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Erzsébet Csuhaj-Varjú1 • György Vaszil2

Accepted: 16 January 2024
� The Author(s) 2024

Abstract
A distributed reaction system consists of a finite set of reaction systems that either interact with a common environment or

interact with each other by communicating products or reactions. A reaction system is a well-known qualitative formal

model of interactions between biochemical reactions. A reaction is a triplet of nonempty sets representing chemicals, called

the set of reactants, the set of inhibitors, and the set of products. A reaction corresponds to a chemical reaction performed

on a set of chemicals, and a reaction system is a finite nonempty set of reactions. In this paper, we examine two variants of

distributed reaction systems. We introduce the notion of a distributed reaction system with communication by request (a

qDRS for short), where sets of products are communicated between the component reaction systems by queries. First, we

show that every qDRS can be represented by a reaction system. After that we compare distributed reaction systems with

communication by request to extended distributed reaction systems (EDRSs), models that were introduced in a previous

paper. We prove that extended distributed reaction systems, where a context automaton provides input for the component

reaction systems, simulate distributed reaction systems with communication by request and distributed reaction systems

with communication by request simulate special variants of extended distributed reaction systems. Furthermore, we assign

languages to these two variants of distributed reaction systems. We prove that the class of agreement languages of extended

distributed reaction systems is equal to the class of languages of nondeterministic multihead finite automata and the

agreement language of every distributed reaction system with communication by request is an element of a certain

subregular language class.

Keywords Reaction system � Distributed reaction systems � Communication by request � Multihead finite automata
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1 Introduction

Reaction systems, introduced in 2004, are well-known

qualitative models of biochemical interactions Ehrenfeucht

et al. (2004). A reaction represents a chemical reaction and

it is a triple of finite non-empty sets of objects: the set of

reactants, the set of inhibitors, and the set of products. The

set of reactants and the set of inhibitors are disjoint. A

reaction system is a finite set of reactions.

A reaction can be performed on a set of reactants if each

reactant of the reaction is present and each inhibitor is

absent in the given reactant set. When a reaction is per-

formed, then the set of its reactants is changed to the set of

its products. All reactions of the reaction system that can be

performed on a given set of reactants have to be performed

in parallel. Those reactants that are not involved in any

reaction, disappear from the set of reactants.

In the last two decades, several properties of reaction

systems have been studied and several extensions have

been introduced. Functions defined by reaction systems,

properties of state sequences of reaction systems, the effect

of bounded resources, and connections to propositional

logic were examined in Ehrenfeucht et al. (2011); Salomaa

(2013, 2012). Reaction systems can also be used as a

modeling framework. For checking temporal properties of
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reaction systems, a temporal logic was introduced in Meski

et al. (2015). Biologically inspired properties of reaction

systems have been examined in Azimi et al. (2014, 2016);

Azimi (2017)

Reaction systems can also be organized in a distributed

communication framework. In this case, reactions are

located in nodes of virtual graphs or, simply, an n-tuple of

reaction systems is given. The reactions in these systems

work in a synchronized manner and interact with each

other by distribution and communication protocols. Such

interaction can take place either by obtaining input from a

separate environment or by communicating reactants,

products, or reactions to each other. Examples of such

constructs are distributed reaction systems Meski et al.

(2019), extended distributed reaction systems Ciencialová

et al. (2022, 2023), networks of reaction systems Bottoni

et al. (2020), and communicating reaction systems with

direct communication Csuhaj-Varjú et al. (2020). Networks

of reaction systems, distributed reaction systems, and

communicating reaction systems were related in Aman

(2022, 2023).

An extended distributed reaction system (the EDRS for

short), introduced in Ciencialová L et al. (2022, 2023), is a

slightly modified variant of the distributed reaction system

model studied in Meski et al. (2019). An EDRS consists of

a finite number of reaction systems defined over a common

background set (set of objects). These reaction systems

operate in a synchronized manner. In each step, a so-called

context automaton provides a set of reactants for each

reaction system which is added to the current reactant set

(the current state) of this reaction system. This set of

reactants is called a context. After that, all enabled reac-

tions are performed on the obtained new set of reactants

(the union of the original reactant set and the context) and

the interactive process is going to be repeated.

In Csuhaj-Varjú et al. (2020), two variants of commu-

nicating reaction systems with direct communication (cdcR

systems for short) were introduced, namely, the

cdcR(p) system where products are communicated and the

cdcR(r) systems where reactions are communicated. In the

case of cdcR(p) systems, after performing the enabled

reactions on its current reactant set, the component sends

copies of certain products to certain target components.

The target nodes and the products to be communicated are

given together with the reaction. Thus, a computation step

consists of a reaction and after that a communication. In the

case of cdcR(r) systems, if a reaction is successfully per-

formed by a component, then its copies are sent to prede-

fined target components. Notice that these variants of

distributed reaction systems realize communication by

command, i.e., by performing the reactions, the compo-

nents initiate the sending of specific products/reactants to

other components.

In this paper, we introduce a new variant, called a dis-

tributed reaction system with communication by request (a

qDRS for short). In this case, after performing the enabled

reactions, the component may request the state of some

other components, given together with the reaction. This

query is represented by query symbols, each component is

assigned to one query symbol and vice versa. Provided that

the components addressed by a query have no query

symbol in their states, a copy of the products in the state of

the component is sent to the component that issued the

query. This communication process continues until the

state of every component is query-free.

If the communication process does not end with only

query-free states, then the computation aborts. This model

was inspired by parallel communicating grammar systems

Păun and Kari (1989); Csuhaj-Varjú et al. (1994), a

grammatical framework for distributed communicating

systems of Chomsky grammars. In the case of parallel

communicating grammar systems, the state of a component

corresponds to the string generated by a grammar and the

performing of a reaction corresponds to the application of a

production.

In this paper, we examine distributed reaction systems

with communication by request and extended distributed

reaction systems and their relations to each other.

We prove that every distributed reaction system with

communication by request can be represented by a reaction

system. More precisely, to a given qDRS we can give a

reaction system such that the sequence of its query-free

states can be obtained by a simple mapping from the state

sequence of the reaction system. Analogous results were

presented for cdcR(p) systems and cdcR(r) systems in

Csuhaj-Varjú et al. (2020). The result implies that the

power of qDRS does not exceed the boundaries of the

power of reaction systems.

Next, we show that to every qDRS a simulating EDRS

can be given, i.e. their state sequences correspond to each

other (they are almost the same). According to the reverse

direction, to every EDRS of a certain restricted type, a

simulating qDRS can be constructed. For the general case,

such a simulation result cannot hold since, contrary to

reaction systems and qDRS, extended distributed reaction

systems can also be non-deterministic (when their context-

automaton is non-deterministic).

In two previous papers Ciencialová L et al.

(2022, 2023), languages were assigned to extended dis-

tributed reaction systems and representations of well-

known language classes were presented with these models

(the class of right-linear simple matrix languages and the

class of recursively enumerable languages).

In this paper, we define the agreement language of the

EDRS. We show that the class of agreement languages of

extended distributed systems is equal to the class of languages

E. Csuhaj-Varjú, G. Vaszil

123



ofmultihead nondeterministic finite automata.We discuss the

languages of qDRS and we state that the agreement language

of any distributed reaction system with communication by

request is in a certain subregular language class.

Our paper is organized as follows. In Sect. 2, we present

the basic notions concerning reaction systems and dis-

tributed reaction systems. In Section 3, we present the

notion of a distributed reaction system with communication

by request and statements concerning qDRS, including the

comparisons to extended distributed reaction systems. In

Section 4, we introduce the notion of the agreement lan-

guage of an EDRS and prove the equality of the class of

agreement languages of extended distributed systems and

the class of languages of multihead nondeterministic finite

automata. We also discuss the agreement language of

qDRS. We close the paper with conclusions and suggest

topics for research.

2 Preliminaries

Throughout the paper, we assume the reader to be familiar

with the basics of formal language theory as presented, for

example, in Hopcroft et al. (2006).

2.1 Reaction systems

In this subsection, we recall the basic notions concerning

reaction systems, introduced in Ehrenfeucht et al. (2004);

Ehrenfeucht and Rozenberg (2007).

Let S be a finite non-empty set. A triplet a ¼ ðR; I;PÞ
where R, I, P are nonempty subsets of S and R \ I ¼ ; is

called a reaction in S. The set S is called the background

set, R is called the set of reactants (or the reactant set), I is

the set of inhibitors (or the inhibitor set), and P is called the

set of products (or the product set) of reaction a; the ele-

ments of S are called objects or molecules.

A reaction system is an ordered pair A ¼ ðS;AÞ, where
A is a non-empty set of reactions in S.

Reaction systems function by performing their reactions

on a nonempty subset of the background set that is called

the current state of the reaction system. Let S be a back-

ground set, let X � S, and let a ¼ ðRa; Ia;PaÞ be a reaction
in S. Then, a is enabled by X, denoted by enaðXÞ, if Ra � X

and Ia \ X ¼ ; holds. The result of a on X, denoted by

resaðXÞ, is defined by resaðXÞ ¼ Pa if enaðXÞ, and

resaðXÞ ¼ ;, otherwise.
The effect of a set of reactions on a state is cumulative.

Let A ¼ ðS;AÞ be a reaction system with background set S

and let X � S. The subset of reactions of A enabled by X,

denoted by enAðXÞ; is defined as enAðXÞ ¼ fa 2 A j

enaðXÞg, and the result of A on X, denoted by resAðXÞ, is
resAðXÞ ¼ fresaðXÞ j a 2 Ag.

The behavior of the reaction system is described by an

interactive process. Let A ¼ ðS;AÞ be a reaction system.

An interactive process in A is a pair p ¼ ðc;uÞ of finite

sequences such that c ¼ C0;C1; . . .;Cn; u ¼ D1; . . .;Dn

with n� 1, where C0; . . .;Cn;D1; . . .;Dn � S,

D1 ¼ resðA;C0Þ, and Di ¼ resðA;Di�1 [ Ci�1Þ for each

2� i� n.

The sequences C0; . . .;Cn, and D1; . . .;Dn are the con-

text and result sequences of p, respectively. The context C0

is the initial state of p and the contexts C1; . . .;Cn�1 rep-

resent the influence of the environment on the computation.

If Ci ¼ ; for all i� 1, then the reaction system is said to

be working without the influence of the environment (or

without environmental influence).

The sequence stsðpÞ ¼ W0; . . .;Wn denotes the state

sequence of p, where W0 ¼ C0 (the initial state), and Wi ¼
Di [ Ci for all 1� i� n.

The sequence actðpÞ ¼ E0; . . .;En�1 of subsets of A such

that Ei ¼ enðA;WiÞ for all 0� i� n� 1 represents the

activity sequence of p.
Consequently, the evolution of the state sequence of A

starting from W0 is denoted by

W0�!
E0

W1�!
E1

. . .�!En�1
Wn:

If En ¼ enðA;WnÞ ¼ ;, then the interactive process

terminates.

Notice that the state sequence of a reaction system

(working without the influence of the environment) is

deterministic, each state has only one successor state. This

is due to the property that reaction systems perform all

enabled reactions on the given state.

2.2 Distributed reaction systems

A distributed reaction system consists of a finite set of

reaction systems that either interact by input with a com-

mon environment or interact with each other by commu-

nicating products or reactions. The components are defined

over a common background set and function as reaction

systems on subsets of the background set assigned to them.

These sets of objects are the current states of the compo-

nents. The components of the distributed reaction system

may communicate with each other. This can be realized by

direct communication of products or reactions

(cdcR(p) systems and cdcR(r) systems, see Csuhaj-Varjú

et al. (2020)) or by sharing the products of the component

with the products of its neighbours Bottoni et al. (2020).

The latter variant, where the components are located in

nodes of a virtual graph is called a network of reaction

systems.

Variants of distributed reaction systems...
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In this subsection, we recall a variant of distributed

reaction systems where the contexts from the environment

are generated by a context automaton, resembling to a

nondeterministic finite automaton. This model is a variant

of the so-called distributed reaction system and its opera-

tion, with slight modifications of the notions and notations

originally introduced in Meski et al. (2019), and then in a

modified form in Ciencialová L et al. (2022, 2023).

Definition 1 A distributed reaction system (a DRS for

short) is a pair D ¼ ðS;AÞ where S is a finite nonempty set,

the background set of D, and A ¼ ðA1; . . .;AnÞ where Ai,

1� i� n, is a finite nonempty set of reactions over S. Ai is

called the ith component of D, 1� i� n.

The distributed reaction system interacts with its envi-

ronment. The environment is a finite set of reactants. The

current reactant set in the environment may also be called

the current context.

Now, we present the notion of a context automaton (or

context provider) in Ciencialová L et al. (2022). This

concept is a slightly modified variant of the notion of a

context automaton in Meski et al. (2019).

Definition 2 Let D ¼ ðS;AÞ with A ¼ ðA1; . . .;AnÞ, n� 1,

be a distributed reaction system. A 5-tuple M ¼
ðQ;C;R; q0;FÞ is called a context automaton (or a context

provider) for D if the following conditions are met:

• Q is a finite set, called the set of states of M,

• C � fðc1; . . .; cnÞ j ci � S; 1� i� ng is the finite set of

n-tuples of contexts provided for components

A1; . . .;An,

• R � fðq; ðc1; . . .; cnÞ; rÞ j q; r 2 Q; ðc1; . . .; cnÞ 2 Cg is

the set of transitions of M,

• q0 2 Q is the initial state of M, and

• F � Q is the set of final states of M.

Notice that the context automaton is non-deterministic.

In the following, we extend the notion of a distributed

reaction system to a distributed reaction system interacting

with its environment, called an extended distributed reac-

tion system. In the case of the extended distributed reaction

system each component maintains its local state, which is a

subset of S. A global state is an n-tuple of the local states of

the components. The distributed reaction system is in

interaction with its environment, i.e., at each transition

from one global state to the next, the environment provides

each component of the distributed reaction system with a

context. The context is a finite, possibly empty set of ele-

ments of S.

Definition 3 An extended distributed reaction system (an

EDRS for short) is a pair C ¼ ðD;MÞ, where

• D ¼ ðS;AÞ with A ¼ ðA1; . . .;AnÞ, n� 1, is a dis-

tributed reaction system over S, and

• M ¼ ðQ;C;R; q0;FÞ is a context automaton for D.

We now define the state of a distributed reaction system.

Definition 4 Let C ¼ ðD;MÞ be an extended distributed

reaction system, where D ¼ ðS;AÞ, A ¼ ðA1; . . .;AnÞ,
n� 1; M ¼ ðQ;C;R; q0;FÞ.

A triplet r ¼ ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ is called a

state of C if q 2 Q, ðc1; . . .; cnÞ 2 C, and for ðd1; . . .; dnÞ it
holds that di � S, 1� i� n.

Each state r0 ¼ ðq0; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ where q0
is the initial state of M is called an initial state of C, and
each state rf ¼ ðqf ; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ where qf 2 F

is called a final state of C.

Now we present the notion of a direct transition in an

EDRS.

Definition 5 Let C ¼ ðD;MÞ be an extended distributed

reaction system, where D ¼ ðS;AÞ, A ¼ ðA1; . . .;AnÞ,
n� 1 and M ¼ ðQ;C;R; q0;FÞ is the context automaton for

C.
Let r1 and r2 be two states of C, where r1 ¼

ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ and

r2 ¼ ðr; ðc01; . . .; c0nÞ; ðd01; . . .; d0nÞÞ. We say that there is a

direct transition from r1 to r2 in C, denoted by r1 ¼) r2,
if the following conditions are met:

• ðq; ðc1; . . .; cnÞ; rÞ 2 R,

• ðc01; . . .; c0nÞ 2 C,

• d0i ¼ resAi
ðci [ diÞ, 1� i� n.

The transitive reflexive closure of relation ¼) is denoted

by ¼)�.

The non-deterministic nature of EDRSs can also be

observed in the above definition. Notice that the only

condition on ðc01; . . .; c0nÞ is that it be an element of C. So, a

state of an EDRS may have more than one successor state.

Next, we define the notion of a finite interactive process

in an extended distributed reaction system.

Definition 6 Let C ¼ ðD;MÞ be an extended distributed

reaction system.

A finite sequence of states r0; . . .; rm of C is said to be a

finite interactive process in C if

r0 ¼) r1 ¼) . . . ¼) rm�1 ¼) rm, m� 1 holds for some

initial state r0.
The finite interactive process is called terminating if rm

is a final state of C. The set of all terminating finite

interactive processes of C is denoted by PC.

Notice that if r0 ¼) r1 ¼) . . . ¼) rm�1 ¼) rm,
m� 1, is a terminating interactive process, then r0 ¼)
r1 ¼) . . . ¼) rm�1 ¼) rm ¼) rmþ1 ¼) . . . ¼) rmþk,
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k� 1, can also be a terminating interactive process if rmþk

is a final state of C.

3 Distributed reaction systems
with communication by request

In this section we introduce the concept of the distributed

reaction system with communication by request. Unlike

cdcR(p) systems, where the components send copies of the

obtained products to certain target components, the com-

ponents of these systems receive copies of products from

certain other components upon request. A request, marked

by a query (symbol), means that the issuing component

requests the state of the target component. The target

component sends the copies of the products in its state to

the querying components provided that its state does not

contain a query. This communication protocol also

expresses hidden coordination of the function of the com-

ponents. As mentioned above, the idea was inspired by

parallel communicating grammar systems Păun and Kari

(1989); Csuhaj-Varjú et al. (1994).

Definition 7 A distributed reaction system with commu-

nication by request (a qDRS for short) is an ðnþ 2Þ-tuple
D ¼ ðS;K;A1; . . .;AnÞ, n� 1, where

• S is a finite nonempty set, called the background set of

D,
• K ¼ fQ1; . . .;Qng with K \ S ¼ ; is an alphabet called

the set of queries of D where Qi is associated to

component Ai, 1� i� n.

• Ai, 1� i� n, is a finite nonempty set of extended

reactions called the ith component of D. Each extended

reaction is either a reaction over S, or a reaction over

S [ K of the form ðR; I; fqgÞ, where R and I are

nonempty disjoint subsets of S and q 2 K with q 6¼ Qi.

If no confusion arises, we may use term reaction instead

of extended reaction.

The extended reaction of the form ðR; I; fqgÞ initiates

the communication process. Notice that every such reaction

introduces only one query and does not provide any pro-

duct which is an element of the background set. Further-

more, self-query is not allowed.

A state of D is an n-tuple �D ¼ ðD1; . . .;DnÞ, where Di �
S [ K and Di is a non-empty set called the state of com-

ponent Ai in �D. The set Di is called query-free if

Di \ K ¼ ;, 1� i� n. If every Di, 1� i� n, is query-free,

then �D is called query-free.

Example 1 Let D ¼ ðfa; b; c;Xg; fQ1;Q2;Q3g;A1;A2;A3Þ
where

A1 ¼fðfag; fcg; fbgÞ; ðfbg; fcg; fagÞg;
A2 ¼fðfbg; fXg; fagÞ; ðfag; fXg; fbgÞ; ðfbg; fXg; fQ1gÞ; ðfbg; fXg; fQ3gÞg;
A3 ¼fðfag; fXg; fcgÞ; ðfcg; fXg; fagÞ; ðfag; fXg; fQ1gÞ; ðfcg; fXg; fQ1gÞg:

Then D is a qDRS with components A1, A2, A3.

We define the (direct) transition between two states in D
as follows.

Definition 8 Let D ¼ ðS;K;A1; . . .;AnÞ, n� 1, be a qDRS

and let �D ¼ ðD1; . . .;DnÞ and �D
0 ¼ ðD0

1; . . .;D
0
nÞ be two

states of D.
We say that there is a (direct) transition between �D and

�D
0
( �D directly changes to �D

0
) if one of the following

conditions holds:

• A transition of type (a), denoted by �D ! �D
0
, is

performed if Di \ K ¼ ; for each i, 1� i� n. In this

case D0
i ¼ resAi

ðDiÞ.
• A transition of type (b), denoted by �D ‘ �D

0
, is

performed if Dk \ K 6¼ ; for some k, 1� k� n. In this

case, for each i, 1� i� n, we write Di ¼ Xi [ Ki, where

Xi ¼ Di \ S and Ki ¼ fQi1 ; . . .;Qirg ¼ Di \ K. Then

D0
i ¼ Xi [ K 0

i [ K 00
i where K 0

i ¼
S

Qij
2Ki;Dij

\K¼; Dij , and

K 00
i ¼

S
Qij

2Ki;Dij
\K 6¼; fQijg:

A transition of type (a) can also be called a reaction step

and a transition of type (b) can be also be called a com-

munication step of D. If the type of the transition is irrel-

evant, then we use notation �D ¼) �D
0
. In this case we use

the short term transition.

We give a short explanation to the definition. If no query

occurs in the state of any component, then the components

perform all of their enabled reactions. The new state of the

component will be the set of the obtained products. This is

the case of transition of type (a).

If there is at least one component with a query, then

transition of type (b) is performed. Suppose that a com-

ponent with at least one query is Ai and its state is Di. Then

the new state D0
i of Ai consists of the union of the following

sets: the set of reactants in Di which are elements of S, the

set of queries that request the state of such components

which have non-query-free state, and the union of the states

of the components with query-free state where a query to

the component was issued. The states of the query-free

components remain unchanged.

No transition of type (a) is possible if there exists a

component with a state having a query as an element.

The transitive (and reflexive) closure of !, ‘, and ¼)
is denoted by !þ, ‘þ, and ¼)þ (!�, ‘�, and ¼)�)
respectively.

A sequence of transitions is said to be a communication,

if it is a sequence of communication steps. If the resulting
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state, rr , is query-free, then the communication is suc-

cessful. Since D contains n components, the length of every

successful communication is at most n� 1.

Notice that a sequence of transitions resulting in a state
�Dh is halting in the following cases:

• The state �Dh of D is query-free and no reaction step can

be performed (i.e. there is no component with an

enabled extended reaction), or

• �Dh is not query-free and no communication step can be

performed.

Note that if the transition sequence of a qDRS is halting,

then it is finite. This follows from the fact that every qDRS

has a finite state space, so any trajectory in it is either

periodic (not halting) or finite (and halting).

A transition sequence is called terminating if it ends

with a query-free state and is halting. A finite transition

sequence of D starting from an initial state �D0 ¼
ðD0;1; . . .;D0;nÞ is called a computation.

Definition 9 A sequence c ¼ �D0; �D1; . . .; �Dm; . . . is called

a state sequence of D if �Diþ1 can be obtained from �Di by a

reaction step or by a communication step.

A subsequence c0 ¼ �U0; �U1; . . .; �Ur; . . . of the state

sequence �D0; �D1; . . .; �Dm; . . . is called a state sequence in

the strict sense if �Uj is a subset of S and there is no state �Dh

in c0 which is not an element of c. Furthermore, if �Uj ¼ �Dl

and �Ujþ1 ¼ �Ds, then l\s and there is no �Dr where l\r\s

such that �Dr is query-free.

If �D0; �D1; . . .; �Dm; . . . is the sequence of k-tuples of the

states of components Ai1 ; . . .;Aik for some k, 1� k� n, then

it is called the state sequence of components Ai1 ; . . .;Aik of

D.

Example 2 Let ðfag; fbg; fagÞ be the initial state of D ¼
ðfa; b; c;Xg; fQ1;Q2;Q3g;A1;A2;A3Þ from Example 1.

The following table demonstrates the first few transi-

tions in D.

steps state of A1 state of A2 state of A3 transition type

0: fag fbg fag !
1: fbg fa;Q1;Q3g fc;Q1g ‘
2: fbg fa; b;Q3g fc; bg ‘
3: fbg fa; b; cg fc; bg !
4: fag fa; b;Q1;Q3g fa;Q1g ‘
5: fbg fa; b;Q3g fa; bg ‘
6: fbg fa; bg fa; bg !
7: fag fa; b;Q1;Q3g fc;Q1g

It can easily be seen that the states of the components are

query-free after every third step and the length of each

communication sequence is two.

Next, we show that every qDRS can be represented by a

reaction system. More precisely, to the state sequence c of

a qDRS in the strict sense, starting from a given initial

state, we can give a reaction system working without

environmental influence and an initial state of this reaction

system such that c can be obtained as a mapping of a

certain subsequence j of the state sequence of the reaction

system.

In order to avoid confusion, in the following theorem

and in its proof, we use slightly different notations for

reaction systems than usual, but their meaning is obvious

from the context.

Theorem 1 To any qDRS D ¼ ðS;K;A1; . . .;AnÞ, n� 1,

with initial state �D0, we can give a reaction system

A ¼ ðR;RÞ, where R is the background set of A and R is

the set of reactions of A, A works without environmental

influence, an initial state W0 of A, and mappings

hi : R ! S [ K, 1� i� n, such that the following holds:

If �D0; �D1; . . .; �Di; . . . is the state sequence of D in the

strict sense, where �Di ¼ ðDi;1; . . .Di;nÞ, i� 0, Di;l � S,

1� l� n, and W0;W1. . .;Wr; . . ., r� 0 is the state sequence

of A, then hlðWiðnþ1ÞÞ ¼ Di;l holds for each �Di, 1� l� n.

Proof The idea of the proof is the following. The reaction

system A simulates each reaction step and each commu-

nication sequence in D in n steps. The elements of R rep-

resent the reactants and the queries of D together with their

locations, i.e., with reference to the component where they

are located. In addition, the current step number of the n-

step simulation phase is indicated.

Let R ¼ S0 [ S00 [ K 0 [ fXg where S0; S00;K 0 and X are

defined as follows.

S0 ¼f½a; i� j a 2 S; 1� i� ng;
S00 ¼f½a; i�ðjÞ j a 2 S; 1� i; j� ng;

where index i refers to the number of the component where

a is located and j refers to the number of the step in the

simulating transition sequence.

K 0 ¼ f½Qk; i�ðjÞ j 1� i; j; k� n; i 6¼ kg;

where reactant ½Qk; i�ðjÞ in A represents a query of com-

ponent Ai of D that requests the state of component Ak.

Index j indicates that the simulation of the corresponding

transition is in the jth step. In addition, we also have

X 2 R n ðS0 [ S00 [ K 0Þ:

Since the maximal length of a communication in D is

n� 1, any reaction step and any communication in D will

be simulated by n transitions in A.

Reactions of A are given in the following manner.

If (R, I, P) is a (query-free) reaction in component Ai of

D, we add the following reactions to R:
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ðf½a; i� j a 2 Rg; f½b; i� j b 2 Ig [ K 0; f½c; i�ð1Þ j c 2 PgÞ
ð1Þ

if P \ K ¼ ;. Otherwise, if P \ K 6¼ ;, we have

ðf½a; i� j a 2 Rg; f½b; i� j b 2 Ig [ K 0;

f½c; i�ð1Þ j c 2 ðP \ SÞg [ f½Qk1 ; i�
ð1Þ; . . .; ½Qkl ; i�

ð1ÞgÞ
ð2Þ

where fQk1 ; . . .;Qklg ¼ P \ K and i 6¼ kh, 1� h� l.

We also add the following reactions to R:

ðf½a; i�ðjÞg; fXg; ½a; i�ðjþ1ÞÞ; ð3Þ

for 1� j� n� 1, and

ðf½a; i�ðnÞg; fXg; f½a; i�gÞ; ð4Þ

where a 2 S.

The above reactions simulate reaction (R, I, P) of

component Ai of D.
First, the enabled reactions are performed and the non-

query products (certain elements of S) and possibly queries

are indexed (see (1) and (2)). After that, a procedure

consisting of n steps follows that preserves the non-query

products while the communication takes place. During

these n steps the non-query products (elements of S) are

indexed by an increasing number until index n is obtained.

After that the indexed version of the product is changed to

the original one.

To simulate the communication steps, we add the

following reactions to R:

ðf½Qk; i�ðjÞ; ½a; k�ðjÞg;[n
l¼1f½Ql; k�ðjÞg; f½a; i�ðjþ1ÞgÞ; ð5Þ

for a 2 S, 1� j� n� 1, 1� i; k� n, where i 6¼ k.

These reactions represent the case when component Ai

requests the actual state of component Ak provided that its

state is query-free. Such a reaction checks whether or not

the query exists and the state of Ak contains an element a of

S (these are the reactants). It also checks whether or not

there is a query in the state of Ak (the set of inhibitors), and

then adds an a to the state of Ai. Notice if a is an element of

the state of Ai, then this reaction implies no change in the

state of Ai.

We also add the following reactions to R:

ðf½Qk; i�ðjÞ; ½Ql; k�ðjÞg; fXg; f½Qk; i�ðjþ1ÞgÞ; ð6Þ

for 1� j� n� 1 1� i; k; l� n, where i 6¼ k and k 6¼ l.

These reactions represent the case when component Ai

requests the actual state of component Ak but the state of Ak

is not query-free. These reactions check whether or not

both Ai and Ak issue a query (the set of reactants), the

inhibitor is irrelevant (singleton fXg), and then the query

by Ai remains unsatisfied, thus the index of the

corresponding symbol increases by 1 (the product). Notice

that for a given query represented by ½Qk; i�ðjÞ either

reactions from the first set of reactions or reactions from

the second set of reactions are enabled, but not reactions

from both sets.

Now we show that the statement of the theorem holds.

We first define mappings hi : R ! S [ K, 1� i� n.

Let hið½a; i�Þ ¼ a for ½a; i� 2 S0, hið½a; i�ðjÞÞ ¼ a for

½a; i�ðjÞ 2 S00, and hið½Qk; i�ðjÞÞ ¼ Qk, 1� i; j; k� n, i 6¼ k.

We extend hi, 1� i� n, to subsets of R as follows. For

every nonempty subset U of S0 and for every nonempty

subset V of S00, let hiðUÞ ¼ fhið½a; i�Þ j ½a; i� 2 Ug and let

hiðVÞ ¼ fhið½a; i�ðjÞÞ j ½a; i�ðjÞ 2 Vg. For every nonempty

subset Z of K 0 let hiðZÞ ¼ fðhið½Qk; i�ðjÞÞ j ½Qk; i�ðjÞ 2 Zg,
1� i; j; k� n i 6¼ k.

Finally, let hiðXÞ ¼ X, thus hiðfXgÞ ¼ fXg, and

hið;Þ ¼ ;, for 1� i� n.

Let �D0 ¼ ðD0;1; . . .;D0;nÞ be the initial state of D and let

W0 ¼ f½a; i� j a 2 D0;i; 1� i� ng be the initial state of A. It

can immediately be seen that for every i, hiðW0Þ ¼ D0;i

holds.

Suppose that the statement holds for
�Dj ¼ ðDj;1; . . .;Dj;nÞ, j� i and Dj;l � S, 1� l� n. (Note

that �Dj is an element of the state sequence of D in the strict

sense.) That is, hlðWjðnþ1ÞÞ ¼ Dj;l, where

W0;W1. . .;Wr; . . ., r� 1 is the state sequence of A. We

show that for �Diþ1 ¼ ðDiþ1;1; . . .;Diþ1;nÞ it holds that

hlðWðiþ1Þðnþ1ÞÞ ¼ Diþ1;l.

Let us consider the state �Di ¼ ðDi;1; . . .;Di;nÞ. Since

hlðWiðnþ1ÞÞ ¼ Di;l, where Di;l � S, we know that Wiðnþ1Þ
consists of reactants of the form [a, l], 1� l� n, where

a 2 S. The next state �D
0
i ¼ ðD0

i;1; . . .;D
0
i;nÞ in the state

sequence (not in the strict sense) of D will be either query-

free or it will have at least one occurrence of a query. In the

query-free case, starting from Wiðnþ1Þ, computation steps

are performed with reactions of type (1), then of type (3),

(4). After performing the corresponding reactions of type

(1), we obtain that Wiðnþ1Þþ1 will consists of reactants of

the form ½a; l�ð1Þ, 1� l� n and Wiðnþ1Þþ1 corresponds to

�D
0
i ¼ ðD0

i;1; . . .;D
0
i;nÞ. After this step, n� 1 reaction steps

follow (by using reactions of type (3)), where only the

upper index of the reactants is increased by one until index

n is obtained. Observe that these steps are codes of

Wiðnþ1Þþ1, thus they do not simulate any reaction or

communication in D. In the next step, all reactants of the

form ½a; l�ðnÞ are changed to [a, l] (by reactions of type (4),

thus the simulation of the reaction step is completed.

In the non query-free case, computation steps are

performed on Wiðnþ1Þ with reactions of type (2), then of

type (5), (6), and (3), (4) in this order. Suppose that
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Wiðnþ1Þþ1 corresponds to �D
0
i ¼ ðD0

i;1; . . .;D
0
i;nÞ in D, were at

least one D0
l, 1� l� n contains a query. Then Wiðnþ1Þþ1

consists of reactants of the form ½a; i�ð1Þ and ½Qk; i�ð1Þ where
½a; i�ð1Þ represents reactant a at component Ai and ½Qk; i�ð1Þ
represents a query from component Ai to component Ak. By

definition of the reactions of type (2), exactly the elements

of D0
i;l, 1� l� n are represented in Wiðnþ1Þþ1. Suppose that

the queries in �D
0 ¼ ðD0

i;1; . . .;D
0
i;nÞ can be satisfied in l

communication steps, where 1� l� n. Then, by using

reactions of type (5) and (6) all communication steps in D

are simulated. In each communication step, if ½Qk; i�ðjÞ can
be satisfied, i.e., component Ak does not contain a query,

then ½Qk; i�ðjÞ is replaced by the set of all reactants of the

form ½a; k�ðjþ1Þ
that are present (reactions of type (5)), if

½Qk; i�ðjÞ cannot be satisfied, i.e., the state of component Ak

contains at least one query, then the upper index ½Qk; i�ðjÞ, j
is increased by one (reactions of type 6). The upper index

of the other reactants of the form ½a; i�ðjÞ is also increased

by one (reactions of type (3)). Then, as before, either

reactions of type (5) or reactions of type (6) are performed

until no reactant of the form ½Qk; i�ðjÞ is present. If the

length of communication is less than n� 1, then as in the

previous case by reactions (3) and (4), the upper indices of

the reactants are increased until n is obtained and after then

all reactants are changed to be of the form [a, i]. In this

way the communication is simulated. We can see that any

computation in D is simulated by A, and the state sequence

of D in the strict sense can be obtained by mappings of a

certain subsequence of the state sequence of A. h

Example 3 We continue with the qDRS D presented in

Example 1. Recall that D ¼ ðfa; b; c;Xg;
fQ1;Q2;Q3g; ðA1;A2;A3Þ where
A1 ¼fðfag; fcg; fbgÞ; ðfbg; fcg; fagÞg;
A2 ¼fðfbg; fXg; fagÞ; ðfag; fXg; fbgÞ; ðfbg; fXg; fQ1gÞ; ðfbg; fXg; fQ3gÞg;
A3 ¼fðfag; fXg; fcgÞ; ðfcg; fXg; fagÞ; ðfag; fXg; fQ1gÞ; ðfcg; fXg; fQ1gÞg:

Let the initial state be ðfag; fbg; fagÞ.
Now we construct a reaction system A ¼ ðR;RÞ which

simulates D. Let

S0 ¼ f½a; i�; ½b; i�; ½c; i�; ½X; i� j 1� i� 3g;

let

S00 ¼ f½a; i�ðjÞ; ½b; i�ðjÞ; ½c; i�ðjÞ; ½X; i�ðjÞ j 1� i; j� 3g;

and consider symbol Y not in S0 [ S00. Let also

K 0 ¼ f½Qk; i�ðjÞ j 1� i; j; k� 3g;

and let the background set of A be

R ¼ S0 [ S00 [ K 0 [ fYg:

Consider the initial state to be f½a; 1�; ½b; 2�; ½a; 3�g. In the

following we provide the reactions in A. For simplicity, we

list only those which can be applied in the initial state.

Reaction

ðf½a; 1�g; f½c; 1�g; f½b; 1�ð1ÞgÞ

of type (1) is in R. Reactions

ðf½b; 2�g; f½X; 2�g; f½a; 2�ð1ÞgÞ; ðf½b; 2�g; f½X; 2�g; f½Q1; 2�ð1ÞgÞ;
ðf½b; 2�g; f½X; 2�g; f½Q3; 2�ð1ÞgÞ;

and

ð½fa; 3�g; f½X; 3�g; f½c; 3�ð1ÞgÞ; ð½fa; 3�g; f½X; 3�g; f½Q1; 3�ð1ÞgÞ

are in R and of type (2).

For all 1� i� 3, j ¼ 1; 2, and z 2 fa; b; c;Xg, we have

reactions

ðf½z; i�ðjÞg; fYg; f½z; i�ðjþ1ÞgÞ;

of type (3), and reactions

ðf½z; i�ð3Þg; fYg; f½z; i�gÞ;

of type (4) in R.

For simplicity, in the following we provide only those

reactions which are enabled during the computation.

Reactions

ðf½Q1; 2�ð1Þ; ½b; 1�ð1Þg; f½Q1; 1�ð1Þ; ½Q2; 1�ð1Þ; ½Q3; 1�ð1Þg; f½b; 2�ð2ÞgÞ;

ðf½ðQ1; 3�ð1Þ; ½b; 1�ð1Þg; f½Q1; 1�ð1Þ; ½Q2; 1�ð1Þ; ½Q3; 1�ð1Þg; f½b; 3�ð2ÞgÞ;
ðfð½Q3; 2�ð2Þ; ½b; 3�ð2Þg; f½Q1; 3�ð2Þ; ½Q2; 3�ð2Þ; ½Q3; 3�ð2Þg; f½b; 2�ð3ÞgÞ;
ðfð½Q3; 2�ð2Þ; ½c; 3�ð2Þg; f½Q1; 3�ð2Þ; ½Q2; 3�ð2Þ; ½Q3; 3�ð2Þg; f½c; 2�ð3ÞgÞ;

are reactions of type (5) in R. Finally, let

ðfð½Q3; 2�ð1Þ; ½Q1; 3�ð1Þg; fYg; f½Q3; 2�ð2ÞgÞ;
ðfð½Q3; 2�ð1Þ; ½Q2; 3�ð1Þg; fYg; f½Q3; 2�ð2ÞgÞ;
ðfð½Q3; 2�ð1Þ; ½Q3; 3�ð1Þg; fYg; f½Q3; 2�ð2ÞgÞ;

be reactions of type (6) in R.

Then the state sequence of A is the following:

step state computation

0: f½a; 1�; ½b; 2�; ½a; 3�g ¼)
1: f½b; 1�ð1Þ; ½a; 2�ð1Þ; ½Q1; 2�ð1Þ; ½Q3; 2�ð1Þ; ½c; 3�ð1Þ; ½Q1; 3�ð1Þg ¼)
2: f½b; 1�ð2Þ; ½a; 2�ð2Þ; ½b; 2�ð2Þ; ½Q3; 2�ð2Þ; ½c; 3�ð2Þ; ½b; 3�ð2Þg ¼)
3: f½b; 1�ð3Þ; ½a; 2�ð3Þ; ½b; 2�ð3Þ; ½c; 2�ð3Þ; ½c; 3�ð3Þ; ½b; 3�ð3Þg ¼)
4: f½b; 1�; ½a; 2�; ½b; 2�; ½c; 2�; ½c; 3�; ½b; 3�g

In the first computation step all of the reactants

[a, 1],[b, 2], [a, 3] get the upper index (1) and the
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corresponding reactions of Ai, 1� i� 3 are simulated. This

is done by applying reactions of type (1) and (2) in A. In

the second step, the upper index of the reactants ½b; 1�ð1Þ,
½a; 2�ð1Þ, ½c; 3�ð1Þ increases to (2) and in the meantime the

two reactants ½Q1; 2�ð1Þ and ½Q1; 3�ð1Þ, representing queries

Q1 in D, are changed for ½b; 2�ð2Þ and ½b; 3�ð2Þ, respectively,
simulating the corresponding communication step in D.
This step is done by performing reactions of type (3) and

(5) of A. Reactant ½Q3; 2�ð1Þ is changed for ½Q3; 2�ð2Þ by a

reaction of type (6) of A, since this query in the simulated

transition step in D cannot be satisfied. In the third step,

½Q3; 2�ð2Þ is replaced by f½c; 3�ð3Þ; ½b; 3�ð3Þg, according to

reactions of type (5), and the upper index of the other

reactants is increased by one. In the fourth step, the reac-

tants are changed to their original variant without upper

index. During this procedure, no more reactions of A can

be performed. Hence the transitions in A simulate the

transitions in D. Furthermore, if we define hið½x; i�Þ ¼ x, for

x 2 fa; b; cg, 1� i� 3, then we obtain the statement of the

result.

Definition 10 Let C ¼ ðD;MÞ be an extended distributed

reaction system, and let r0; . . .; rm; . . . be a state sequence

in C, where each state ri is of the form

ðqi; ðCi;1 ; . . .;Ci;nÞ; ðDi;1; . . .;Di;nÞÞ, i� 1.

The sequence ðDi;1; . . .;Di;nÞ, i� 0 is called the n-tuple

of state sequences of the components of C starting from the

initial state r0 ¼ ðD0;1; . . .;D0;nÞ. If no confusion arises, we
use the wording the state sequence of the components of C.

We show that to any qDRS with an initial state we can

give an EDRS with an initial state such that the state

sequence of the qDRS and the state sequence of the com-

ponents of the EDRS coincide.

Theorem 2 To any qDRS D ¼ ðS;K;A1; . . .;AnÞ, n� 1

and initial state �D0, we can give an EDRS C ¼ ðD0;MÞ
with initial state r0 such that the state sequence of D and

the state sequence of the components of C coincide.

Proof Let C have the following components: D0 ¼ ðR;A0Þ
where A0 ¼ ðA0

1; . . .;A
0
nÞ, n� 1; is the distributed reaction

system of C and M ¼ ðQ;C;R; q0;FÞ is the context

automaton.

Before providing the components of C, we discuss the

computation in D. It is easy to see that for any state

ðD1; . . .;DnÞ of D, we can determine the only state

ðD0
1; . . .;D

0
nÞ of D where ðD1; . . .;DnÞ ¼) ðD0

1; . . .;D
0
nÞ

holds. Our construction will be based on this observation.

We define the components of M together with the

reaction sets A0
i, 1� i� n, of D0 of C.

For every state ðD1; . . .;DnÞ of qDRS D, ½D1; . . .;Dn� is a
state of M and M has no more elements. The initial state of

M is ½D0;1; . . .;D0;n�, where �D0 ¼ ðD0;1; . . .;D0;nÞ is the

initial state of D. The set of final states F of M consists of

those elements ½D1; . . .;Dn� of Q where ðD1; . . .;DnÞ is a

query-free state of D and there is no state ðD0
1; . . .;D

0
nÞ of D

where ðD1; . . .;DnÞ ¼) ðD0
1; . . .;D

0
nÞ holds.

The background set R is the union of the following

disjoint sets:

R ¼S [ K [ fX½D1;...;Dn� j ðD1; . . .;DnÞ is a state of Dg [ fZg

where Z is an auxiliary element, different from all other

elements of R.
Now, we define the elements of R, the set of transitions

of M.

If ðD1; . . .;DnÞ ¼) ðD0
1; . . .;D

0
nÞ is a transition in D then

we add

ð½D1; . . .;Dn�; ðX½D1;...;Dn�; . . .;X½D1;...;Dn�Þ; ½D0
1; . . .;D

0
n�Þ

to R. Notice that X½D1;...;Dn� is not in S [ K; fX½D1;...;Dn�g is the
context added to the components.

Now we define the reactions of components of A0 ¼
ðA0

1; . . .;A
0
nÞ of C.

(1) If ðD1; . . .;DnÞ ¼) ðD0
1; . . .;D

0
nÞ is a transition in D

and ðD1; . . .;DnÞ is query-free, then we add the reaction

ðfX½D1;...;Dn�g [ Di; S n Di;D
0
iÞ

to A0
i; 1� i� n. Since D0

i ¼ resAi
ðDiÞ, the above reaction

simulates the transition in D. Notice that symbol X½D1;...;Dn�
indicates which transition is to be performed, thus transi-

tions cannot be mixed.

(2) If ðD1; . . .;DnÞ ‘ ðD0
1; . . .;D

0
nÞ is a transition in D

where ðD1; . . .;DnÞ is not query-free, then we add the

following reactions to A0
i. We add

ðfX½D1;...;Dn�g [ ðDi \ SÞ; S n Di;Di \ SÞ

since those elements which are reactants in D need to

remain unchanged.

For all k such that Dk \ K ¼ ;, we also add

ðfX½D1;...;Dn�;Qkg; fZg;DkÞ:

If component i asked for the state of component k (and Dk

is query-free), then Dk is added to the state of component i

and the query disappears. Notice that X½D1;...;Dn� plays a

crucial role in this reaction and that we can decide whether

or not Dk contains symbol representing a query.

For the case when Dk contains at least one query, we add

ðfX½D1;...;Dn�;Qkg; fZg; fQkgÞ:

As in the previous case, the role of X½D1;...;Dn� is significant.

Now we prove that the state sequence of D and the state

sequence of the components of C coincide.

If the initial state of C is
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ð½D0;1; . . .;D0;n�; ðX½D0;1;...;D0;n�; . . .;X½D0;1;...;D0;n�Þ; ðD0;1; . . .;D0;nÞÞ;

then by definition, the initial state of D is equal to the initial

state of (the components of) C. Assume that the equality of

the two state sequences (the statement of the theorem)

holds for up to the ith pair of states, where i� 1. We show

that the statement also holds for the ðiþ 1Þth pair.

Suppose that the ith element of the state sequence j in D
is ðD1; . . .;DnÞ and ðD1; . . .;DnÞ is also the ith element of

the state sequence of C. Then either there exists a unique

state ðD0
1; . . .;D

0
nÞ in D where ðD1; . . .;DnÞ ¼)

ðD0
1; . . .;D

0
nÞ holds, or the computation cannot be

continued.

If ðD1; . . .;DnÞ is query-free, then for ðD0
1; . . .;D

0
nÞ it

holds that D0
j ¼ resAj

ðDjÞ. Let us consider now the case

where ðD1; . . .;DnÞ is the ith element of the state sequence

of C.
In this case, there exists a transition

½D1; . . .;Dn�; ðX½D1;...;Dn�; . . .;X½D1;...;Dn�Þ; ½D00
1 ; . . .;D

00
n �Þ

in the automaton M. Then, by the construction of M, see

above, D0
j ¼ D00

j holds for 1� j� n.

Let us suppose now that ðD1; . . .;DnÞ, the ith element of

j is not query-free, i.e., there exists at least one component

Al such that Dl contains a query. By definition, for every

such Dl, reaction ðfX½D1;...;Dn�g [ ðDl \ SÞ; SnDl;Dl \ SÞ is

applied, that is, those elements which are reactants in D
remain unchanged. Furthermore, reaction

ðfX½D1;...;Dn�;Qkg; fZg;DkÞ for Dk \ K 6¼ ; is also applied,

if possible. This means that component Ai asked for the

state of component Ak provided that Dk is query-free. In

this case Dk is added to the state of component Dl and the

reactant representing the query disappears from the state. If

Dk contains at least one query, then

ðfX½D1;...;Dn�;Qkg; fZg; fQkgÞ is applied, i.e., Qk remains

unchanged.

The procedure is repeated until the new state will be free

from reactants representing a query. Notice the synchro-

nized behaviour of the components. Since the performed

reactions simulated the communication, we obtain that the

statement holds for the ðiþ 1Þth pair of the two sequences

as well. h

Example 4 We start from the qDRS given in Example 1.

Recall that D ¼ ðfa; b; c;Xg; fQ1;Q2;Q3g; ðA1;A2;A3Þ has
components

A1 ¼fðfag; fcg; fbgÞ; ðfbg; fcg; fagÞ;
A2 ¼fðfbg; fXg; fagÞ; ðfag; fXg; fbgÞ; ðfbg; fXg; fQ1gÞ; ðfbg; fXg; fQ3gÞg;
A3 ¼fðfag; fXg; fcgÞ; ðfcg; fXg; fagÞ; ðfag; fXg; fQ1gÞ; ðfcg; fXg; fQ1gÞg:

Let the initial state of D ¼ be ðfag; fbg; fagÞ. To help the

easier reading, we recall the first few transitions of D.

steps state of A1 state of A2 state of A3 transition type

0: fag fbg fag !
1: fbg fa;Q1;Q3g fc;Q1g ‘
2: fbg fa; b;Q3g fc; bg ‘
3: fbg fa; b; cg fc; bg

Now we construct the simulating EDRS C For simplicity,

we present only those elements of C ¼ ðD0;MÞ which are

necessary to understand the main ideas of the simulation.

according to the proof of Theorem 2,

s0 ¼½ðfag; fbg; fag�;
s1 ¼½fbg; fa;Q1;Q3g; fc;Q1g�
s2 ¼½fbg; fa; b;Q3g; fc; bg�;
s3 ¼½fbg; fa; b; cg; fc; bg�

are states of M and s0 ¼ ½ðfag; fbg; fag� is its initial state.
By definition, the following transitions are in the

transition set of M:

The transition

ð½ðfag; fbg; fag�; ðfXs0g; fXs0g; fXs0gÞ; ½fbg; fa;Q1;Q3g; fc;Q1g�Þ

in M provides component A0
i, 1� i� 3, with the same

context, fXs0g, and then M enters in state

s1 ¼ ½fbg; fa;Q1;Q3g; fc;Q1g�.
Similarly,

ð½fbg; fa;Q1;Q3g; fc;Q1g�; ðfXs1g; fXs1g; fXs1gÞ; ½fbg;
fa; b;Q3g; fc; bg�Þ

is a transition inM which provides the same context, fXs1g,
for components A0

1, A
0
2, A

0
3, respectively.

Finally,

ð½fbg; fa; b;Q3g; fc; bg�; ðfXs2g; fXs2g; fXs2gÞ; ½fbg;
fa; b; cg; fc; bg�Þ

is a transition inM which provides the same context, fXs2g,
for components A0

1, A
0
2, A

0
3, respectively.

We present the corresponding reactions of components

A0
i, 1� i� 3. For simplicity, only those reactions are

provided that we will used in the sequel.

Reactions

q1;1 : ðfa;Xs0g; fb; cg; fbgÞ; q2;1 : ðfb;Xs1g; fa; cg; fbggÞ;
q3;1 : ðfb;Xs2g; fa; cg; fbgÞ

are in component A0
1, and reactions

q1;2 : ðfb;Xs0g; fa; cg; fa;Q1;Q3gÞ; q2;2 : ðfa;Xs1g; fb; cg; fagÞ;
q3;2 : ðfQ1;Xs1g; fb; cg; fbgÞ; q4;2 : ðfQ3;Xs1g; fb; cg; fQ3gÞ;
q5;2 : ðfa; b;Xs2g; fcg; fa; bgÞ; q6;2 : ðfQ3;Xs2g; fcg; fb; cgÞ

are in component A0
2.

Finally, reactions
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q1;3 : ðfa;Xs0g; fb; cg; fc;Q1gÞ; q2;3 : ðfc;Xs1g; fa; bg; fcgÞ;
q3;3 : ðfQ1;Xs1g; fa; bg; fbgÞ; q4;3 : ðfb; c;Xs2g; fag; fb; cgÞ

are in A0
3.

We now present the first few computation steps in C, see
below.

steps state of C reactions applied

0: ðs0; ðfXs0g; fXs0g; fXs0gÞ; ðfag; fbg; fagÞÞ q1;1; q1;2; q1;3

1: ðs1; ðfXs1g; fXs1g; fXs1gÞ; ðfbg; fa;Q1;Q3g; fc;Q1gÞÞ
q2;1; q2;2; q3;2;

q4;2; q2;3; q3;3
2: ðs2; ðfXs2g; fXs2g; fXs2gÞ; ðfbg; fa; b;Q3g; fc; bgÞÞ q3;1; q5;2; q6;2;q4;3
3: ðs3; ðfXs3g; fXs3g; fXs3gÞ; ðfbg; fa; b; cg; fc; bgÞÞ

The initial state of the components is ðfag; fbg; fcgÞ, as it
was mentioned above. It can be seen that the state sequence

of the components of C, starting with their initial state, is

equal to the state sequence of D.

Notice that the components of both EDRS and qDRS

receive contexts (sets of reactants) from outside. The

components of the EDRS obtain context from the context

automaton, and the components of the qDRS obtain con-

texts by queries from other components. Since the context

automaton can be non-deterministic, it is possible that

different context sets are added to the components of an

EDRS during transitions even when they start in the same

configuration. In qDRS, however, this cannot happen, as

the components are deterministic in the sense that the

results obtained by any transition is completely determined

by the starting configuration. Furthermore, in the case of

the qDRS, the components are allowed to communicate

with more than one component, while the components of

an EDRS are in communication only with the context-au-

tomaton. In order to construct a qDRS which simulates an

EDRS, we should resolve this difference.

Although we do not have a solution for the general case,

we show a connection between star-type qDRS and a

special simple variant of EDRSs.

A qDRS D is called star-type if there is only one com-

ponent to which a query can be issued.

Definition 11 Let C ¼ ðD;MÞ be an extended distributed

reaction system where D ¼ ðS;AÞ, A ¼ ðA1; . . .;AnÞ, n� 1

and M ¼ ðQ;C;R; q0;FÞ. The system C is called very

simple if for every state q 2 Q, the context automaton M

has at most one transition ðq; ðc1; . . .; cnÞ; rÞ 2 R.

Next we show that if an EDRS with a given initial state

is very simple (in the sense defined above), then we can

give a qDRS and an initial state such that the state

sequence of the qDRS and the state sequence of the EDRS

correspond to each other.

Theorem 3 Let C ¼ ðD;MÞ with D ¼ ðS;AÞ, A ¼
ðA1; . . .;AnÞ be a very simple EDRS, and let r0 be one of its

initial states. Then we can give a star-type qDRS D0 ¼
ðS0;K 0;A0

0;A
0
1; . . .;A

0
nÞ with nþ 1 components and initial

state �D0, such that every fifth state in the state sequence of

the components A0
1; . . .;A

0
n of D0 and the state sequence of

the components ðA1; . . .;AnÞ of C coincide.

Proof Let C ¼ ðD;MÞ be an extended distributed reaction

system where D ¼ ðS;AÞ, A ¼ ðA1; . . .;AnÞ, n� 1, the

context automaton is M ¼ ðQ;C;R; q0;FÞ, and let r0 ¼
ðq0; ðC0;1; . . .;C0;nÞ; ðD0;1; . . .;D0;nÞÞ be the initial state of

C.
Let

R ¼ ftrq j trq ¼ ðq; ðC1. . .;CnÞ; rÞ 2 R for some q; r 2 Qg

be the set of transitions in M. Notice that the initial state of

M is q0, and there is a finite set F � Q of final states of M.

Note also, that since C is very simple, each transition in C
either has no successor transition or it has only exactly one

successor transition, so we can represent each transition in

R by its starting state.

Now we give D0 ¼ ðS0;K 0;A0
0;A

0
1; . . .;A

0
nÞ, and define its

initial state as

�D0 ¼ ðftrq0g;D0;1; . . .;D0;nÞ:

Notice that no query symbol appears in �D0.

The basic idea of the proof is the following: Component

A0
0 represents the transitions of the context automaton. To

simulate a transition in C, components A0
1; . . .;A

0
n request

the state of A0
0 and add the context provided for them to

their current state. Then they perform the enabled

reactions.

We define the components of D0 as follows.
Let S0 ¼ S [ S00 [ SR [ fXg; where

S00 ¼fa0; a00 j a 2 Sg;
SR ¼f½trq�; ½trq�0; ½trq�00 j trq 2 R; q 2 Qg:

Note that the short notation trq in the symbols ½trq�; ½trq�0,
and ½trq�00 stands for the unique transition

ðq; ðCq;1. . .;Cq;nÞ; rÞ 2 R.

Component A0
0 contains, for each

trq ¼ ðq; ðCq;1. . .;Cq;nÞ; rÞ 2 R, the following reactions:

ðaÞ ðf½trq�g; fXg; f½trq�0gÞ;
ðbÞ f½trq�0g; fXg; f½trq�00gÞ;
ðcÞ f½trq�00g; fXg; f½trr�gÞ;

where trr ¼ ðr; ðC0
1. . .;C

0
nÞ; sÞ 2 R is also a transition in M.

We define the reactions of the other components. Let

each A0
i, 1� i� n, have the following reactions:
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ð1Þ fðfag; fXg; fa0gÞ j a 2 Sg [ fðfag; fXg; fQ0gÞg j a 2 Sg;
ð2Þ fðfa0g; fXg; fa00gÞ j a 2 Sg [ fð½trq�0g; fXg;C00

q;iÞ j trq 2 Rg;
ð3Þ fU00; I;PÞ j ðU; I;PÞ 2 Aig;

where U00 ¼ fa00 j a 2 Ug and C00
q;i ¼ fa00 j a 2 Cq;ig for

trq ¼ ðq; ðCq;1; . . .;Cq;nÞ; sÞ.
Each component A0

i, 1� i� n works with the following

phases of steps:

Let us consider a state �D of D0 where the state Di of

component A0
i is a subset of S. The component A0 has only

one reactant as its state, say, ½trq�, that represents the

transition in M to be performed. Then, component A0
i

changes each reactant a in its current state to its primed

version, a0, and at the same time, by a query Q0 asks for the

state of component A0
0. This is performed by reactions of

type (1). No more reactions can be performed in this state.

During the same step, component A0
0 changes ½trq� to

½trq�0, by reaction of type (a). Thus, in the next state of D0,

component A0
i, 1� i� n, has the primed version of its

reactants from S together with the product Q0, while

component A0
0 has ½trq�0.

In the following step, communication takes place, and

after that in the new state of D, components A0
i will have as

state the same elements as before, except that Q0 is

changed or ½trq�0. The state of component A0
0 remains

unchanged, ½trq�0.
Then the state of component A0

i, 1� i� n changes as

follows: ½trq�0 is changed to C00
q;i, the double-primed version

of the context provided for component Ai by the transition

trq ¼ ðq; ðCq;1. . .;Cq;nÞ; rÞ in M represented by ½trq�. At the
same time, all reactants a0 change to a00. This is performed

by reactions of type (2). The state of component A0
0, ½tr�

0
is

changed to ½tr�00 by a reaction of type (b).

Finally, all enabled reactions of the form ðU00; I;PÞ of

A0
i, 1� i� n, are performed, where (U, I, P) is a reaction in

Ai. This is done by reactions of type (3). In the meantime,

½trq�00 at A0
0 is changed to ½trr� by reaction of type (c). Notice

that ½trr� corresponds to the new transition to be performed,

tr ¼ ðr; ðCr;1; . . .;Cr;nÞ; sÞ.
As the result, we obtain that the n-tuple of states of

components A0
1; . . .;A

0
n is equal to the state of the compo-

nents of C obtained from the state ðD1; . . .;DnÞ after the

transition trq is performed in M. Notice that due to the fact

that C with r0 is very simple, each transition in M has only

one successor transition. This property is used in the

simulation.

We leave the further details of the proof to the reader. h

We present a simple example to demonstrate how the

construction in the proof works.

Example 5 Let C ¼ ðD;MÞ be an EDRS, and suppose that

the context automaton M has two transitions trq1 ¼
ðq1; ðfbg; fbgÞ; q2Þ and trq2 ¼ ðq2; ðfag; fbgÞ; q3Þ. Let M

be in state q1, let component A1 be in state fbg, and

component A2 be in state fag.
Let us suppose that A1 has reactions ðfag; fXg; fbgÞ,

ðfbg; fXg; fagÞ and A2 has reactions ðfbg; fXg; fagÞ,
ðfag; fXg; fagÞ. Then M enters state q2, component A1

enters fa; bg, and A2 stays in state fag.
We construct the components A0

0, A0
1, and A0

2 of the

simulating qDRS D0 as follows. A0
0 contains the following

reactions:

ðf½trq1 �g; fXg; f½trq1 �
0gÞ; ðf½trq1 �

0g; fXg; f½trq1 �
00gÞ;

ðf½trq1 �
00g; fXg; f½trq2 �gÞ:

Component A0
1 has the following reactions:

ðfag; fXg; fa0gÞ; ðfag; fXg; fQ0gÞ; ðfa0g; fXg; fa00gÞ;
ðfa00g; fXg; fbgÞ;

ðf½trq1 �
00g; fXg; fbgÞ:

Component A0
2 has the following reactions:

ðfbg; fXg; fb0gÞ; ðfbg; fXg; fQ0gÞ; ðfb0g; fXg; fb00gÞ;
ðfb00g; fXg; fagÞ;

ðf½trq1 �
00g; fXg; fbgÞ:

The computation in D0 is as follows:

state of A0
0 state of A0

1 state of A0
2 transition type

f½trq1 �g fbg fag !
f½trq1 �

0g fa0;Q0g fb0;Q0g ‘
f½trq1 �

0g fa0; ½trq1 �
0g fb0; ½trq1 �

0g !
f½trq1 �

00g fa00; b00g fb00g !
f½trq2 �g fa; bg fag

As we can see that the states correspond to each other.

4 Distributed reaction systems
and multihead finite automata

In this section we relate languages of distributed reaction

systems to languages of multihead finite automata.

A (nondeterministic) one-way k-head finite automaton, a

1NFA(k) in short, is a construct M ¼ ðQ;R; k; d; $; q0;FÞ
where Q is the finite set of states, R is the set of input

symbols, k� 1 is the number of heads, S 62 R is the end-

marker, q0 2 Q is the initial state, F � Q is the set of

accepting states, and partial function d : Q	 ðR [
fk; $gÞk ! Q is the transition function. Whenever q0 2
dðq; x1; . . .; xkÞ is defined, the state q can be changed to q0 if
the input contains xi 2 R [ f$g at the position of the i-th
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reading head for xi 6¼ k, or if xi ¼ k, then the input might

contain an arbitrary symbol from R [ f$g; 1� i� k. It is

also assumed that in the case of xi 6¼ k, the reading head

moves one position to the right during the transition, but it

does not move and stays its current position if

xi ¼ k; 1� i� k.

The configuration of a 1NFA(k) can be denoted by

ðq;w1$; . . .;wn$Þ where q 2 Q and wi; 1� i� k, are the

parts of the input string which are not yet read by the

corresponding heads.

Remark 1 The customary way of presenting the transition

functions of multihead finite automata with input alphabet

R is by d : Q	 ðRÞk ! Q	 ðf0; 1gÞk where for

ðq0; d1; . . .; dkÞ 2 dðq; a1; . . .; akÞ, q0 2 Q is the new state,

the symbols ai 2 R, 1� i� k are at the positions of the

reading heads in the input, and ðd1; . . .; dkÞ 2 ðf0; 1gÞk
denotes the movements of the heads: if for some j, dj ¼ 1,

then the j-th head is moved one cell to the right during the

transition, but it stays at its current position if

dj ¼ 0; 1� j� k. It is not difficult to see that our definition

given above is equivalent to the customary.

We will also assume, without the loss of generality, that

1NFA(k) accept after each head has scanned the entire

tape, that is, by entering the final state only after each head

has read (and moved to the right of) the endmarker symbol

$.

In the following, we consider two possible ways of

describing languages with extended distributed reaction

systems. The idea is to assign symbols of an alphabet to the

states of the components of the system, and to obtain this

way sequences of symbols (or words) by terminating

interactive processes corresponding to each of the com-

ponents. The seminal variant of the concept was introduced

in Ciencialová L et al. (2022).

Definition 12 Let C ¼ ðD;MÞ be an EDRS where D ¼
ðS;AÞ with A ¼ ðA1; . . .;AnÞ, n� 1; is a distributed reac-

tion system over S, M ¼ ðQ;C;R; q0;FÞ is the context

automaton for C. Let QC be the set of all states of C. We

define mappings q;/;/i as follows.

1. Let R be an alphabet such that

cardðRÞ ¼ cardð2SÞ � 1. We define a bijective map-

ping q : 2S ! R [ fkg such that qðdÞ ¼ k if and only if
d ¼ ;.

2. Mapping / : QC ! R� 	 . . .	 R�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n times

is defined as

/ðrÞ ¼ ðqðd1Þ; . . .; qðdnÞÞ for each state

r ¼ ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ 2 QC.

3. Mapping /i : QC ! R�, 1� i� n, is defined as

/iðrÞ ¼ qðdiÞ for each state

r ¼ ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ 2 QC.

Notice that the mapping q assigns to any nonempty

subset of S a letter of R. Note also that q is a bijective

mapping, thus, there is no letter in R that is the map of two

different nonempty subsets of S.

Definition 13 Let C ¼ ðD;MÞ be an EDRS where D ¼
ðS;AÞ with A ¼ ðA1; . . .;AnÞ, n� 1; is the distributed

reaction system of C, M ¼ ðQ;C;R; q0;FÞ is the context

automaton. Let alphabet R and mappings q; /, /i, 1� i� n

be defined as in Definition 12.

Let p : r0 ¼) . . . ¼) rm, m� 1, be a terminating finite

interactive process of C, where

rj ¼ ðqj; ðcj;1; . . .; cj;nÞ; ðdj;1; . . .; dj;nÞÞ, 1� j�m, is a state

of C.
The concatenation language of C over R is defined as

follows:

LconcatðC;R; qÞ ¼f/1ðr0Þ. . ./1ðrmÞ. . ./nðr0Þ. . ./nðrmÞ j where

p : r0 ¼) . . . ¼) rm 2 PC;m� 1g:

The agreement language of C over R is defined as follows:

LagreeðC;R;qÞ ¼fw 2 R� j w ¼ /iðr0Þ. . ./iðrmÞ ¼ /jðr0Þ. . ./jðrmÞ for
all 1� i; j�m and some p : r0 ¼) . . . ¼) rm 2 PC

with m� 1g:

The classes of concatenation and agreement languages

of extended distributed reaction systems are denoted by

LXðEDRSÞ; X 2 fconcat; agreeg.
In Ciencialová L et al. (2022, 2023) concatenation lan-

guages were studied, here we focus on agreement

languages.

Theorem 4 Lagreeð EDRSÞ ¼
S

k� 1 Lð1 NFA ðkÞÞ.

Proof Let L ¼ LagreeðC;R; qÞ for some extended dis-

tributed reaction system C ¼ ðD;MÞ defined as above, and

let us construct the 1NFA(k) M0 ¼ ðQ0;R; k; d0; q00;F
0Þ with

Q0 ¼ fqr j q 2 Q; r is a state of Cg [ fq00g;

F0 ¼ fqf g 6� F, and with d0 defined as follows.

Let

qr0 2 d0ðq00; qðd1Þ; . . .; qðdnÞÞ

for all r0 ¼ ðq0; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ such that q0 is the
initial state of M, and ðc1; . . .; cnÞ 2 C, di � S, 1� i� n.

For any ðc1; . . .; cnÞ 2 C and ðd1; . . .; dnÞ with di � S,

1� i� n, we also have

rr2 2 d0ðqr1 ; qðd01Þ; . . .; qðd0nÞÞ

if and only if
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r1 ¼ ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ ¼)
r2 ¼ ðr; ðc01; . . .; c0nÞ; ðd01; . . .; d0nÞÞ

is a possible transition in C. In addition, for all q 2 F and r
being a state of C, we have

d0ðqr; $; . . .; $Þ ¼ fqf g:

To see how the 1NFA(k) M0 simulates the EDRS C, con-
sider the following. An initial state

r0 ¼ ðq0; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ

of C is mapped to the symbols /ðr0Þ ¼ ðqðd1Þ; . . .; qðdnÞÞ,
these will be the first symbols of the languages associated

to the components during the computation that will follow.

The exact same symbols are read by the multihead

automaton M0 using one of its initial transitions

qr0 2 d0ðq00; qðd1Þ; . . .; qðdnÞÞ:

Now, if the initial transition of C is

r0 ¼ ðq0; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ ¼)
r ¼ ðq; ðc01; . . .; c0nÞ; ðd01; . . .; d0nÞÞ

for some ðq0; ðc1; . . .; cnÞ; qÞ 2 R of the context automaton,

then the resulting state of this transition is mapped to the

symbols /ðrÞ ¼ ðqðd01Þ; . . .; qðd0nÞÞ, which will also be part

of the strings associated to the components of C. The same

symbols are read by M0 using one of its transitions

qr 2 d0ðqr0 ; qðd01Þ; . . .; qðd0nÞÞ:

Since the number of possible states

ðd1; . . .; dnÞ; di � S; 1� i� n, is finite, we have a corre-

sponding transition in M0 for any possible state and tran-

sition in C. If r ¼ ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ is a state

(with /ðrÞ ¼ qðd1Þ; . . .; qðdnÞ being the last symbols of the

strings associated to the components so far), then for any

transition

t : r ¼ ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ ¼)
r0 ¼ ðr; ðc01; . . .; c0nÞ; ðd01; . . .; d0nÞÞ;

we have

rr0 2 d0ðqr; qðd01Þ; . . .; qðd0nÞÞ

in M0 which reads the same symbols as the ones appended

to the languages of the components by the transition

t above.

Now, if for some state r, C is able to enter a final state (a

state like r0 with r 2 F, as below)

r ¼ ðq; ðc1; . . .; cnÞ; ðd1; . . .; dnÞÞ ¼)
r0 ¼ ðr; ðc01; . . .; c0nÞ; ðd01; . . .; d0nÞÞ;

then M0 is able to enter the state rr0 by

rr0 2 d0ðqr; qðd01Þ; . . .; qðd0nÞÞ:

If the strings associated to the components of C wi ¼
/iðr0Þ. . ./iðrmÞ during the computation r0 ¼) . . . ¼) rm
coincide, that is, w ¼ wi ¼ wj for all 1� i; j� n, then

w 2 LagreeðC;R; qÞ, and in this case M0 is able to enter into

its final state by the transition

d0ðr0r; $; . . .; $Þ ¼ fqf g:

By the construction of M0, we can also see that any state

sequence of an accepting computation q00; qr0 ; . . .; qrm ; qf ;

on a string w 2 R� has a corresponding state sequence

r0 ¼) . . . ¼) rm

in C with r0 and rm being an initial and an accepting state,

respectively, and w being the string associated to this

computation by the mapping q at all of the components.

Let us now assume that L is accepted by a 1NFA(k)

M ¼ ðQ;R; k; d; q0;FÞ, and let us construct an extended

distributed reaction system C ¼ ðD;M0Þ where D ¼ ðS;AÞ
with A ¼ ðA1; . . .;AkÞ for A ¼ A1 ¼ . . . ¼ Ak and

S ¼R [ �R [ f#; $g where �R ¼ f�a j a 2 Rg;
A ¼fðfag; f#g; f�agÞ; ðfa; �bg; f#g; f�agÞ;

ðf$; �ag; f#g; ;Þ j a; b 2 Rg:

The context automaton M0 ¼ ðQ;C;R; q0;FÞ is defined as

C ¼fða1; . . .; akÞ j ai 2 f;; fag j a 2 Rg; 1� i� kg;

and for all q0 2 dðq; x1; . . .; xkÞ; xi 2 R [ fkg; 1� i� k,

we have transitions

ðq; ðsðx1Þ; . . .; sðxkÞÞ; q0Þ where sðxiÞ

¼
fxig if xi 6¼ k;

; if xi ¼ k;

�

1� i� k;

in R. The initial states of the EDRS C are those with

ðq0; ðsðx1Þ; . . .; sðxkÞÞ; ð;; . . .; ;ÞÞ;

such that dðq0; x1; . . .; xkÞ 6¼ ;, and the mapping s : R [
�R [ fkg ! 2R[

�R is defined as above. Thus, the first tran-

sitions of C are of the form

ðq0; ðsðx1Þ; . . .; sðxkÞÞ; ð;; . . .; ;ÞÞ
¼) ðq; ðsðy1Þ; . . .; sðykÞÞ; ðsð�x1Þ; . . .; sð�xkÞÞ;

and they simulate the transitions q 2 dðq0; x1; . . .; xkÞ of M.

Now, if a transition q0 2 dðq; y1; . . .; ykÞ is also a possible in
M, then we have

ðq; ðsðy1Þ; . . .; sðykÞÞ; ðsð�x1Þ; . . .; sð�xkÞÞ ¼)
ðq0; ða1; . . .; akÞ; ðsð�y1Þ; . . .; sð�ykÞÞ

as the next step of C for some ai 2 2R; 1� i� k.

E. Csuhaj-Varjú, G. Vaszil

123



In general, we have

ðq; ðsðx1Þ; . . .; sðxkÞ; ðb1; . . .; bkÞ ¼) ðq0; ðc1; . . .; ckÞ;
ðsð�x1Þ; . . .; sð�xkÞÞ

for some bi 2 2
�R, ci 2 2R, 1� i� k, as a possible transition

in C, if and only if

q0 2 dðq; x1; . . .; xkÞ

xi 2 R [ fkg, is a possible transition in the 1NFA(k) M.

Now, if we define the (partial) mapping q : 2S ! R [ fkg
for f�a j a 2 Rg [ f;g as qðf�agÞ ¼ a; a 2 R, and

qð;Þ ¼ k, then we have

ðx1; . . .; xkÞ ¼ ðqðsð�x1ÞÞ; . . .; qðsð�xkÞÞÞ;

that is, the letters associated to the components of the

EDRS C as a result of performing the state transition above

are the same as the letters read by the heads of k-head

automaton M.

Therefore, if

ðq0;w$; . . .;w$Þ ¼) . . . ¼) ðqm; $; . . .; $Þ ¼) ðqf ; k; . . .; kÞ

is the sequence of configurations the 1NFA(k) M passes

through while accepting an input string w ¼ a1. . .al, then

ðq0; a1; . . .; akÞ; ð;; . . .; ;ÞÞ ¼) ðq; b1; . . .; bkÞ; ð�a1; . . .; �akÞÞ ¼) . . .

. . . ¼) ðqm; f$g; . . .; f$gÞ; ð�c1; . . .; �ckÞÞ ¼) ðqf ; d1; . . .; dkÞ; ð;; . . .; ;ÞÞ

is a possible computation in C with

qð;Þqð�aiÞ. . .qð�ciÞqð;Þ ¼ a1. . .al ¼ w

being the string associated to each component

Ai; 1� i� k, of the EDRS C.
By the construction of the EDRS C we can also see that

any terminating interactive process where the same string

is associated to each of the components is such, that a

corresponding transition sequence accepting the same

string exists in the k-head finite automaton M. h

In the following we discuss the languages assigned to

qDRS. By definition, it can easily be seen that the behavior

of every qDRS D is deterministic, i.e., starting from a given

initial state �D0, there exists only one state sequence
�D0; �D1; . . .; �Dm; . . . of D. This sequence, as in the case of

reaction systems, is either finite or (infinite) ultimately

periodic. In Theorem 2 we proved that to any qDRS D with

an initial state we can construct an EDRS C with an initial

state such that the state sequence of the qDRS corresponds

to the state sequence of the components of the EDRS.

Thus, by Definitions 12 and 13, we can assign both

agreement and concatenating languages to C. If we analyze
the proof of Theorem 2, we can easily observe that the

language assigned to each component of C, thus to each

component of D is regular. Furthermore, according to the

previous remarks, it is either a finite or an ultimately

periodic regular language which belongs to a subregular

language class. Thus, the agreement language of D is either

a finite language or an ultimately periodic regular lan-

guage; both languages are elements of language classes

which are proper subclasses of the regular language class

and the class of languages accepted by multihead nonde-

terministic finite automata.

5 Conclusion

In this paper, we introduced a new variant of distributed

reaction systems where the component reaction systems

communicate with each other by request. This communi-

cation protocol differs from the communication protocol of

known variants of distributed reaction systems where after

performing the reactions, copies of products or reactions

are sent to certain predefined target components. That is,

the communication is based on command. The behavior of

the two types of distributed reaction systems with direct

communication, by request or by command, is determin-

istic. In this paper, we showed that for every distributed

reaction system with communication by request a simu-

lating single reaction system can be constructed. We

compared the new model to the extended distributed

reaction system which works under the control of a context

automaton providing input reactants for the components.

Extended distributed reaction systems are nondeterministic

computing devices. We showed that they simulate the

distributed reaction systems with communication by

request, but distributed reaction systems with communi-

cation by request simulate only a restricted variant of

extended distributed reaction systems. We assigned lan-

guages to these two variants of distributed reaction sys-

tems. We proved that the class of agreement languages of

extended distributed reaction systems is equal to the class

of languages of multihead nondeterministic finite automata.

We discussed the agreement language of the distributed

reaction system with communication by request and found

that it is an element of a subregular language class.
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