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Abstract
The use of Cellular Automata (CA) in combination with Learning Automata (LA) has demonstrated effectiveness in

handling hard-to-be-solved problems. Due to their capacity to learn and adapt, as well as their inherent parallelism, they

can expedite the problem-solving process for a range of problems, such as challenging logic puzzles. One such puzzle is

Sudoku, which poses a combinatorial optimization challenge of great difficulty and complexity. In this study, a Sudoku

puzzle was represented as an Irregular Learning Cellular Automaton (ILCA), using a reward and penalty algorithm to

resolve it. Simulations for an amount of 400 puzzles were performed, while the results demonstrate that the proposed

algorithm operates effectively, highlighting the concurrent and learning capabilities of the ILCA structure. Furthermore,

two different performance enhancement methods are investigated, namely learning rates method and selective probability

reset rule, which are able to increase the initial performance by 26:8% and to achieve an overall 99:3% resolution rate.
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1 Introduction

In the recent decades, Cellular Automata (CA) and

Learning Automata (LA) have been extensively resear-

ched. CA are physical models that incorporate parallel

processing computational capabilities, while LA encapsu-

late the adaptability of learning during evolution to make

optimal decisions. Consequently, Learning Cellular Auto-

mata (LCA) combine the strengths of both CA and LA

aiming to create a powerful problem-solving tool that can

adapt to almost any complex environment. It can be con-

sidered as a distributed computational model (Ahangaran

et al. 2017) where global complex phenomena can emerge

through the spatial interaction of simple identical units.

The main characteristic that differentiates LCA from tra-

ditional CA is attributed to the adaptation of the decision

process. LCA improves the behavior of its cells based on

the overall system’s response, striving to provide optimal

results during its evolution (Karamani et al. 2021).

At the same time, complex logic puzzles require

advanced logical reasoning skills to solve. Among them,

Sudoku is easily considered as the most prominent logic

puzzle example of our time and one of the most popular

examples among puzzle enthusiasts. A common property

of many complex logic puzzles, Sudoku included, is that

the solver is challenged not to only find the solution but this

must be realized under the constraint that a unique solution

exists. To solve Sudoku puzzles, players deduce the pos-

sible values for each cell based on the values of neigh-

boring cells and the rules of the puzzle (Simonis 2005).

The Sudoku resolution process could, also, assist in real-

world problems that involve finding optimal solutions

among many possibilities, such as scheduling, optimiza-

tion, cryptography or protein folding (Chien and Hon 2010;

Ercsey-Ravasz and Toroczkai 2012; Manikandan et al.

2021). There are different methods to solve Sudoku puz-

zles, such as stochastic algorithms, pattern overlay or
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filtering techniques (Soto et al. 2015; Weaver 2020; Jana

et al. 2021). Irregular Learning Cellular Automata (ILCA)

algorithms have been also identified as a good candidate

for solving such kind of puzzles due to their ability to

handle complex logical reasoning and adapt to changing

environments (Chatzinikolaou et al. 2022).

This article explores the use of LCA-based algorithms to

solve Sudoku puzzles. Taking inspiration from

Chatzinikolaou et al. (2022), a simplified ILCA Sudoku

resolution algorithm with reduced complexity is proposed.

As a next step, its performance is analyzed on a wide range

of Sudoku puzzles of varying difficulties proving that

retains its resolution ability and can be applicable to

challenging ones with higher difficulty, namely Evil puz-

zles. The proposed algorithm is, also, getting expanded

with two different methods to be investigated, in particular,

learning rates method and selective probability reset rule,

aiming to enhance its resolution performance. The com-

bination of these methods demonstrates higher resolution

rates, reaching a 26:8% improvement from the initial one

with an overall 99:3% resolution rate.

2 Complex logic puzzles

A complex logic puzzle can be described as a problem that

requires following specific steps to reach at one or more

definite solutions. Unlike games which are won, puzzles

are solved using advanced problem-solving skills and

logical reasoning. Common features of logic puzzles

include being designed for a single player, being governed

by simple rules that guide their progression, and being

solved through deduction (Hufkens and Browne 2019).

These puzzles often involve multiple steps and require a

profound understanding of various logical principles, such

as deductive reasoning, induction, and syllogisms. They

frequently require creative thinking and the ability to

identify patterns and relationships between different ele-

ments, which is the reason why they are considered valu-

able for helping people to improve cognitive skills such as

problem-solving, critical thinking, and analytical reasoning

(Brooker et al. 2019). Examples of complex logic puzzles

include Sudoku, crossword puzzles, and various types of

riddles and brain teasers.

2.1 The Sudoku puzzle

Sudoku is a popular complex logic puzzle originated in

Japan in the 1980s. It is often described as ‘‘the Rubik’s

cube of the 21st century’’ (Lynce and Ouaknine 2006). The

puzzle typically starts with some of the cells already filled

in, and the solver must use logic and deduction to fill in the

remaining cells. The rules of Sudoku are simple, but the

puzzles can range in difficulty from easy to extremely

challenging, depending on the number of starting clues and

the complexity of the logical deductions required to solve

the puzzle. Each puzzle configuration leads to a unique

solution and does not require the search for the solution,

meaning it is based merely on reasoning.

A standard Sudoku puzzle consists of a 9� 9 grid

divided into nine 3� 3 sub-grids; although other variations

also exist. Each of the 81 cells in the grid can contain a

number from 1 to 9. At the beginning of the puzzle, some

cells have their assigned numbers pre-filled (Delahaye

2006). Figure 1a illustrates a partially completed 9� 9

Sudoku grid with a unique cell, column, row, and sub-grid.

The purpose of the puzzle is to fill in the full grid with the

necessary number in order to satisfy the following rules

(Russell and Jarvis 2006):

• Each row contains exactly once, every integer from 1 to

9.

• Each column contains exactly once, every integer from

1 to 9.

• Each 3� 3 sub-grid contains exactly once, every

integer from 1 to 9.

Sudoku puzzles are considered NP-complete ones

according to Yato and Seta (2003), which results in a

positive impact on adults’ brain and specifically on mem-

ory performance (Grabbe 2017). There are various com-

putational approaches for solving Sudoku puzzles. In

Mantere and Koljonen (2007), a combinatorial genetic

algorithm is proposed for the resolution of Sudoku puzzles,

while a metaheuristic technique (Lewis 2007) has, also,

been applied to a large number of puzzles. Other research

efforts include deep learning methods (Vamsi et al. 2021),

where an input image is utilized to further detect the largest

area contour and extract the digits from the Sudoku image

using Optical Character Recognition (OCR) in order to

insert these digits in a neural network which outputs the

final solution. Furthermore, the Artificial Bee Colony

algorithm has been successfully applied (Pacurib et al.

2009) as an alternative method to find the optimal solution

in such puzzles. Finally, hardware-based solutions have

been also presented in literature such as circuits incorpo-

rating novel memristive nano-devices which emerge to the

solution due to the circuit dynamics (Chatzinikolaou et al.

2020), and FPGA-based implementations performing

genetic and/or heuristic algorithms (Van Der Bok et al.

2009).

There are, also, some Sudoku-like puzzles, that involve

some modifications or special rules. One of them is its

predecessor, the Latin square (Fig. 1b). A Latin square of

order n is a square grid of n2 cells (n cells on each side),

containing n symbols in such a way that no symbol appears
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twice in the same row or column, i.e. each of the n symbols

is used exactly n times. Another alternative is called Du-

Sum-Oh (Fig. 1c), in which the letters of the words

GRAND TIME replace the numbers, and geometric shapes

replace the square sub-grids. Alternatively, there could be

overlapping puzzle boards (Fig. 1d) that should be resolved

simultaneously (Delahaye 2006).

3 Computational models

3.1 Cellular Automata

Due to its grid structure, Sudoku lends itself well to

modeling using Cellular Automata (CA). CA combine

computational capabilities along with mathematical and

physical principles in order to study complex systems that

can be modeled as grids of evolving cells with local

interactions (Neumann 1966). Each cell has a state that is

updated in discrete time-steps based on a set of rules,

namely the transition function. This function specifies how

the state of each cell evolves over time, taking into account

the states of its neighboring cells (Chopard and Droz 1998).

While its simplest form is a one-dimensional lattice of cells

with binary states, the concept of CA can also be extended

to two or more dimensions, where cells may exhibit more

than two potential states.

A prominent characteristic of CA models is their

capacity to exhibit emergent behavior, which means that

complex patterns and behaviors can arise from the inter-

actions between the cells even if the individual rules that

govern their behavior are quite simple. At the same time,

the inherent parallel computing architecture of CA pro-

cessing, makes CA a flexible and powerful computational

tool suitable for modeling and simulating large and com-

plex systems (Wolfram 2018), allowing researchers to gain

insights into the behavior of these systems that might not

be possible with other modeling approaches and methods.

3.2 Learning Automata

At the same time, Sudoku requires mechanisms that can be

adapted to each grid and be able to learn from its evolution.

Learning Automata (LA) theory is a branch of computer

science and artificial intelligence that utilizes adaptive cells

that can learn and improve their behavior over time (Jiang

et al. 2016). LA are, actually, stochastic computational

models designed to learn the optimal action in a dynamic

environment through trial and error. Over time, the LA

cells learn the optimal actions to take in each state, taking

advantage of a reward and penalty system.

In LA, each cell interacts with its neighborhood and

receives feedback in the form of rewards or penalties based

on its actions. The cell uses this feedback to adjust its

probabilities of taking different actions, with the goal of

maximizing the long-term reward. One of the advantages

of LA models is their ability to learn and adapt to changes

in the environment (Narendra and Thathachar 1974). This

makes them suitable for use in dynamic systems where the

optimal behavior may change over time.

In detail, all actions from a set of L available actions

T ¼ fT1; T2; :::; TLg can be equally selected by the LA in

Fig. 1 a 9� 9 Sudoku grid with initial pre-defined cells specifying a

cell with yellow color, a column with red color borders, a row with

blue color borders and a sub-grid with green color borders. Various

other alternative logic puzzles include b Latin square, c Du-Sum-Oh,

and d Overlapping puzzle boards
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the initial step. Afterwards, the LA selects its action based

on its probability; therefore, there is an action probability

vector P ¼ fp1; p2; :::; pLg that characterizes the LA

(Fig. 2a). During its time evolution, the LA receives

feedback from its environment through a reinforcement

signal that is able to update the action probabilities. As a

result, the LA penalizes the undesired actions by decreas-

ing their probabilities and favors the desired ones by

increasing them. In order for the LA to learn how to choose

the optimal action depending on the application, this pro-

cess should be repeated for a pre-defined number of time-

steps (Narendra and Thathachar 1974).

3.3 The concept of Irregular Learning Cellular
Automata

Combining Cellular and Learning Automata can introduce

the hybrid concept of Learning Cellular Automata (LCA),

which is able to simulate the learning behavior in tradi-

tional CA. It consists of a grid of cells, where each cell has

a state and an action probability vector. When a cell per-

forms an action, it receives a reward or penalty depending

on the outcome of the action. The learning process in LCA

is distributed, meaning that each cell learns independently

of its neighbors, which enables the system to adapt to

changes in the environment promptly and efficiently.

Consequently, LCA emerges as an ideal candidate for the

resolution of complex logic puzzles, i.e. the Sudoku

puzzles.

In contrast to traditional LCA, which features cells

arranged in a regular grid, Irregular LCA (ILCA) models

employ cells that are arbitrarily placed and connected,

resulting in a more flexible and complex structure, making

it suitable for solving Sudoku puzzles based on their rules.

The connections between the cells can be defined in vari-

ous ways, such as using a graph structure or using distance-

based connections. One of the main advantages of ILCA

models is their capacity to model more realistic and com-

plex systems that cannot be adequately represented using

regular grids.

In detail, considering an ILCA formed by N cells, each

cell Ci contains a LA whose action set Ti is finite (for

i ¼ 1; 2; :::;N). Initially, every cell’s state is specified

through the action probability vector of the LA, which

governs its behavior over time. At every following iteration

k, each cell Ci selects its state ci from the available action

set Ti. Based on the selected state ci, a reinforcement signal

computed using the ILCA’s rule is applied to the LA. This

signal either rewards or penalizes the chosen action, and

serves as the basis to update the action probability vector

for the next time-step of the ILCA’s evolution in time. This

iterative process continues for a sufficient number of time-

steps, until the system achieves the desired behavior. Fig-

ure 2b presents an example of a 4� 4 ILCA grid with its

irregular connections among its cells to be highlighted.

In general, various complex problems have been

addressed using CA and its variations of LCA and ILCA.

These problems include the bin-packing and the maximum-

cut ones (Mozafari et al. 2015), the shortest path (Tsom-

panas et al. 2018; Dourvas et al. 2019), the graph coloring

(Torkestani and Meybodi 2011), the edge detection

(Karamani et al. 2021), as well as the collision avoidance

(Ioannidis et al. 2008; Mitsopoulou et al. 2019). These

examples prove that they can provide viable and scalable

solutions to computationally-heavy problems, such as the

complex logic puzzles, combining their adaptivity with

their inherit parallelism.

Fig. 2 a Learning Automaton structure. b 4� 4 ILCA structure
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Algorithm 1 Pseudo code of the proposed ILCA Sudoku resolution algorithm

Fig. 3 Step-by-step resolution of a 9� 9 Sudoku using the proposed algorithm. Updated cell states (cti;j) in each evolution time-step is presented

in blue with yellow background. The final solved puzzle are presented on (n) Time-step 13
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4 Proposed resolution algorithm

Since in Sudoku, the cells are not connected in a regular

way, the grid of the puzzle can be modeled as a CA by

mapping it into a graph (Chong Leung et al. 2014) with 81

nodes (9� 9); each one representing a puzzle cell Ci;j (for

i ¼ 1; 2; :::; 9 and j ¼ 1; 2; :::; 9). The nodes relate to undi-

rected edges following the Sudoku puzzles rules and

incorporate 9 different states each (c 2 f1; 2; :::; 9g). Each

node has 20 neighbors (Ni;j) without itself, while the

ILCA’s evolution rule depends on the states of all the

neighbors.

Definition 1 (Neighbors) In Sudoku, every cell Ci;j in

neighborhood Ni;j, where 1� i� 9 and 1� j� 9, is linked

to all the cells in its column (Nc
i;j), row (Nr

i;j) and 3� 3 sub-

grid (Nsg
i;j ), where:

Nc
i;j ¼fC1;j;C2;j; :::;C9;jg ð1Þ

Nr
i;j ¼fCi;1;Ci;2; :::;Ci;9g ð2Þ

Nsg
i;j ¼fCi�1;j�1;Ci�1;j;Ci�1;jþ1;

Ci;j�1;Ci;j;Ci;jþ1;Ciþ1;j�1;Ciþ1;j;Ciþ1;jþ1g
ð3Þ

Fig. 4 continued

bFig. 4 Stacked plot of the action probability vector (Pt
i;j) evolution in

time-steps for each possible cell state (c 2 f1; 2; :::; 9g presented in

different colors) for every cell of the 9� 9 Sudoku. Updated cell

states (cti;j) in each evolution time-step is presented in the lower part

of each plot with an arrow (#)
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Ni;j ¼Nc
i;j [ Nr

i;j [ Nsg
i;j \ Ci;j ð4Þ

To solve a Sudoku puzzle, learning features can be

utilized in order to get adjusted to each puzzle’s specific

initial pre-filled cells assignment. This requests the addition

of a LA to each cell of the CA, transforming it to a LCA

and when combined with the irregularity of the graph,

finally to an ILCA. Every cell’s LA has an action proba-

bility vector that changes every time-step based on a

reward and penalty algorithm until the ILCA picks a valid

solution. The ILCA chooses an action based on the cell’s

degree (di;j). It is important to note that every Sudoku

puzzle has only one solution based on the pre-filled cells.

Definition 2 (Cell Degree) Degree of a cell di;j is defined

as the number of neighboring cells that did not choose the

same action (i.e. number of cells where the selected action

is different):

di;j ¼ kCk;l, for each Ck;l 2 Ni;j where ck;l 6¼ ci;jk ð5Þ

Each cell of the ILCA has variables for its chosen

action, which corresponds to the cell state (ci;j) and its

action probability vector (Pi;jðnÞ). The ILCA receives the

Sudoku graph with some numbers already filled as pre-

defined input. At first, the given numbers are considered to

have a 100% probability while their neighbors have a 0%

probability. For the other cells and numbers, all states are

equally likely to be chosen. The ILCA produces the solved

puzzle as output.

Definition 3 (Chosen Action) The chosen action which

depicts the cell’s state is considered as the number (n) with

the highest probability.

cti;j ¼ n, where Pt
i;jðnÞ ¼ max ½Pt

i;jðkÞ�; k 2 ½1; 9� ð6Þ

Definition 4 (Reward and Penalty) In each step, the

probability vector is rewarded or penalized by multiplying

the respective probability of the number by a factor r (re-

ward) or p (penalty):

Ptþ1
i;j ðnÞ ¼Pt

i;jðnÞ � ðrð�Þ j pð�ÞÞ;
where rð�Þ[ 1 and pð�Þ\1

ð7Þ

Algorithm 1 occurs after the ILCA has been successfully

initialized in order to produce the output, where all cell

states are checked to meet the requirements of a resolved

puzzle. In particular, if the cell has a different state from all

its neighbors, which means its degree matches the number

of its neighbors, then it gets a reward, and its probability

increases (lines 4-6). If the cell is in a state shared by those

of its neighbors, then it only gets a reward if its degree is

higher than all its neighbors’ degrees (lines 8-9). Other-

wise, it gets penalized and its probability decreases (lines

10-11). Then, each cell will select its new state based on

the action with the highest probability from its available

action set. This process continues until all cells have dif-

ferent states from their neighbors, in specific, when

FinalizedCells equals the total number of ILCA cells

(TotalCells; lines 16-19).

4.1 Resolution demonstration

The MATLAB� R2020a software was used for the simu-

lation of the proposed algorithm utilizing 9� 9 Sudoku

grids as a proof of concept. The initial values of the pre-

defined cells are shown in Fig. 3a with the rest of the cells

whose state is not pre-assigned and which are therefore

assigned the state ‘‘0‘‘, while the evolution of the ILCA in

each time-step, when there is a cell state update, is high-

lighted in blue with yellow background (Fig. 3b–m). More

specifically, in the first time-step (Fig. 3b) the cells without

pre-assigned state select their initial action. Following the

Algorithm 1, these actions are rewarded or penalized

resulting in changes in the action probability vector. This

leads to Fig. 3c, where the cells select their new action and

some of them update their state. This process continues

until all cells are rewarded on the last time-step resulting in

no further cell state changes (Fig. 3n). It is important to

highlight that after only 8 time-steps, just a few cells

remain to be changed, resulting in the solution of the 9� 9

Sudoku on only 13 time-steps. The combination of CA’s

parallelism and LA’s stochasticity and learning was able to

solve Sudoku in a short time highlighting the suggested

ILCA ability over existing implementations.

In order to further understand the impact of the action

probability vector on the cells’ state evolution and, hence,

on the Sudoku puzzle resolution, Fig. 4 shows how the

action probability vector changes for each cell of the 9� 9

Sudoku grid through the reward or penalty algorithm. Each

of the nine (9) sub-figures (Fig. 4a–i) corresponds to one of

the nine (9) sub-grids of the Sudoku puzzle. Each sub-

figure contains 3� 3 plots that correspond to the cells of

the sub-grid. Each plot provides statistical information (in

the form of cumulative probability) of the action proba-

bility vector evolution for all possible cell states

(c 2 1; 2; :::; 9), which are presented in different colors. The

selected cell action can be spotted on the bottom part of

each plot whenever there is an update to the cell state

(number) in comparison to the previous time-step.
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In detail, the cell C1;1 (Fig. 4a– upper-left plot) is a pre-

defined cell based on Fig. 3a, which means that the pre-

defined value has a constant probability of 100%
throughout the simulation (i.e. number ‘‘5’’ presented in

green color covers the whole cell action probability vec-

tor). The same behavior can be observed for the other pre-

defined cells as well. It is important to note that the cells

that have ruled out all numbers but one after the initial-

ization phase (i.e. their neighbors have pre-defined cells of

the rest numbers) also demonstrate a constant probability

of 100% for this number for all time-steps. This can be

clearly spotted for cell C5;5, where it is undefined (‘‘0‘‘) in

the initial configuration (Fig. 3a), but it has a constant

100% probability for number ‘‘5’’ (green color) as depicted

in the middle-center plot of Fig. 4e.

The probabilities of the rest cells change in each time-

step by increasing their area, if rewarded, or decreasing it,

if penalized, resulting in cell state updates based on the

number that holds the largest area (i.e. has the largest

probability). The final selection of the cell state takes place

in different timings of the evolution, starting from early

cases up to those which need more time-steps to converge

to the correct value. In particular, the cell C4;7 is presented

in the upper-left part of Fig. 4f. At the beginning, numbers

f4; 5; 7; 9g have remained after the initialization phase with

equal probabilities to be chosen. Number ‘‘5‘‘ is firstly

selected and as the algorithm favors this selection in time-

step 2, its probability increases (i.e. green area is getting

expanded, while other ones are shrinking). On the fol-

lowing time-step, the algorithm penalizes this action, the

probability decreases, and ‘‘7’’ becomes the selected

action. On the following steps, increment, and decrement

of number ‘‘7‘‘ area is observed matching algorithm’s

action to reward and penalize this action. On time-step 10,

number ‘‘9’’ has the largest probability (i.e. orange area is

the biggest one) and it is getting selected. This action was

penalized afterwards and, thus, number ‘‘4‘‘ probability

becomes bigger and the number is selected. For the last two

time-steps, this action is getting rewarded (i.e. the purple

area corresponding to the selected number is getting

expanded). This behavior of changing the cell state even

after already having a high probability for a certain number

demonstrates the algorithm’s adaptivity and learning

characteristics.

4.2 Comparative analysis of the results

In order to investigate the impact of the proposed algorithm

in various Sudoku puzzles of different difficulties, it was

tested in 100 easy, 100 medium, 100 hard, and 100 evil

puzzles as presented in Table 1. While there is a great

variety of Sudoku puzzles whose problem difficulty is

assigned by the puzzles designer in noted newspapers,

magazines, and books (Simonis 2005), we have utilized a

publicly available Sudoku generator for different levels

compatible with MATLAB� software. Each puzzle is

characterized by a difficulty variable d (typical range:

0:1� 0:9), where the following characterization is

considered:

• Easy: d 2 ð0:1; 0:4Þ
• Medium: d 2 ½0:4; 0:55Þ
• Hard: d 2 ½0:55; 0:7Þ
• Evil: d 2 ½0:7; 0:9Þ

Algorithm 2 Pseudo code of the proposed ILCA Sudoku resolution

algorithm with learning rates
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The results of the simulations under different maximum

available time-steps are presented in Fig. 5. Each Sudoku

puzzle was attempted to be solved 10 times and each

simulation included all the 400 available set of puzzles. As

can be observed in Fig. 5a, overall resolution rate remains

at an acceptable level after 100 time-steps with a peak at

250 time-steps. The overall resolution rate is 72:5%

(Table 2) split to 99:9% for Easy puzzles, 96:7% for

Medium ones, while Hard showcase a 58%, and finally Evil

ones a 35:5%. In Fig. 5b, a phase transition analysis

(Chopard and Tomassini 2018) is presented of the different

difficulty variables d for the performed simulations under

different time-steps (colored in gray) in order to better

understand when the algorithm becomes obsolete. As it can

be observed, the average resolution rate drops significantly

after d ¼ 0:5, i.e. for Hard and Evil difficulty levels.

Overall, the proposed algorithm is able to deal with Sudoku

puzzles of different difficulties, even ones characterized as

Evil.

5 Performance enhancement methods

In this Section, different methods are explored in order to

increase the average resolution rate, especially for Hard

and Evil difficulty levels, in which the phase transition of

the proposed algorithm is taking place. Two different

methods are investigated, namely learning rates and

selective probability reset rule, and both of them are able to

achieve higher resolution rates.

5.1 Learning rates

In this method, learning rate variables are introduced to the

Algorithm 1, and in specific on the reward and penalty

factor of each selected action. Thus, the variables lr and lp
have been included on the Algorithm 2 (lines 5, 9, 11) to

describe the learning rates for reward and penalty pro-

cesses, respectively. In order to evaluate the impact of this

method, the ratio between penalty and reward learning

rates (lp=lr) was taken into consideration. In detail, the

learning rates are incorporated into the reward and penalty

functions in order to affect the impact of the cell’s degree

as follows:

rðdi;j; lrÞ ¼1þ di;j
kNi;jk

� lr ð8Þ

pðdi;j; lrÞ ¼1� 1� di;j
kNi;jk

� �
� lp ð9Þ

The results of the simulations under different learning

rates ratio (lp=lr) are presented in Fig. 6 for the 400

available set of puzzles under 250 maximum available

time-steps. Figure 6a presents the resolution rate of the

different difficulties of Sudoku puzzles for the different

ratios. As observed, the resolution rate can be improved in

comparison with the initial simulations with the best case

to be at lp=lr ¼ 20. The overall resolution rate of the best

case is 92:5% (Table 3) with an increase of 20% to the

performance of the algorithm showcasing a 93% resolution

rate for Hard puzzles (þ35%) and a 77% for Evil ones

(þ41:5%), proving the efficiency of this performance

enhancement method. In Fig. 6b, the phase transition

analysis is presented for the different difficulty variables d,

where it can be noticed that different ratios have different

impact on the resolution rate (presented in gray color),

while the average one is slightly improved in comparison

with the initial proposed algorithm (dotted line).

Table 1 Count of Sudoku puzzles of different difficulties

Difficulty d Amount Total

Easy 0.25 33 100

0.3 34

0.35 33

Medium 0.4 33 100

0.45 34

0.5 33

Hard 0.55 33 100

0.6 34

0.65 33

Evil 0.7 33 100

0.75 34

0.8 33

Table 2 Resolution statistics for Sudoku puzzles of different

difficulties

Difficulty Resolution Average

Rate Time-steps

Easy 99:9% 5

Medium 96:7% 11

Hard 58% 35

Evil 35:5% 55

Overall 72:5% -
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5.1.1 The impact of learning speed

As next steps, the impact of learning speed is analyzed

based on the learning rates ratio best case (lp=lr ¼ 20).

Different learning speeds are considered and the results of

the simulations based on penalty learning (lp) are presented

in Fig. 7 for the 400 available set of puzzles under 250

maximum available time-steps. Figure 7a presents the

resolution rate of the different difficulties of Sudoku puz-

zles for different speeds. As observed, the resolution rate

Fig. 5 a Resolution rate of 9�
9 Sudoku puzzles of different

difficulty levels under different

maximum available time-steps.

b Overall resolution rate of 9�
9 Sudoku puzzles of different

difficulty variables d as derived

from simulations under different

maximum available time-steps.

Average resolution rate is

presented in dark blue
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Fig. 6 a Resolution rate of 9�
9 Sudoku puzzles of different

difficulty levels under different

learning rates (lp=lr). b Overall

resolution rate of 9� 9 Sudoku

puzzles of different difficulty

variables d as derived from

simulations under learning rates

(lp=lr). Average resolution rate

is presented in dark blue, while

dotted line presents the

resolution rate of the initial

proposed algorithm
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remains above 90% for slower speeds with the best case to

be at lp ¼ 3:5, while for quicker speeds than the best one,

the resolution rate drops significantly. The overall resolu-

tion rate of the best case is 96:3% (Table 4) with a slight

increase of 3:8% to the performance of the learning rates

algorithm, showcasing a 98% resolution rate for Hard

puzzles (þ5%) and a 87% for Evil ones (þ10%). In

Fig. 7b, the phase transition analysis is presented for the

different difficulty variables d, where it can be noticed that

the different speeds have different impact on the resolution

rate (presented in gray color), while the average one is

slightly worse than the one from Sect. 5.1 (dotted line). It

should be also noted that all the presented simulations

under different learning rate ratios have been performed at

slow speeds that do not affect the resolution rates and are

above the critical point in which the algorithm

underperforms.

Algorithm 3 Pseudo code of the selective probability reset rule

5.2 Selective probability reset rule

In this method, a different rule is applied every specific

amount of time-steps, namely sr time-steps, and, more

specifically, the rule verifies if a row, column, or sub-grid

has been resolved correctly or not in order to selectively

reset the probability of its cells. It follows the Algorithm 1

with the exception that every sr time-steps, the Algorithm 3

is activated that incorporates the rule of the selective

probability reset (lines 3-7). This rule has been selected

from the fact that each row, column, and sub-grid should

have all numbers from 1 to 9 exactly once (line 2), which

means that the summation SN of all numbers in each row,

column and sub-grid of each cell Ci;j should comply with

the following equation:

SN ¼
X

Ck;l2Nc
i;j

ck;l ¼
X

Ck;l2Nr
i;j

ck;l ¼

¼
X

Ck;l2Nsg
i;j

ck;l ¼
X9
c¼1

c ¼ 45

ð10Þ

Figure 8 illustrates the results of the simulations incor-

porating the selective probability reset rule every sr time-

steps for the 400 available set of puzzles under 250 max-

imum available time-steps. The resolution rate of the dif-

ferent difficulties of Sudoku puzzles for the different sr

time-steps can be spotted in Fig. 8a. It should be noted that

the resolution rate can be improved significantly in com-

parison with the initial simulations when the selective reset

rule provides enough time for the initial proposed algo-

rithm to resolve the puzzles (i.e. sr[ 20). When the sr

time-steps are getting increased significantly (i.e. sr[ 110)

the reset rule is triggered fewer times and its impact on

Table 3 Resolution statistics for the best case of learning rates

method (lp=lr ¼ 20) for Sudoku puzzles of different difficulties

Difficulty Resolution Average Perf. Improv

Rate Time-steps from Table 2

Easy 100% 5 þ 0:1%

Medium 100% 13 þ 3:3%

Hard 93% 49 þ 35%

Evil 77% 95 þ 41:5%

Overall 92:5% - þ 20%
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Fig. 7 a Resolution rate of 9�
9 Sudoku puzzles of different

difficulty levels under different

learning speeds (based on lp) for
fixed learning rates ratio

(lp=lr ¼ 20). b Overall

resolution rate of 9� 9 Sudoku

puzzles of different difficulty

variables d as derived from

simulations under learning

speeds (based on lp) for fixed
learning rates ratio (lp=lr ¼ 20).

Average resolution rate is

presented in dark blue, while

dotted line presents the

resolution rate of the initial

learning speed of Sect. 5.1
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resolution rate improvement drops towards the resolution

rates without this rule (dotted lines after sr ¼ 130). The

overall resolution rate of the best case (sr ¼ 40) reaches

98:8% (Table 5) with an increase of 26:3% in comparison

to the initial performance showcasing a 99% resolution rate

for Hard puzzles (þ41%) and a 96% for Evil ones

(þ60:5%). In Fig. 8b, the phase transition analysis is pre-

sented for the different difficulty variables d, where it can

be observed that, similarly to the previous method, differ-

ent amount of sr time-steps for the selective rule (presented

in gray color) have different impact to the resolution rate,

while the initial proposed algorithm (dotted line) exhibits

remarkably lower resolution rate than the average one of

this method.

5.3 Methods combination

Both presented performance enhancement methods show-

case an improvement to the overall resolution rate results

of the initial proposed algorithm. However, it should be

investigated if the combination of both methods can pro-

vide even better results. Simulations have taken place for

all possible combinations that were investigated in

Sects. 5.1 and 5.2 for the 400 available set of puzzles under

250 maximum available time-steps.

The results are presented in Figs. 9 and 10 for each

different difficulty level. Different resolution levels can be

spotted under different color codes, where the following

convention for the resolution characterization is

considered:

• Very Low: ½0%; 24%Þ presented in blue color

• Low: ½24%; 48%Þ presented in orange color

• Average: ½48%; 72%Þ presented in gray color

• Good: ½72%; 96%Þ presented in yellow color

• Excellent: ½96%; 100%� presented in green color

As can be observed in Figs. 9a and 10a, the overall reso-

lution rate can be characterized as Good and Excellent in

the greatest part of the plot, while the highest resolution

rate was 99:3% in case of lp=lr ¼ 15 and sr ¼ 65 (Table 6).

For Easy and Medium difficulty puzzles the resolution rate

remains at excellent levels in almost all cases hitting 100%
most of the time (Figs. 9b–c and 10b–c). In Figs. 9d

and 10d, the High difficulty puzzles results are presented

and it can be observed that there is a countable area where

there is an excellent resolution rate achieving 100% for the

best case of lp=lr ¼ 15 and sr ¼ 50 (Table 6). Lastly, Evil

puzzles showcase a Good solubility (Figs. 9e and 10e),

while in their best case are 98% solved using lp=lr ¼ 15

and sr ¼ 65 (Table 6).

6 Conclusion

In this paper, we report an ILCA algorithm for the reso-

lution of Sudoku puzzles which combines the spatial and

temporal evolution of CA with the learning mechanisms of

LA. The algorithm is based on the reward and penalty

strategy and utilizes the degree of the grid’s cells for its

evolution. For the initialization, the pre-defined cells were

assigned 100% probability to their pre-defined numbers,

and at the same time, they affected the probability of their

neighbors accordingly.

It has been observed that the algorithm is able to provide

a solution in a few time-steps. It has been tested in a range

of 400 puzzles of different difficulty levels, achieving a

72:5% resolution rate. In order to improve the performance

of the algorithm, two methods were proposed; the learning

rates method and the selective probability reset rule. The

first method introduced learning rate variables during the

reward and penalty process, while the second one used a

different rule for every specific number of time-steps to

reset the probability of the cells that couldn’t reach a

solution.

Both methods were able to improve the results of the

algorithm, reaching a 92:5% and a 98:8% resolution rate

respectively. The combination of these methods was also

examined in order to determine if the results could further

be improved. A 99:3% resolution rate was achieved when

combining the two methods, while all easy, medium, and

hard puzzles and 98% of evil ones were resolved.

The proposed algorithm has shown promising results in

dealing with complex logic puzzles, i.e. Sudoku puzzles,

showing a potential towards getting extended to other

similar puzzles. At the same time, it could tentatively be

adapted accordingly, so as to generate Sudoku puzzles by

incorporating modifications such as removing the initial-

ization process and by adding a selection process that will

reduce the solutions space progressively to finally generate

a random puzzle.

Table 4 Resolution statistics for the best case of learning speed

(lp ¼ 3:5) for Sudoku puzzles of different difficulties

Difficulty Resolution Average Perf. Improv

Rate Time-steps from Table 3

Easy 100% 5 -

Medium 100% 17 -

Hard 98% 78 þ 5%

Evil 87% 109 þ 10%

Overall 96:3% - þ 3:8%
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Fig. 8 a Resolution rate of 9�
9 Sudoku puzzles of different

difficulty levels incorporating

the selective probability reset

rule. b Overall resolution rate of

9� 9 Sudoku puzzles of

different difficulty variables d as
derived from simulations

incorporating the selective

probability reset rule. Average

resolution rate is presented in

dark blue, while dotted line

presents the resolution rate of

the initial proposed algorithm
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Table 5 Resolution statistics for the best case of the selective probability reset rule method (sr ¼ 40) for Sudoku puzzles of different difficulties

Difficulty Resolution Average Perf. Improv

Rate Time-steps from Table 2

Easy 100% 6 þ 0:1%

Medium 100% 26 þ 3:3%

Hard 99% 91 þ 41%

Evil 96% 121 þ 60:5%

Overall 98:8% - þ 26:3%

Fig. 9 Surface plots of resolution rates for 9� 9 Sudoku puzzles using the proposed algorithm along with a combination of the performance

enhancement methods
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Fig. 10 Contour plots of resolution rates for 9� 9 Sudoku puzzles using the proposed algorithm along with a combination of the performance

enhancement methods

Table 6 Best case resolution

statistics of a combination of the

performance enhancement

methods for Sudoku puzzles of

different difficulties

Best Case1 Resolution Average Performance Improvement from

Difficulty lp=lr sr Rate Time-steps Table 2 Table 3 Table 5

Easy various 100% 5 þ 0:1% - -

Medium 15 - 100% 12 þ 3:3% - -

Hard 15 50 100% 78 þ 42% þ 7% þ 1%

Evil 15 65 98% 114 þ 62:5% þ 21% þ 2%

Overall 15 65 99:3% - þ 26:8% þ 6:8% þ 0:5%

1Best case is considered the one with firstly the highest resolution rate, and secondly the lowest average

time-steps
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In future work, the applicability of the algorithm to the

Sudoku alternatives will be investigated, and the necessary

modifications will be performed in order to utilize it for a

wider range of complex logic puzzles, as well as for puzzle

generation procedures. Furthermore, the expansion of the

algorithm to everyday problems that require similar pro-

cesses to Sudoku resolution will be studied. Lastly, a

hardware implementation of the proposed algorithm will be

investigated utilizing unconventional parallel computing

systems such as memristive computing grids.
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