

in the same fashion, i.e., either both primary partition sets

are connected to the secondary partition set of the other

amoebot, or their primary and secondary partition sets are

connected, respectively (see top of Fig. 17). This allows us

to remove amoebots without separating the circuits as long

as the amoebot structure stays connected (see bottom of

Fig. 17). h

Lemma 3.11 Given ur 2 S , the PASC algorithm computes

dist Dður; vÞ for each v 2 S.

Proof The proof works analogously to the one of

Lemma 3.4. By Lemma 3.10, we can apply the primitive

of primary and secondary circuits to the chain of sets as

long as each amoebot knows whether its set is active or

passive. This implies that we can perform the PASC

algorithm that by Lemma 3.2, computes the distance of

each set to ur.

It remains to show that each amoebot knows whether its

set is active or passive throughout the execution of the

algorithm. Initially, this is trivially true since each set is

active. A set becomes passive once it receives a beep on its

secondary circuit. Each amoebot of the set can observe this

beep since by construction, each amoebot has access to the

secondary partition set of its set. Thereafter, the stripe stays

passive. h
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Fig. 15 Rays and triangles. The thick boundary indicates the

reference amoebot ur . The red and orange amoebots (double

boundary) indicate the six rays. The gray amoebots indicate the

triangles. Note that only amoebots on the rays receive 0 as an

identifier. For example, an amoebot on the ray into direction N

receives 0 as identifier for d ¼ N, a negative identifier for d ¼ ESE,

and a positive identifier for d ¼ WSW . For another example, an

amoebot on a triangle between the rays into directions ENE and ESE
receives a positive identifier for d ¼ N, and negative identifiers for

d ¼ ESE and d ¼ WSW , respectively
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Fig. 16 Utilized pin

configurations for the

computation of distances in GD.

The first pin configuration is

used for the reference amoebot

in the center and passive

amoebots. The second row

shows the pin configurations for

active amoebots on the rays.

The direction below each

amoebot indicates the direction

of the ray it is on. The third row

shows the pin configurations for

active amoebots on the

triangles. The directions below

each amoebot indicate the

directions of the incident rays
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4 Skeletons

This section deals with (canonical) skeletons. In the first

subsection, we canonicalize and construct the skeletons. In

the second and third subsection, we show two applications

for skeletons by showing how to construct spanning trees

and how to detect symmetries.

4.1 Canonicalized construction

The general idea to construct a skeleton is to start with the

cycles given by the boundary sets and to fuse these into a

single cycle, i.e., a skeleton (see Fig. 18). In order to fuse

two boundary cycles, we have to determine a path between

them. The boundary cycles are split at the respective

endpoints of the path and connected along the path. Note

that the fused cycle uses the path twice. The difficulty lies

in finding paths between the boundary cycles and in

avoiding the creation of new cycles. The construction is

correct, i.e., we obtain a single cycle, iff the boundary sets

and paths form a tree with the boundary sets as the nodes

and the paths as the edges. In order to obtain a skeleton

path, the skeleton is split at an arbitrary point, e.g., chosen

by a leader election.

We now canonicalize the construction of a skeleton and

a skeleton path. Recall that we define the canonical

skeleton (path) with respect to a cardinal direction d 2
Dm [ Dp and a sign s 2 fþ;�g. For the canonical skeleton,

we have to define how the paths are constructed, and how

the boundary cycles and paths are exactly connected. Given

a skeleton, we obtain a skeleton path by splitting the

skeleton at some point. For the skeleton path to be

canonical, we have to identify a canonical point for the

splitting. Afterwards, we show how the amoebot structure

computes the canonical skeleton in a distributed fashion.

We start with the construction of the canonical skeleton.

Let qsðd; xÞ denote the direction obtained if we rotate

direction d by x degrees counterclockwise if the sign s is

positive, and clockwise if the sign s is negative. Let dp ¼ d

if d 2 Dm and dp ¼ qsðd; 30Þ if d 2 Dp. For each inner

boundary set B, we construct a path as follows. First, we

compute the global maxima of B with respect to direction

d. Let Bd denote these global maxima. Then, we compute

the global maximum of Bd with respect to direction

qsðd; 90Þ. Let uB denote the global maximum. Let R denote

the empty region enclosed by B (see Sect. 2).

Lemma 4.1 Amoebot uB is adjacent to exactly one node in

R, namely the one in direction qsðdp; 180Þ. Further, no

amoebot in direction dp of uB is adjacent to a node in R.

Proof Amoebot uB has to be adjacent to at least one node

in R. Otherwise, uB 62 B would hold. It is easy to see that if

that node would lie in another direction than qsðdp; 180Þ,
either uB would not be a global maximum of B with respect

to d, or uB would not be the global maximum of Bd with

respect to direction qsðd; 90Þ. By the same reasoning, uB
would not be a global maximum of B with respect to d if

any amoebot in direction dp of uB would be adjacent to a

node in R. h

Fig. 17 Construction for distances in GD. The top figure shows a

section of the infinite amoebot structure, and the bottom figure an

arbitrary amoebot structure. The connectivity of the remaining

amoebots is preserved. The reference amoebot in the center and all

amoebots with distance 2 to the reference amoebot are active while all

other amoebots are passive. The top figure includes all 13 pin

configurations. Note that the pin configuration of all passive amoebots

and of the reference amoebot in the center are identical
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The path starts at uB and goes straight in direction dp
until it reaches an amoebot vB of another boundary set. The

existence of vB is guaranteed by the outer boundary set.

Clearly, all nodes of the path are occupied by amoebots.

Note that the path may be trivial, i.e., uB ¼ vB. There is

only a single case where vB is part of two boundary sets

unequal to B. In this case, we take the boundary of vB in

direction qsðdp; 60Þ.

Lemma 4.2 The boundary sets and paths form a tree.

Proof Let rankðBÞ ¼ minw2B fdðS;wÞ be the rank of an

inner boundary set B, and let rankðBOÞ ¼ �1 be the rank of

the outer boundary set BO (compare to the definition of the

global maxima in Sect. 1.3). The rank of an inner boundary

set is lower than the rank of another inner boundary set if

its global maxima are further in direction d than the global

maxima of the other inner boundary set. Furthermore, the

outer boundary set has a lower rank than all ranks of the

inner boundary sets.

We claim that for each inner boundary set B, we

construct a path from B to another boundary set B0 such

that rankðBÞ[ rankðB0Þ holds. Clearly, this relationship

cannot be cyclic. The lemma immediately follows since we

construct a path for each inner boundary set. We prove the

claim in the following.

Lemma 4.1 excludes the possibility of a self-loop, i.e.,

B 6¼ B0 holds. The claim holds by definition if B0 is the

outer boundary set. Suppose that B0 is an inner boundary

set. The claim also holds if the path from uB to vB is not

trivial since rankðBÞ ¼ fdðS; uBÞ[ fdðS; vBÞ[ rankðB0Þ
holds.

Suppose that the path is trivial, i.e., uB 2 B and uB 2 B0.
Let w 2 R0 be a node adjacent to uB. Note that

fdðS; uBÞ� fdðS;wÞ holds since otherwise, R ¼ R0 and with

that B ¼ B0 would hold. We go from w into direction dp
until we reach an amoebot x 2 B0. Note that

fdðS;wÞ[ fdðS; xÞ holds since for V n RO, fd is strictly

monotonically decreasing if we go into direction dp. This

amoebot exists since B0 is an inner boundary set. The claim

holds since rankðBÞ ¼ fdðS; uBÞ� fdðS;wÞ[ fdðS; xÞ[
rankðB0Þ holds. h

It remains to define how the cycles and paths are exactly

connected. We define that the cycle runs along the tree

without crossing itself.

Next, consider the construction of the canonical skeleton

path. We determine the splitting point uBO
by applying the

same procedure as for the starting points of the paths on the

outer boundary set BO. That is, we first compute the global

maxima of BO with respect to direction d, and then com-

pute the global maximum of these global maxima with

respect to direction qsðd; 90Þ. If the canonical skeleton

visits uBO
multiple times, we pick a predefined position

with respect to dp (see Fig. 19).

Fig. 18 Canonical skeleton. The

top figure shows the initial

situation. The red lines indicate

the boundary cycles. The

bottom figures show the ðN;þÞ-
skeleton and ðNNW ;þÞ-
skeleton, respectively. The

yellow and orange amoebots

(thick or double boundary)

indicate the global maxima of

the boundary sets. The orange

amoebots (thick boundary)

indicate the starting points of

the paths. The blue dashed lines

indicate the paths between the

boundary cycles. The node

indicates the location where the

cycle is split
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Lemma 4.3 The canonical skeleton (path) visits each bond

at most twice. Thus, the canonical skeleton has linear

complexity.

Proof The canonical skeleton (path) visits a bond either

due to a boundary cycle or due to one of the paths. Each

local boundary (a common unoccupied adjacent node of

the endpoints) adds one visit. Each bond has at most two

local boundaries. Each path adds two visits. Due to

Lemma 4.1, a bond cannot be part of more than one path.

A bond cannot be part of a boundary cycle and a path at the

same time since the path would stop at either endpoints due

to the unoccupied adjacent node. Altogether, each bond is

visited at most twice. h

In the following, we present our canonical skeleton

algorithm that computes the canonical skeleton and the

splitting point for the canonical skeleton path in parallel.

Some instructions are performed on different subsets in

parallel. In order to keep the amoebot structure synchro-

nized, we apply the synchronization primitive (see Sect. 2).

In a preprocessing step, each boundary set determines

whether it is an inner or outer boundary set (see

Corollary 2.3).

The canonical skeleton algorithm follows our con-

struction of the canonical skeleton. In the first step, we

compute the starting points of the paths and the splitting

point by performing the global maxima algorithm on each

boundary set B with respect to direction d, and on each

resulting set Bd with respect to direction qsðd; 90Þ. How-

ever, the computation of the boundary sets may interfere

with each other since the boundary sets may intersect. In

order to circumvent that problem, we add two additional

external links and let each boundary set use the two

external links closer to the corresponding empty region

(see Fig. 20). Note that an amoebot is not able to determine

whether two adjacent nodes belong to the same empty

region. Hence, it can only construct the primary and sec-

ondary circuits along the cycle. Subsequently, it handles

each of its occurrences within the cycle separately.

Nonetheless, the adjusted construction still satisfies the

necessary properties given in Sect. 3.2.

The second step is the computation of the paths from the

starting points straight into direction dp. The canonical

skeleton algorithm proceeds as follows. Each inner amoe-

bot connects all pins of its neighbors in directions dp and

qsðdp; 180Þ, and each boundary amoebot connects all pins

to its neighbors in direction dp and qsðdp; 180Þ, respectively

(see Fig. 21). Each starting point without a second

boundary activates the circuit to its neighbor in direction

dp. Each amoebot that receives a beep is part of a path from

the starting point straight into direction dp. Finally, we

obtain the following theorem.

Theorem 4.4 The canonical skeleton algorithm computes

a (canonical) skeleton (path) in Oðlog2 nÞ rounds w.h.p.

Proof The preprocessing step requires Oðlog nÞ rounds

w.h.p. (see Sect. 2). The first step requires Oðlog2 nÞ rounds

for the computation of global maxima (see Sect. 3.3). The

second requires O(1) rounds. Altogether, the canonical

skeleton algorithm requires Oðlog2 nÞ rounds w.h.p. h

4.2 Spanning tree

We now show how a skeleton can be utilized to construct a

spanning tree. We assume that we have already computed a

(not necessarily canonical) skeleton (see Sect. 4.1). Our

spanning tree algorithm consists of two phases (see

Fig. 22). We first outline the goal of each phase. In the first

phase, we construct a tree spanning all amoebots of the

skeleton path. In the second phase, we add the remaining

amoebots to the tree.

Now, consider the first phase. We make use of the fol-

lowing lemma.

Lemma 4.5 Let G ¼ ðV ;EÞ be a connected graph. Let p ¼
ðv1; . . .; vmÞ be a path in G. Let V 0 � V be the set of all

amoebots on the path p. Let pðvÞ denote the first edge in p
incident to v. Then, T ¼ ðV 0;E0Þ with E0 ¼
S

v2V 0nfv1gfpðvÞg is a tree.

Proof In order to prove that T is a tree, we show that T is

cycle-free and connected. Each edge pðvÞ ¼ ðv0; vÞ implies

that v0 appears before v in p. Clearly, this relationship

cannot be cyclic.

We prove that T is connected by induction on the path p.

The induction base holds trivially for v1. Suppose that all

nodes up to node vi are connected within T. Consider node

viþ1. If it is not the first occurrence of viþ1 on the path, then

viþ1 is already connected by induction hypothesis. Other-

wise pðviþ1Þ ¼ fvi; viþ1g 2 E0. This edge connects viþ1 to

all nodes up to node vi since these are connected by

induction hypothesis. h

Fig. 19 Predefined splitting point with respect to dp. For dp ¼ N, the

figure shows all cases where the canonical skeleton visits uBO
multiple

times. By similar arguments as for Lemma 4.1, there are no other

cases. The red lines indicate the canonical skeleton. The node

indicates the splitting point
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In order to determine the first occurrence of each

amoebot, we apply the PASC algorithm algorithm on the

path with v0 as the reference amoebot (see Sect. 3.1). Each

amoebot is able to determine its first occurrence by simply

comparing the identifiers of all its occurrences. Each

amoebot notifies the predecessor of its first occurrence.

Next, consider the second phase. For each amoebot v not

included in the skeleton S n V 0, we add an edge from it to

its northern neighbor w to the spanning tree. Note that v is

an inner amoebot such that w has to exist. Otherwise, v

would be included in the skeleton. Each amoebot v 2

S n V 0 notifies its northern neighbor. We obtain the fol-

lowing theorem.

Theorem 4.6 Given a skeleton, the spanning tree algo-

rithm computes a spanning tree after Oðlog nÞ rounds.

Altogether, it requires Oðlog2 nÞ rounds w.h.p.

Proof The correctness follows from Lemma 4.5. The first

phase requires Oðlog nÞ rounds (see Sect. 3.1). The second

phase requires O(1) rounds. Altogether, the spanning tree

algorithm requires Oðlog nÞ rounds. h

Remark 4.7 If the amoebot structure has no holes, we can

compute a spanning tree without a skeleton in Oðlog nÞ
rounds as follows (see Fig. 23). The algorithm consists of

two phases that correspond to the ones of the preceding

spanning tree algorithm. In the first phase, we add an edge

for each pair of adjacent boundary amoebots with a com-

mon unoccupied adjacent node. We obtain a set of cycles

that are connected by narrow chains of amoebots. For each

cycle, we elect a leader that removes one of its incident

edges from the cycle. This takes Oðlog nÞ rounds w.h.p.

(Feldmann et al. 2022).

In the second phase, for each inner amoebot, we add an

edge from it to its northern neighbor. This takes O(1)

rounds.

4.3 Symmetry detection

We now show how to detect rotational symmetries and

reflection symmetries. Due to the underlying infinite reg-

ular triangular grid graph GD, there is only a limited

number of possible symmetries. More precisely, an

amoebot structure can only be 2-fold, 3-fold or 6-fold

rotationally symmetric, and reflection symmetric to axes in

a direction of Dm [ Dp. Moreover, the problem is compli-

cated by the facts that the symmetry point may be an

u

Fig. 20 Computation of the global maxima of each boundary set with

respect to d ¼ N. The first and second figure show the original

construction for the outer and inner boundary set, respectively. The

gray amoebot (dotted boundary) does not participate in the

computation for the inner boundary set. The third figure shows the

construction for the computation in parallel. Amoebot u is unaware

that two of its adjacent nodes belong to the same empty region

Fig. 21 Computation of the

paths. The figure shows the

circuit utilized to identify the

paths. The yellow amoebots (top

and bottom amoebot) are

boundary amoebots. The gray

amoebots are inner amoebots

Fig. 22 Spanning tree obtained from the ðN;þÞ-skeleton (see

Fig. 18). The node indicates the root. The left figure shows the

situation after the first phase, and the right figure the situation after the

second phase. The yellow amoebot (double boundary) is added to the

spanning tree during the second phase
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unoccupied node of GD or not a node of GD at all, and that

the symmetry axis may not be occupied by any amoebots.

Recall that we define a canonical skeleton by two

parameters: the direction d and the sign s. Note that

rotating the direction results in a rotated construction, and

inverting the sign results in a reflected construction. Hence,

a symmetric amoebot structure implies a symmetric con-

struction of canonical skeletons. The idea of our symmetry

detection algorithm is therefore to compare the canonical

skeletons. We compare the skeletons according to the

following observations (compare Fig. 24).

Observation 4.8 An amoebot structure is 2-fold rotation-

ally symmetric if the ðN;þÞ-skeleton and the ðS;þÞ-
skeleton are symmetric. An amoebot structure is 3-fold

rotationally symmetric if the ðN;þÞ-skeleton and the

ðESE;þÞ-skeleton are symmetric. An amoebot structure is

6-fold rotationally symmetric if it is 2-fold and 3-fold

rotationally symmetric.

Let d 2 Dm [ Dp and let d
0 denote the direction obtained

if we rotate d by 90� counterclockwise. An amoebot

structure is reflection symmetric to an axis in direction d if

the ðd0;þÞ-skeleton and the ðd0;�Þ-skeleton are symmetric.

Note that due to symmetry, it is enough to only check half

of Dm [ Dp.

In order to compare two canonical skeletons, we map

each canonical (d, s)-skeleton path to a unique bit string by

having each amoebot on the path store a partial bit string of

constant length encoding the direction of its successor

relative to direction d and sign s. Consequently, the com-

parison of two canonical skeletons is reduced to the com-

parison of the corresponding bit strings of the two

skeletons. In the following, we show how such a compar-

ison of two bit strings is possible in polylogarithmic time.

To this end, we consider the string equality problem: Let

A ¼ ðA0; . . .;Am�1Þ and B ¼ ðB0; . . .;Bm0�1Þ be two chains

of amoebots with reference amoebots A0 and B0, holding

bit strings a ¼ ða0; . . .; am�1Þ and b ¼ ðb0; . . .; bm0�1Þ. We

show how a and b can be checked for equality in time

Oðlog5 mÞ w.h.p. using probabilistic polynomial identity

testing.-

We first give a high-level overview of our solution:

Since we can compare the length of A and B by comparing

the identifiers id A;A0
ðAm�1Þ ¼ m� 1 and id B;B0

ðBm0�1Þ ¼
m0 � 1 of the last amoebots of the chains bit by bit with the

Fig. 23 Spanning tree for amoebot structures without holes. The left

and center figure show the situation after the first and second step of

the first phase, respectively. The first step results in two cycles

connected by a chain of amoebots. The nodes indicate the elected

leader. The right figure shows the situation after the second phase.

The yellow inner amoebots (double boundary) are added to the

spanning tree during this phase

(d, s) = (N,+) (d, s) = (ESE,+) (d, s) = (S,+)

(d, s) = (N,−) (d, s) = (E,+) (d, s) = (E,−)

Fig. 24 Symmetries of an

amoebot structure. The amoebot

structure is 3-fold rotational

symmetric since the ðN;þÞ–and

the ðESE;þÞ-skeleton are

symmetric, but not 2-fold or 6-

fold rotational symmetric since

the ðN;þÞ– and the ðS;þÞ-
skeleton are not symmetric.

Further, the amoebot structure is

reflection symmetric to an axis

into northern direction since the

ðN;þÞ–and the ðN;�Þ-skeleton

are symmetric, but not reflection

symmetric to an axis into

eastern direction since the

ðE;þÞ–and the ðE;�Þ-skeleton

are not symmetric
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PASC algorithm (see Sect. 3.1) in time OðlogmÞ, we can

assume m ¼ m0 in the following. Let c 2 N. Chain A

generates a prime p� 2m and repeats the following pro-

cedure: A samples r uniformly at random from [p] and

sends the pair (p, r) to chain B. Chain A computes

faðrÞ ¼
Pm�1

i¼0 air
iðmod pÞ, and chain B computes fbðrÞ ¼

Pm�1
i¼0 bir

iðmod pÞ and sends the result to chain A which

outputs ‘‘a 6¼ b’’ if faðrÞ 6¼ fbðrÞ and repeats the procedure

otherwise. After cdlogme repetitions, A outputs ‘‘a ¼ b’’.

Note that a ¼ b implies faðrÞ ¼ fbðrÞ. From the Schwartz-

Zippel lemma follows that the one-sided error probability

for a single repetition is Pr ½faðrÞ ¼ fbðrÞ j a 6¼ b� �m=p

� 1=2. It follows Pr [A outputs ‘‘a = b’’ j a 6¼ b� � 1=mc.

We now describe the algorithm in more detail: First, we

describe a block primitive that we use to divide the chain A

into blocks of length k ¼ OðlogmÞ where k ¼ 2dlog ke, k ¼
2 l and l ¼ dlogme þ 2. Note that k� k. We have k�m for

m� 44 ¼: g. From here on we assume m� g (in case

m\g, the chains A and B can simply compare their bit

strings deterministically). Since the PASC algorithm ter-

minates after dlogme iterations, we can easily determine

amoebot Ak by using the PASC algorithm 2 times and

forwarding a marker after every iteration. Then we use the

PASC algorithm again, with the following addition (com-

pare Fig. 25): For an amoebot let Q be the partition set on

which it received a beep (either its primary or secondary

partition set). An active amoebot (except A0) splits Q into

singletons. We obtain a circuit between each pair of con-

secutive active amoebots. Then, A0 beeps on Q. If Ak

receives a beep, the procedure terminates, otherwise we

continue with the next iteration. After termination, exactly

the amoebots Aik are active. Since we can directly compare

the bits ai of the amoebots between the last active amoebot

and Am�1 with the corresponding bits bi of chain B in time

OðlogmÞ, we assume in the following w.l.o.g. that k j m
holds. This enables us to divide the amoebots of A into m/k

chains Ci ¼ ðAik; . . .;Aðiþ1Þk�1Þ of length k with reference

amoebot Aik.

Now we describe how A generates a prime p� 2m.

Chain A samples an l-bit integer p ¼ ðp0; . . .; pl�2; 1Þ uni-

formly at random such that Ai stores pi. Note that the most

significant bit is fixed to 1 and therefore p 2 ½2l�1; 2lÞ, in

particular 2m� p\4m. We check deterministically whe-

ther p is a prime by checking in parallel for all 2� t\m

whether t j p (note that b ffiffiffi
p

p c\m): First, p and t ¼
id A;A0

ðAikÞ ¼ ik (using the PASC algorithm) are stored in

the first l amoebots of every chain Ci in time OðlogmÞ.
Then, all chains Ci repeat the following procedure in par-

allel for at most k times: If t� 2, check whether t j p in

time Oðlog2 mÞ using binary long division with remainder.

Abort the prime testing, if t j p, otherwise increment t.

We repeat the entire procedure at most 3cl2 times or

until we have successfully sampled a prime p. The runtime

for the prime generation is Oðlog5 mÞ. We now analyse the

probability for the event Efail that no prime is generated.

Using non-asymptotic bounds on the prime-counting

function, one can show that the fraction of integers in

½2l�1; 2lÞ that are prime is at least 1/(3l). It follows:

Pr ½Efail� � ð1 � 1=ð3 lÞÞ3cl2 � 1=ecl � 1=mc

We now address the probabilistic polynomial identity

testing, focusing on the computation of faðrÞ for r 2 ½p�.
We use the previously determined division of the chain A

into blocks of length k ¼ OðlogmÞ. Assume that p, r and

e ¼ id A;A0
ðAikÞ ¼ ik are stored in the first l amoebots of

every chain Ci. All chains Ci repeat the following proce-

dure in parallel for k times: Compute sðiÞ ¼ aer
eðmod pÞ

using modular exponentiation via the right-to-left binary

method. Using binary long multiplication and division with

remainder, this step is possible in time Oðlog3 mÞ. Then,

increment e. Once all chains Ci have completed the j-th

repetition, we compute the sum of the sðiÞ modulo p and

store it in the first l amoebots of chain A using a general-

ization of Theorem 2.2. The summation is possible in time

Oðlog2 mÞ. The computed sum is then added to a running

total modulo p.

Finally, after k repetitions, the result faðrÞ is stored in the

amoebots A0; . . .;Al�1. The runtime for the polynomial

identity testing is Oðlog4 mÞ.
Note that the size of the outer boundary set is Xð

ffiffiffi
n

p
Þ,

which is also a lower bound for the size of a canonical

skeleton. Hence, we get the following result:

Theorem 4.9 The string equality problem on chains of

length O(m) can be solved in Oðlog5 mÞ rounds w.h.p.

Therefore, the symmetry detection problem can be solved

in Oðlog5 nÞ rounds w.h.p.

Finally, we discuss how to compute the amoebot occu-

pying the symmetry point and amoebots on the symmetry

axis, respectively, if such exist. The idea is to identify some

symmetric amoebots, to compute symmetric identifiers

with these as reference amoebots, and to output all amoe-

bots that receive the same identifier for each reference

amoebot. In the following, we discuss all cases of sym-

metry in more detail.

First, consider an amoebot structure that is reflection

symmetric to an axis into direction d (see Fig. 26). Let d1

and d2 be the two to d perpendicular directions, i.e., the

directions obtained if we rotate d by 90� clockwise and

counterclockwise, respectively. We proceed as follows. We

first compute the global maxima of S with respect to d1 and

d2, respectively. Let Sd1
and Sd2

, respectively, denote these

global maxima. Then, we compute the global maximum of
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Sd1
and Sd2

, respectively, with respect to direction d. Let u1

and u2, respectively, denote the global maximum. Now, we

compute a 2-tuple. It contains the spatial identifiers for u1

and d2, and for u2 and d1. Each amoebot on the symmetry

axis receives two equal identifiers. These identifiers are

equal for each amoebot on the symmetry axis. Note that

there may be no amoebot on the symmetry axis if d 2 Dp

(see Fig. 27). The symmetry axis intersects an edge of GS if

both incident amoebots receive different permutations of

the same tuple of identifiers.

Second, consider an amoebot structure that is 2-fold

rotational symmetric (see Fig. 28). We proceed as follows.

We first compute the northernmost amoebot of the west-

ernmost amoebots, and the southernmost amoebot of the

easternmost amoebots, respectively. Let u1 denote the
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Fig. 25 Block primitive. The figure shows how a chain A with

reference amoebot A0 and a marked amoebot Ak can be divided into

blocks of length k� k where k ¼ 2dlog ke using the PASC algorithm

(compare Fig. 5) with an additional step after each iteration. Here, we

have k ¼ 3 and k ¼ 4. The first line shows the chain at the beginning

of the i-th iteration of the PASC algorithm. The circles indicate the

partition sets. The blue bordered amoebot is A0, and the green

bordered amoebot is Ak ¼ A3. Yellow amoebots are active, and gray

amoebots are passive. The second line shows the configuration

resulting from the following additional step: For an amoebot let Q be

the partition set on which it received a beep (depicted in red; either its

primary or secondary partition set). An active amoebot (except A0)

splits Q into singletons. We obtain a circuit between each pair of

consecutive active amoebots. Then, A0 beeps on Q. If Ak receives a

beep, the procedure terminates, otherwise continue with the next

iteration. After termination, exactly the amoebots Aik are active

2

2

2

2

3

3

4

4

4

4

1

1

0

0

0

0

2

2

2

2

1

1

0

0

0

0

3

3

4

4

4

4

Fig. 26 Amoebot structure reflection symmetric to an axis into

direction d ¼ N. The yellow amoebots (thick boundary) indicate

amoebots u1 and u2. The red amoebots (double boundary) are on the

symmetry axis. Note that each red amoebot receives two equal

identifiers, i.e., it receives the identifier 2 twice
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Fig. 27 Amoebot structure reflection symmetric to an axis into

direction d ¼ E. The yellow amoebots (thick boundary) indicate

amoebots u1 and u2. The edge between each pair of adjacent orange

amoebots (double boundary) intersects the symmetry axis. Note that

each orange amoebot of a pair receives a different permutation of the

same tuple of identifiers, i.e., the northern amoebot receives the tuple

(2, 4), and the southern amoebot receives the tuple (4, 2)
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former, and u2 the latter. Next, we compute two 2-tuples.

The first tuple contains the spatial identifiers for u1 and the

southern direction, and for u2 and the northern direction.

The second tuple contains the spatial identifiers for u1 and

the eastern direction, and for u2 and the western direction.

An amoebot occupies the symmetry point iff it receives

two equal identifiers in both tuples, respectively. Note that

the symmetry point may be unoccupied. Furthermore, the

symmetry point may lie between two amoebots (see

Fig. 29). In this case, both amoebots receive different

permutations of the same tuples of identifiers.

Third, consider an amoebot structure that is 3-fold rota-

tional symmetric (see Fig. 30). We proceed as follows.

Analogously to the case of 2-fold rotational symmetry, we first

compute three symmetric amoebots. (More precisely, we

compute the westernmost amoebot of the northernmost

amoebots, the south-southeasternmost amoebot of the west-

southwesternmost amoebots, and the north-northeastern

amoebot of the east-southeasternmost amoebots.) Then, we

compute a 3-tuple. The tuple contains identifiers equal to the

distances in GD for each of these amoebots. An amoebot

occupies the symmetry point iff it receives three equal iden-

tifiers. Note that the symmetry point may be unoccupied.

Furthermore, the symmetry point may lie between three

amoebots (see Fig. 31). In this case, all amoebots receive

different permutations of the same tuple of identifiers.

Naturally, for amoebot structures that are 6-fold rota-

tionally symmetric, we can use both the procedure for

2-fold and 3-fold rotationally symmetric amoebot struc-

tures. We obtain the following result.

Proposition 4.10 By applying the global maxima and

PASC algorithm, we can compute the amoebot occupying

the symmetry point and amoebots on the symmetry axis,

respectively, within Oðlog2 nÞ rounds w.h.p. if such exist.

5 Conclusion and future work

In this paper, we have proposed polylogarithmic-time

solutions for a range of problems. First, we have computed

spatial identifiers in order to compute a stripe through a

given amoebot and direction, and the global maxima of the

given amoebot structure with respect to a direction. Using

these results, we have constructed a canonical skeleton

path, which provides a unique characterization of the shape

of the given amoebot structure. Constructing canonical

skeleton paths for different directions will then allow the

amoebots to set up a spanning tree and to check symmetry

properties of the given amoebot structure.

Our solutions could be useful for various problems like

rapid shape transformation, energy dissemination, and

structural monitoring (see Sect. 1). However, the details

still have to be worked out, including appropriate models

and assumptions. Beyond that, we think that exploring

further applications for the spatial identifiers and the

skeleton would be interesting.
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Fig. 28 Amoebot structure 2-fold rotational symmetric to a node of

GD. The yellow amoebots (thick boundary) indicate amoebots u1 and

u2. The upper and bottom figures shows the first and second tuple of

spatial identifiers, respectively. The red amoebot (double boundary)

lies on the symmetry point. Note that the red amoebot receives two

equal identifiers in both tuples, respectively, i.e., it receives the

identifier 0 twice in the first tuple, and identifier 2 twice in the second

tuple
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Fig. 29 Amoebot structure 2-fold rotational symmetric to a point on

an edge of GD. The yellow amoebots (thick boundary) indicate

amoebots u1 and u2. The upper and bottom figures shows the first and

second tuple of spatial identifiers, respectively. The symmetry point

lies on the edge between the two orange amoebots (double boundary).

Note that each orange amoebot receives different permutations of the

same tuples of identifiers, i.e., the northern amoebot receives the

tuples (2, 4) and (2, 2), and the southern amoebot receives the tuple

(4, 2) and (2, 2)

The structural power of reconfigurable circuits...

123



Author Contributions Andreas Padalkin wrote the main manuscript text

and prepared all figures. Daniel Warner wrote the part about the string

equality problem in Sect. 4.3. All authors reviewed the manuscript.

Funding Open Access funding enabled and organized by Projekt

DEAL. This work has been supported by the DFG Project SCHE

1592/6-1 (PROGMATTER).

Data Availability We do not analyse or generate any datasets, because

our work proceeds within a theoretical and mathematical approach.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

Ethical Approval Not applicable.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Alumbaugh JC, Daymude JJ, Demaine ED, et al (2019) Simulation of

programmable matter systems using active tile-based self-assembly.

In: DNA, lecture notes in computer science, vol 11648. Springer,

pp 140–158. https://doi.org/10.1007/978-3-030-26807-7_8

Arroyo MA, Cannon S, Daymude JJ et al (2018) A stochastic

approach to shortcut bridging in programmable matter. Nat

Comput 17(4):723–741

Cannon S, Daymude JJ, Randall D, et al (2016) A markov chain

algorithm for compression in self-organizing particle systems.

In: PODC. ACM, pp 279–288

Daymude JJ, Hinnenthal K, Richa AW, et al (2019) Computing by

programmable particles. In: Distributed computing by mobile

entities, lecture notes in computer science, vol 11340. Springer,

pp 615–681, https://doi.org/10.1007/978-3-030-11072-7_22

Daymude JJ, Gmyr R, Hinnenthal K, et al (2020) Convex hull

formation for programmable matter. In: ICDCN. ACM,

pp 2:1–2:10, https://doi.org/10.1145/3369740.3372916

Daymude JJ, Richa AW, Weber JW (2021) Bio-inspired energy

distribution for programmable matter. In: ICDCN. ACM,

pp 86–95. https://doi.org/10.1145/3427796.3427835

Daymude JJ, Richa AW, Scheideler C (2023) The canonical amoebot

model: algorithms and concurrency control. Distributed Comput

36(2):159–192

Derakhshandeh Z, Dolev S, Gmyr R, et al (2014) Brief announcement:

amoebot - a new model for programmable matter. In: SPAA.

ACM, pp 220–222, https://doi.org/10.1145/2612669.2612712

Derakhshandeh Z, Gmyr R, Strothmann T, et al (2015) Leader election

and shape formation with self-organizing programmable matter.

In: DNA, Lecture Notes in Computer Science, vol 9211. Springer,

pp 117–132, https://doi.org/10.1007/978-3-319-21999-8_8

Derakhshandeh Z, Gmyr R, Richa AW, et al (2016) Universal shape

formation for programmable matter. In: SPAA. ACM,

pp 289–299. https://doi.org/10.1145/2935764.2935784

Derakhshandeh Z, Gmyr R, Richa AW et al (2017) Universal coating

for programmable matter. Theor Comput Sci 671:56–68. https://

doi.org/10.1016/j.tcs.2016.02.039

Feldmann M, Padalkin A, Scheideler C et al (2022) Coordinating

amoebots via reconfigurable circuits. J Comput Biol

29(4):317–343. https://doi.org/10.1089/cmb.2021.0363

Luna GAD, Flocchini P, Santoro N et al (2020) Shape formation by

programmable particles. Distributed Comput 33(1):69–101.

https://doi.org/10.1007/s00446-019-00350-6

4
4

4
4 3

33
22

11
0

2

13
4 2

14
23

34
4

0

2

3
4

1
2

41
32

43
4

0

2

Fig. 30 Amoebot structure 3-fold rotational symmetric to a node of

GD. The yellow amoebots (thick boundary) indicate the three

symmetric amoebots. The red amoebot (double boundary) lies on

the symmetry point. Note that each red amoebot receives three equal

identifiers, i.e., it receives the identifier 2 three times

33
3

2

1
0

2
2

1

2
3

1

3
3

0
1

2
2

31

3

2
3

0 2
1

2

Fig. 31 Amoebot structure 3-fold rotational symmetric to a point

within a face of GD. The yellow amoebots (thick boundary) indicate

the three symmetric amoebots. The symmetry point lies within the

triangle between the three orange amoebots (double boundary). Note

that each orange amoebot receives a different permutation of the same
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