
Evolving ensembles of heuristics for the travelling salesman problem

Francisco J. Gil-Gala1 • Marko Durasević2 • Marı́a R. Sierra1 • Ramiro Varela1
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Abstract
The Travelling Salesman Problem (TSP) is a well-known optimisation problem that has been widely studied over the last

century. As a result, a variety of exact and approximate algorithms have been proposed in the literature. When it comes to

solving large instances in real-time, greedy algorithms guided by priority rules represent the most common approach, being

the nearest neighbour (NN) heuristic one of the most popular rules. NN is quite general but it is too simple and so it may

not be the best choice in some cases. Alternatively, we may design more sophisticated heuristics considering the particular

features of families of instances. To do that, we have to consider problem attributes other than the proximity of the next city

to build priority rules. However, this process may not be easy for humans and so it is often addressed by some learning

procedure. In this regard, hyper-heuristics as Genetic Programming (GP) stands as one of the most popular approaches.

Furthermore, a single heuristic, even being good in average, may not be good for a number of instances of a given set. For

this reason, the use of ensembles of heuristics is often a good alternative, which raises the problem of building ensembles

from a given set of heuristic rules. In this paper, we study the application of two kinds of ensembles to the TSP. Given a set

of TSP instances having similar characteristics, we firstly exploit a GP to build a set of heuristics involving a number of

problem attributes, and then we build ensembles combining these heuristics by means of a Genetic Algorithm (GA). The

experimental study provided valuable insights into the construction and utilisation of single rules and ensembles. It clearly

demonstrated that the performance of ensembles justifies the time invested when compared to using individual heuristics.

Keywords Travelling salesman problem � Hyper-heuristic � Greedy algorithm � Ensemble learning � Evolutionary
algorithms

1 Introduction

The Travel Salesman Problem (TSP) is one of the most

studied combinatorial optimisation problems with many

real-world applications in a number of fields such as logistics

and planning or communications (Punnen 2007;

Mavrovouniotis et al. 2017). Consequently, a lot of exact

and approximate algorithms were proposed in the literature

over the last decades, such as the Lin-Kernighan heuristic

proposed by Link and Kernighan (1973), Christofides

heuristic proposed by Christofides (1976), or Genetic Local

Search (GLS) proposed by Freisleben and Merz (1996),

among others. These approaches have demonstrated good

performance, but in situations when the problem instance is

large, and the solutions must be completed in a limited time,

or when not all information is available at the beginning, the

best, if not the only one, solution is a greedy algorithm

preferably guided by some kind of efficient heuristic rule.

This kind of heuristics may be designed manually by

experts in the problem domain. This is the case of the

simple and well-known Nearest Neighbour (NN) heuristic.

But such a simple heuristic often fails to build a good

solution due to the low amount of knowledge it can

exploits. Therefore, more sophisticated heuristics are nor-

mally required to obtain outstanding solutions, but this is

usually a hard and time consuming task (Branke et al.

2016) for experts. Alternatively, some hyper-heuristic may

be used to search in a given space of heuristics. In this

context, Genetic Programming (GP) stands out as one of

the most common approaches (Burke et al. 2019), which
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was already applied to a large variety of hard optimisation

problems (Burke et al. 2012; Durasević et al. 2016; Gil-

Gala et al. 2019; Nguyen et al. 2019; Zhang et al. 2021).

Nevertheless, a single heuristic, although performing

well on average for a large set of instances, may not be

good for a number of them individually. For this reason,

several approaches based on ensembles (sets of heuristics)

have been recently proposed for some optimisation prob-

lems, such as the One Machine Scheduling (Gil-Gala et al.

2020), the Unrelated Machines Scheduling (Durasević and

Jakobović 2019), the Job Shop Scheduling (Hart and Sim

2016; Park et al. 2018), the Resource Project Scheduling

(Dumić and Jakobović 2021), or the Capacitated Arc

Routing Problem (Wang et al. 2019), among others.

In this paper, we investigate two types of ensembles,

which are termed collaborative and competitive, respec-

tively. A collaborative ensemble builds a solution in such a

way that all the rules contribute to take the next decision in

each iteration; while in a competitive ensemble each rule is

exploited to build an independent solution and then the best

of these solutions is considered as the solution of the

ensemble. Each type of ensemble has its own weak and

strong points. For example, collaborative ensembles may

be exploited in online settings where the solution is being

implemented at the same time it is being built (Durasević

and Jakobović 2019), while competitive ensembles require

all the problem data before starting to build a solution.

The ensembles we consider herein are aimed to solve

the Dynamic TSP (DTSP) viewed as a sequence of static

TSP over a time horizon. Therefore, they are exploited to

solve TSP instances by a limited time. This time should be

much lower than the time interval between every two

consecutive TSP instances, which, of course, it will depend

on the particular DTSP setting.

To establish the extent to which the ensembles are viable

for DTSP, we performed an experimental study on the set of

instances proposed in Duflo et al. (2019). They are instances

with different sizes that are taken from the TSPLIB (2022).

To create ensembles, we exploit a Genetic Program (GP) to

evolve a set of heuristics, which are then combined into

ensembles by means of a Genetic Algorithm (GA). The

results of this study show that the quality of the solutions

produced by the ensembles makes up for the larger time they

require with respect to that of single rules, and that compet-

itive ensembles performmuch better than collaborative ones.

The remainder of the paper is organised as follows. In

the next section, we give the formulation of the (Dynamic)

TSP. The proposed solving method is described in Sect. 3.

Then, in Sect. 5, we detail the combined approach of GP

and GA to evolve heuristics and ensembles. In Sect. 6, we

report the results of the experimental study. Finally, in

Sect. 7, we summarise the main conclusions and outline

some ideas for future work.

2 The travelling salesman problem

In the classical version of the Travel Salesman Problem

(TSP), we are given a symmetric matrix DN�N , in which

Di;j indicates the distance between the cities i and j. The

goal is to obtain an optimal tour, i.e., the shortest path for

visiting all cities and returning to the starting city. Figure 1

shows an instance with 5 cities and one of its solutions.

The dynamic version of the TSP, i.e., the DTSP, was

introduced by Psaraftis in Psaraftis (1998). Since then, a

number of variants were considered but there is not still a

unified framework. In some cases, the distances between

cities may change, and, in other cases, some cities may be

removed or added. A review and taxonomy of the models

proposed over the last three decades are given in Psaraftis

et al. (2016). In general, in an instance of the DTSP, the

distances between the cities, Mi;jðtÞ, may change over time

following some temporal pattern that depends on the

underlying problem. In this way, the DTSP is a continuous

problem, but in practical settings, it is usually considered as

a sequence of static TSP instances over a sequence of time

points ti; i ¼ 1; :::T , each time interval ðti; tiþ1� being suf-

ficiently short so that the instance at time ti must be solved

in real-time, indeed by taking a time much lower than

tiþ1 � ti. Therefore, a particular solution may be viewed as

a permutation of the N cities s ¼ ½s1; :::; sN �, which is

evaluated as:

f ðs; tÞ ¼ DSN ;S1ðtÞ þ
XN�1

n¼1

DSn;Snþ1
ðtÞ ð1Þ

3 Solving the TSP in real-time

In accordance with the previous definition, solving an

instance of the DTSP amounts to solving a sequence of

static TSP instances at time points ti; i ¼ 1; :::; T . It often

happens that the instances at times ti and tiþ1 are very

similar. In these cases, repairing a previous solution may be

better than generating some new one from scratch; there-

fore, some population based metaheuristics as Ant Colony

Algorithms (ACO) or Evolutionary Algorithms (EA) may

Fig. 1 A TSP instance with 5 cities and one of its solutions

represented by the permutation (0,1,3,4,2)
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be a good choice Mavrovouniotis et al. (2017). However, if

there are abrupt changes from ti to tiþ1, solving the new

instance making a fresh start may be better. This is the

option we take here; specifically, we propose to use some

greedy algorithm guided by problem domain priority rules,

under the assumption that the time intervals tiþ1 � ti
between consecutive solutions may be too short to use

exact methods or even population based metaheuristics.

In the TSP context, greedy algorithms are usually ter-

med route generation schemes, as in each iteration they

select the next city applying some heuristic until a com-

plete tour is built. The procedure we use here is given in

Algorithm 1; the heuristic is used as a priority rule,

meaning that it assigns a priority value to each unvisited

city, and the city with the highest priority is selected to be

visited next. An example of such a rule is the well-known

Nearest Neighbour (NN) heuristic: the priority of the

candidate city j after i is calculated from only one problem

attribute, the distance Dij, as 1=Dij. Figure 2 illustrates the

use of this heuristic; in the example, the next city to be

visited after A will be B as it is the closest city to A among

the unvisited cities.

Because of NN actually exploits too few information on

the problem, it often happens that it builds a tour that seems

good on the first cities, but that is really bad for the last

ones due to the unvisited cities being quite dispersed and

far from each others in the last iterations. To avoid the

NN’s low performance, we may consider attributes other

than the distances to the next candidate cities. Specifically,

we could consider, for example, some measure of the

dispersion of the remaining unvisited cities. But a large

number of attributes makes it difficult the problem of

devising new heuristics, so that an automatic procedure

may be the best option.

In Duflo et al. (2019), the authors consider 7 attributes

and exploit GP to evolve priority rules, which are evaluated

taking quadratic time complexity. Those attributes were

also exploited in Singh and Pillay (2022) with a novel

hyper-heuristic based on ant colony optimisation (HACO).

Both works show that the evolved heuristics actually out-

perform NN and some other well-known classic heuristic

algorithms for the TSP as nearest insertion or the Chris-

tofides heuristic Christofides (1976).

We conjecture that exploiting a low number of simple

attributes could be enough to achieve reasonable heuristics

that in turn could be evaluated taking less time. This is the

rationale of the GP approach proposed in Sect. 5.1. In

addition to single rules, we also explore here the use of

ensembles of rules (see Sect. 4); the rationale is that

combining the recommendations from a set of rules we

may take wiser decisions than that from single rules.

4 Ensembles of rules

Under the assumption that a single rule may not be robust

enough to produce good solutions for all instances in a

given set, we explore here the use of ensembles. An

ensemble is just a set of rules. Figure 3 shows an ensemble

composed by 3 rules.

From previous experience on some problems as, for

example, the one machine sequencing with variable

capacity (Gil-Gala et al. 2020), or the unrelated parallel

machines scheduling Durasević and Jakobović (2019), we

propose to use two kinds of ensembles, which are termed

collaborative and competitive, respectively.

Collaborative ensembles are indeed like the classic

ensembles used in other contexts as classification or rec-

ommendation systems. The rationale of these ensembles is
Fig. 2 Application of the Nearest Neighbour (NN) heuristic

Data: A TSP instance.
Result: A feasible route R.
R ← starting city;
UV C ← all unvisited cities;
while UV C �= ∅ do

A city u ∈ UV C is selected heuristically;
Add u to the route R;
Remove u from UV C;

end
return The route R;
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that good rules take the right decisions in most of the sit-

uations and fail in a low number of them. Therefore, the

decision on the next city to visit may be taken by aggre-

gating the recommendations of each rule in the ensemble.

In Durasević and Jakobović (2019), the authors analysed

the two classic aggregation methods, namely sum and vote

and they opted for the second one to avoid the issue of

normalising the priorities of the individual rules, which is

not an easy problem in general. This is the approach we

consider here as well. In the voting method, each rule

assigns the value 1 to the city with the largest priority and 0

to the remaining ones. Then, these values are summed up

and the city with the largest sum value is chosen, breaking

ties at random.

In turn, the rules in competitive ensembles work inde-

pendently from each other to build a different solution

each. Then, the best of these solutions is taken as the

solution produced by the ensemble. The rationale of this

kind of ensembles is that a good rule produces good

solutions to some instances but it may produce bad solu-

tions to others; therefore taking different rules, one can

cover reasonably well all instances in a given set.

In both cases, competitive and collaborative, the

ensembles may be built from a given set of heuristics as it

was proposed in Durasević and Jakobović (2019), where

the authors analysed 5 methods to create collaborative

ensembles, namely random selection, probabilistic selec-

tion, grow, grow-destroy and instance based. In all cases,

the ensemble starts from just a random rule and then new

rules are added iteratively up to a given limit. Each time a

new rule is added, the partial ensemble must be evaluated

on a training set of instances. As an alternative, we propose

to use here a Genetic Algorithm (GA) to build ensembles

of both types (see Sect. 5.2).

5 Evolving heuristics and ensembles

In this work, we use the same methodology as in Durasević

and Jakobović (2019), Gil-Gala et al. (2022). Therefore, a

large set of heuristics (priority rules in this context) is

previously evolved by Genetic Programming (GP), and

then these rules are used to build ensembles by a Genetic

Algorithm (GA).

5.1 GP to evolving priority rules

Priority rules are simple arithmetic expressions that may be

naturally represented by trees. For this reason, the frame-

work of GP proposed by John Koza (1992) is widely used

to evolve new heuristic rules. To use GP, the first issue is to

establish a set of symbols and some grammar. The gram-

mar restricts the set of expression trees that can be built

from the symbols, so that it fixes the search space of GP.

The set of symbols must include a number of attributes of

the problem, some constants and a set of operators. In this

work, we consider three problem attributes, namely

– Dcn: Distance from c to n.

– Din: Distance from i to n.

– Dc: Distance from the centroid of the unvisited cities to

c.

where c denotes the current city in the partial tour built so

far, i is the initial city, and n is a candidate city to be visited

next. Dc is calculated as the distance between c and the

point c�n (centroid of the unvisited cities excluding n)

defined by the coordinates x ¼ X�xn
Nrm�1

and y ¼ Y�yn
Nrm�1

where

Nrn is the number of remaining cities to visit, X and Y are

the summation of x-values and y-values of the unvisited

cities and xn and yn are the coordinates of n. Figure 4

shows an example of these terminals.

Fig. 3 An example of an ensemble composed of three rules. Dcn denotes the distance from city c to n; Din denotes the distance from city i to n;
and Dc denotes the distance from the centroid of the unvisited cities to the city c

Fig. 4 Illustration of the three terminal symbols used
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We also include 10 constants and a number of unitary

and binary arithmetic functions in the set of symbols. The

whole set is given in Table 1. The set of attributes

Dcn;Din;Dc is indeed a subset of the 7 attributes considered

in Duflo et al. (2019). As mentioned, the rationale of this

selection of attributes is to consider a small number of them

and that they are meaningful and easy to evaluate at the

same time.

The GP strategy is rather conventional and it is quite

similar as in other studies (Durasević et al. 2016; Gil-Gala

et al. 2021; Nguyen et al. 2019; Zhang et al. 2021; Duflo

et al. 2019). GP starts from an initial population generated

by the well-known ramped half-and-half method (Koza

1992). Then, GP follows an evolutionary scheme in which

parents are randomly selected into pairs at the beginning of

each generation; each pair of parents is combined, and their

offspring are mutated with a given probability. The genetic

operators are the well-known one-point crossover and

subtree mutation (Koza 1992). Finally, in the replacement

phase, from each two parents and their offspring, the best

child is selected unconditionally and the second selection

comes from tournament between the parents and the other

offspring. The evaluation is the same as in Duflo et al.

(2019), Gil-Gala et al. (2022), each candidate rule is

evaluated on a set of TSP instances (the training set), and

the fitness value of the rule is given by the inverse of the

average tour of all instances.

5.2 GA for building ensembles

To build ensembles, either collaborative or competitive, we

are given a set of rules R and the goal is to come up with a

subset of maximum size P of rules, so that the ensemble

composed by these rules performs as well as possible on a

given (training) set of TSP instances. In this work, we

adapted the GA proposed to build competitive ensembles

in Gil-Gala et al. (2022). This GA may be used to build

collaborative ensembles just by changing the evaluation

function. As proposed in Gil-Gala et al. (2020, 2023), the

encoding schema is variations with repetition fromR taken

P by P. Figure 5 depicts an example of ensemble encoding.

In this illustration, R consists of five rules, and the

ensemble is represented as an array containing three rules,

each encoded by corresponding indices: 3, 1, and 4. This

allows for representing subsets with maximum size P and

for classic genetic operators as one-point crossover and

single mutation. The evolutionary schema is quite similar

to that of GP described in Sect. 5.1, and the population is

randomly generated.

Regarding the evaluation of candidate ensembles, there

are substantial differences depending on collaborative and

competitive ensembles. In the first case, each of the

instances in the training set must be solved by each can-

didate ensemble, in similar way as done by GP to evaluate

a candidate rule. In a good collaborative ensemble it is

expected that most of the rules take the right decision in

each iteration of the routing generation scheme (see

Algorithm 1) when it solves every instance in the training

set; only in this way the ensemble will produce eventually a

good solution.

However, the evaluation of competitive ensembles can

be done much more efficiently. If the results of each rule in

R on each instance of the training set were known in

advance, we would not need to obtain a new solution from

the candidate competitive ensemble, as this solution is just

that from the best rule in the ensemble. However, for the

sake of fair comparison to collaborative ensembles, in the

experimental study (see Sect. 6) we consider that the above

results are not known in advance. Therefore, each rule in

the competitive ensemble must be evaluated on the training

set, but only when it appears in an ensemble for the first

time, as this result may be kept to be used in the same or

further generations of the GA. In a good competitive

ensemble, it is expected that at least one of the rules pro-

duces a good solution to each problem instance in the

training set. In other words, the fittest collaborative

ensembles evolved by GA should provide a good covering

of the training set, i.e., for each instance in the training set,

they should include one of the rules that perform the best

for this instance.

6 Experimental study

We performed an experimental study to assess the viability

of the ensembles and to compare their performance with

respect to that of individual rules.

6.1 Experimental setup

We implemented prototypes of GP and GA in Java 8 and

ran a series of experiments distributed into a Linux

machine: a Dell Power Edge R740 with 2 x Intel Xeon

Gold 6132 (2.6GHz, 28 cores) and 128GB.

Table 1 Function and terminal sets used to build expression trees.

Symbol ‘‘–’ is considered in unary and binary versions

Binary functions – ? / � max min

Unitary functions – pow2 sqrt exp ln max0 min0

Terminals Dcn Din Dc

Numeric constants 0.1 0.2 . . . 0.8 0.9 1.0

max0 and min0 return the maximum and minimum of an expression

and 0
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The test bed is composed of the set of 70 TSP instances

considered in Duflo et al. (2019); Gil-Gala et al. (2022).

They are the euclidean instances (EDGE-

WEIGHT TYPE=EUC 2D) from the TSPLIB (2022)

having less than 4000 cities. As in the above works, the

same 21 instances were used for testing and the remaining

49 instances were used for training, with a number of cities

between 52 (berlin52) and 3795 (fl3795),

To analyse the effect that the size of the instances may

have on the quality of the ensembles, we used training sets

composed out of the N smallest instances, N taking dif-

ferent values as it is showed in Table 2.

The set of rules R was calculated by GP. This set is

composed of 42 000 rules out of which 35 296 are syn-

tactically different. They were recorded from the last

population in each GP execution. Specifically, 6 000 rules

(200 individuals and 30 executions) were collected by

training the GP with each training set in Table 2.

The parameters used for GP and GA are summarised in

Table 3. These values were taken from some previous

experiments reported in Gil-Gala et al. (2022). We con-

sidered sizes 3, 5 and 7 for both types of ensembles, col-

laborative and competitive. For each configuration of

parameters, GP and GA were executed 30 times, and the

best, average, and standard deviation of the 30 solutions

(heuristics or ensembles) were recorded on both the train-

ing and the test sets.

As mentioned, we have only used the vote combination

method for collaborative ensembles (Durasević and Jako-

bović 2019).

GP was firstly run starting from random initial popula-

tion of rules and then from a population built from rules

evolved in previous executions of GP. This was done for

the sake of a fair comparison between ensembles and rules.

In all cases, the stopping condition of the algorithms was

given by a number of generations, but we also established a

time limit of 1440 min. Thus, the executions where the

field ‘‘Time(min)’’ is 1440 min mean that the algorithm

terminated before reaching the maximum number of gen-

erations. In addition, we report the number of chromo-

somes syntactically different (the field ‘‘Unique’’), which

denotes the average number of unique chromosomes (rules

or ensembles) per configuration.

Fig. 5 An example of an

ensemble with three heuristics

encoding in GA

Table 2 Description of the Training and Test sets of TSP instances

used in the experimental study

Size of the set Number of cities

Training (N) in all

7 574

14 1391

21 2595

28 4722

35 10454

42 19756

49 37303

Test (21) 11757

Each training set is composed by the N smallest instances out of the

49 training instances

Table 3 Parameters used by GP and GA

Parameter GP GA

Population size 200 100

Crossover ratio 1.0 0.8

Mutation ratio 0.02 0.2

Chromosome length 28 � 1 3, 5, 7

Generations 100 50
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6.2 Analysis of GP and GA

In this section, we analyse the results of the rules and

ensembles produced by GP and GA, respectively, with

different settings. In particular, we will try to assess their

generalisation capability.

6.2.1 Priority rules evolved by GP

Table 4 summarises the results obtained by the rules

evolved by GP. For each setting (Init./N), the best and

average tardiness, and the standard deviations, of the 30

rules are reported for both the training and test sets; for the

test set, the best value refers to the best rule in training. We

can observe that starting from a heuristic initial population,

GP is more stable and it is able to reach slightly better rules

on average than when it starts from random populations.

However, this difference vanishes on the test set. The time

taken, as expected, is in direct ration with the size of the

training set. And the number of different chromosomes

evaluated along each execution is about 1/4 of the maxi-

mum theoretical value (300 � 200 = 60 000), with the only

exception for the largest training set when GP did not reach

200 generations. The differences between heuristic and

random initial populations for different sizes of the training

set may be better observed in the box-plots from the results

on the test set given in Fig. 6. As it could be expected, the

lowest value of N produces the worst results. Besides, there

are significant statistical differences between random and

heuristic initialisation for only 4 of the 7 values of N.

6.2.2 Collaborative ensembles evolved by GA

Table 5 and Fig. 7 summarise the results obtained by the

collaborative ensembles evolved by GA. In this case, the

main observation we may draw is that the performance of

the ensembles on the test set improves with the size of the

training set, and that there are no significant differences

between the three sizes of the ensembles for each training

set. Besides, the time taken by GA grows exponentially, so

Table 4 Tardiness values of the solutions reached by the priority rules evolved by GP on both the training and test sets

Init N Training Test Unique Time (min)

Best Avg SD Best Avg SD

Random 7 27993.56 28350.12 5038.23 69454.45 71322.78 13087.45 15434.67 2.80

14 35672.09 36262.86 6532.08 68829.59 70295.88 12660.79 15815.00 8.62

21 34398.35 34900.26 6372.18 69527.13 69993.02 12550.59 15468.60 19.02

28 31901.50 32332.86 5756.63 69277.89 70149.60 12841.70 15499.37 55.42

35 52672.88 53312.92 9550.57 69262.11 70190.18 12772.45 15262.13 317.24

42 67907.92 68480.39 12275.50 68757.23 69579.94 12422.91 15377.30 976.42

49 88598.57 89176.15 15966.83 68900.89 70035.29 12605.37 7178.10 1440.00

Heuristic 7 27687.53 27992.59 91.81 70044.92 71357.78 897.42 16394.10 3.72

14 35525.94 35645.62 66.61 69346.70 70165.78 478.14 16155.70 10.88

21 34339.52 34449.29 72.40 69648.37 70063.90 394.31 16172.00 25.56

28 31721.55 31860.89 45.47 69515.10 69940.53 475.22 15384.60 65.47

35 52342.04 52617.48 108.33 69203.81 69652.06 317.32 17482.97 544.81

42 67788.02 67939.04 90.09 68638.03 69653.03 351.12 14654.13 1434.95

49 88005.64 88160.02 98.81 68520.16 69516.31 471.74 4972.37 1440.00

The last column shows the time taken by GP in one execution, and the next-to-last column shows the number of different candidate rules that

were evaluated

Fig. 6 Box plots from the results achieved by the priority rules for
each test set (N) and initialisation method (Hr random or Hh heuristic)
(see Table 4). On the top are the p-value produced by the Wilcoxon

signed-rank test
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that it is unable to complete the 200 generations for N ¼ 49

in all cases and even for N ¼ 42 for ensembles of sizes 5

and 7. This is not surprising as GA must build a new

solution for each instance in the training set to evaluate

each candidate ensemble, and the average size of the

instances grows with the value of N (see Table 2).

6.2.3 Competitive ensembles evolved by GA

The results achieved by competitive ensembles are repor-

ted in Table 6 and Fig. 8 in a similar way as it was done for

collaborative ensembles. As in that case, we can observe

that the performance of the competitive ensembles slightly

improves on average with the size of the training set. But,

at difference with collaborative ensembles, the perfor-

mance of competitive ensembles strongly improves with

the size of the ensemble, as it is shown by the Kruskal-

Wallis test (Fig. 8). Besides, the time taken by GA grows

smoothly with the size of the training set so that it is able to

complete the 200 generations much earlier than the time

limit in all experiments. This is not surprising as to eval-

uate a competitive ensemble GA does not need to build a

new solution for the rules that took part in previous

ensembles when searching for the best solution from the

compounding rules. Here, we have to be aware that the

efficiency of competitive ensembles could be further

Table 5 Tardiness values reached by the collaborative ensembles calculated via GA from different training sets (see Table 2) with maximum

ensemble sizes P of 3, 5 and 7, on the training and test sets

Ensembles size N Training Test Unique Time (min)

Best Avg SD Best Avg SD

3 7 27873.02 28014.24 47.48 69373.19 70445.39 711.62 2804.17 2.05

14 35433.68 35575.04 63.88 69361.87 69940.64 204.93 2972.60 6.19

21 34192.74 34324.42 60.16 69516.05 69848.49 234.67 2965.13 14.61

28 31677.43 31787.73 60.21 69171.82 69831.51 403.42 3040.57 44.41

35 52295.07 52430.72 83.70 68830.68 69835.40 524.95 3041.53 253.81

42 67475.08 67672.47 100.91 68966.14 69567.59 343.50 2992.97 778.44

49 87679.24 87984.75 114.64 68587.06 69493.56 429.87 1639.20 1440.00

5 7 27659.92 27878.15 90.79 68636.93 70009.78 748.22 7475.17 8.49

14 35381.98 35515.80 62.51 69365.78 69822.33 344.14 7509.23 25.77

21 34176.03 34247.26 53.63 69324.13 69836.75 293.44 7562.43 60.63

28 31576.70 31704.55 65.31 68764.52 69631.65 321.84 7544.53 175.00

35 52065.30 52294.11 95.30 69084.28 69652.65 372.89 7584.40 1043.92

42 67417.96 67675.33 101.33 68646.48 69360.25 434.75 3486.60 1440.00

49 87796.99 88052.49 119.91 68767.62 69341.27 330.48 1035.03 1440.00

7 7 27708.04 27914.45 85.61 68636.26 70340.12 1396.05 8063.63 12.80

14 35357.52 35491.00 60.48 69060.45 69998.35 810.03 8071.70 37.52

21 34083.22 34232.77 77.10 68776.47 69701.41 484.94 8080.20 90.37

28 31531.14 31678.09 74.11 68958.73 69690.43 352.97 8077.63 266.30

35 51991.21 52283.78 92.46 68864.30 69689.73 493.69 7631.20 1434.52

42 67511.10 67720.83 81.39 68714.03 69487.71 442.92 2577.30 1440.00

49 87790.67 88054.16 120.66 68509.95 69403.14 372.92 772.03 1440.00

The last column shows the time taken by GA in one execution, and the next-to-last column shows the number of different ensembles that were

evaluated

Fig. 7 Box plots of the results reported in Table 5 obtained by

collaborative ensembles on the test set. The p-values produced by

the Kruskal-Wallis test for the three sizes of the ensembles and each

training set in the X-axis are given at the top of the figure
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improved if the results of the rules on the training set were

available beforehand, which may be a reasonable

assumption. In this case, the time taken to evaluate a

competitive ensemble would be independent of the size of

the instances, and so GA would run in linear time on the

number of instances in the training set.

6.3 Comparison

In this section, we show a comparison between ensembles

and single rules. We also provide a comparison against

classical heuristics like the nearest neighbour and the best-

known solutions in the literature obtained by exact methods

and metaheuristics.

6.3.1 Single rules versus ensembles

Table 7 summarises the differences between ensembles and

single rules with regards to the quality of the solutions

reached. Collaborative ensembles do not always produce

better results than single rules and there are statistical

differences in only 15 out of the 21 configurations (N,P). In

turn, competitive ensembles are always better than single

rules, with only one exception in the best solutions reached

by the best ensemble with 3 rules and the best rule, and

they show significant statistical differences in all

configurations.

Table 6 Tardiness values reached by the competitive ensembles calculated via GA from different training sets (see Table 2) with maximum

ensemble sizes P of 3, 5 and 7, on the training and test sets

Ensembles size N Training Test Unique Time (min)

Best Avg SD Best Avg SD

3 7 27353.42 27506.00 86.79 68463.28 69497.97 604.78 4940.87 0.13

14 35045.90 35109.66 41.12 68263.02 68866.88 313.27 4939.57 0.39

21 33781.69 33867.67 35.67 68304.36 68883.44 334.60 4938.83 0.93

28 31257.39 31294.31 24.06 68485.40 68764.59 238.63 4943.57 2.72

35 51634.35 51742.80 54.46 68276.43 68698.23 205.00 4936.87 15.32

42 66773.68 66879.59 70.23 68016.01 68628.00 197.91 4940.57 46.81

49 85495.15 85664.19 163.50 68669.05 68949.68 189.36 4940.03 166.14

5 7 27216.97 27293.61 62.50 67780.03 68809.25 512.60 4942.10 0.26

14 34782.60 34867.67 62.47 67677.34 68546.51 348.41 4939.13 0.77

21 33511.84 33576.51 39.01 67806.67 68602.87 331.05 4938.13 1.89

28 30976.03 31028.65 37.39 67816.30 68555.99 271.66 4937.10 5.51

35 51217.01 51347.24 48.44 67996.22 68457.20 186.38 4937.93 31.92

42 66380.41 66459.25 44.27 67451.11 68184.61 361.76 4941.77 95.50

49 84887.95 85049.35 82.14 67609.02 68313.06 290.02 4935.00 341.99

7 7 27200.60 27251.14 34.59 67361.56 68582.18 469.02 4942.03 0.40

14 34683.95 34739.64 40.13 67488.50 68215.83 300.75 4940.27 1.17

21 33271.50 33395.13 57.79 67548.75 68274.20 324.06 4938.53 2.85

28 30818.36 30897.42 34.40 67636.12 68159.56 264.63 4942.20 8.29

35 51084.28 51183.36 42.15 67549.85 68184.96 251.13 4941.03 47.67

42 66020.20 66207.18 79.34 67332.82 67825.75 275.14 4939.13 142.25

49 84614.00 84781.66 63.14 67295.09 67968.94 312.64 4942.53 501.69

Fig. 8 Box plots of the results achieved by competitive ensembles
solving the test set that are reported in Table 6. The numbers at the top

are the p-values produced by the Kruskal-Wallis test
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6.3.2 Collaborative versus competitive ensembles

Figure 9 shows a comparison between collaborative and

competitive ensembles by means of a series of box plots

and p-values from the Wilcoxon signed-rank test, one for

each configuration (N,P). We can observe that competitive

ensembles perform better than collaborative ensembles in

all cases. Even for some configurations, the worst result

from competitive ensembles is better than the best result

reached by collaborative ensembles.

6.3.3 Run-time analysis

Since the routing generation scheme given by Algorithm 1

guided by heuristics (rules or ensembles) is aimed to solve

DTSP, we have to analyse the time taken by the algorithms

to assess its suitability for the dynamic changes in each

particular setting. From the algorithm structure, it is clear

that the execution time will depend on both the size of the

static TSP instance and the size of the rule or ensemble

exploited.

To that purpose, we generated 1 000 random rules and

1 000 random ensembles of size P ¼ 5. All the instances in

the test set were solved by these rules and by these

ensembles, in this case considering them as collaborative

and competitive, and the time taken in each run was reg-

istered. We evaluated them independently, without the

presence of any other ensembles. Consequently, we

intentionally excluded the reuse of previously calculated

results to conduct an unbiased investigation into runtime

performance.

Figure 10 shows the box plots of these experiments. The

average times required to solve all instances in the test set

were 1.62 and 1.63 s for competitive and collaborative

ensembles respectively, and 0.3 s for the single rules. This

Table 7 Summary of the comparison between rules and ensembles on

the test set

Ensembles N Ensemble size (P)

Best solution On average Stat. Dif.

3 5 7 3 5 7 3 5 7

Collaborative 7 4 4 4 4 4 4 4 4 4

14 4 4 4 4

21 4 4 4 4 4 4 4 4 4

28 4 4 4 4 4 4 4 4 4

35 4 4 4 4 4 4

42 4 4 4

49 4 4 4 4 4 4 4

Competitive 7 4 4 4 4 4 4 4 4 4

14 4 4 4 4 4 4 4 4 4

21 4 4 4 4 4 4 4 4 4

28 4 4 4 4 4 4 4 4 4

35 4 4 4 4 4 4 4 4 4

42 4 4 4 4 4 4 4 4 4

49 4 4 4 4 4 4 4 4

The symbol 4means that the ensemble produces better results than

single rules, or that the Wilcoxon signed-rank test shows statistical

differences

Size 3

Size 5

Size 7

Fig. 9 Box plots from the results achieved by collaborative and

competitive ensembles on the test set (detailed in Tables 5 and 6). For

each ensemble size P, the box plots are organised by increasing

values of the size of the training set N. The numbers at the top are the

p-values from Wilcoxon signed-rank tests
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means that the expected times to solve one instance are

about 7 ms for a rule and 35 ms for an ensemble.

In regards to the size of the heuristics, i.e., the number of

symbols in a rule or ensemble, one may expect it be

strongly correlated with the time taken by the algorithms.

This is rather clear in Fig. 11, which show the dispersion

plots of the time taken versus the size of the heuristics. The

correlation coefficients in the three plots showcase high

correlation between them.

Finally, we have to analyse the influence of the problem

size on the time taken by the algorithms. To this end,

Fig. 12 shows the bar plot of time versus instance size with

the best rule and ensembles obtained. We can see that the

number of cities and the time taken is directly related.

6.3.4 Comparison against the state-of-art

The TSP is an extensively studied problem, and numerous

algorithms have been proposed to solve it, including the

Lin-Kernighan heuristic (Link and Kernighan 1973),

Christofides heuristic (Christofides 1976), and Genetic

Local Search (GLS) (Freisleben and Merz 1996). While

these algorithms demonstrate good performance, they face

challenges when dealing with large problem instances, time

constraints, or incomplete information. In such situations, a

greedy algorithm guided by an efficient heuristic rule is

often the preferred solution. Having said that, we consider

classic heuristics as NN or NI, as well as the priority rules

evolved by GPHH (Duflo et al. 2019) and HACO (Singh

and Pillay 2022), as suitable references in the context of

hyper-heuristics.

For our comparative study, we exploited NN and NI in

combination with Algorithm 1 and considered the results of

the best rules evolved by GPHH, which are presented in

Duflo et al. (2019). We also include the results obtained by

the best configuration of HACO from Singh and Pillay

(2022). The results obtained by all the mentioned methods,

detailed for each instance of the test set, are reported in

Fig. 10 Box-plot with the time required (in milliseconds) for solving

the test set with each heuristic type

Fig. 11 Dispersion plots of the time taken versus the size of the heuristics. The values at the top are the Kendall rank correlation coefficients

Fig. 12 Bar-plot with the time required (in seconds) for achieve the

best solutions with each heuristic type
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Table 8. The size of the ensembles is P ¼7, and they were

evolved from the largest training set (N ¼49). The second

column of the table shows the best known solution for each

instance, which in some cases is optimal.

As may be expected, all methods produce solutions

much worse than the best known ones, which were nor-

mally obtained by heavy exact or approximate methods

that take much more time than greedy algorithms guided by

heuristics. With regards to simple rules, it is clear that NN

and NI perform worse than the best rules evolved by both

GPHH and GP, showcasing the advantage of automatically

calculated rules over the classical ones. The best rule

evolved by GP is better on average and also in 11 of the 21

instances than that evolved by GPHH. In this case, show-

casing that it is possible to obtain good rules considering a

small number of problem attributes.

We can see that ensembles produce the best solutions

among all the heuristics considered, being competitive

ensembles better than collaborative ones in all but 3

instances. Furthermore, we can also observe that compet-

itive ensembles achieve (on average) similar results to

HACO. However, the HACO approach has the

inconvenience that the evolved heuristic is difficult to

interpret for the human eye. In this regard, a rule in HACO

is encoded as a pheromone matrix that is much harder to

interpret than expression trees.

7 Conclusions and future work

As it was done in some previous works (Duflo et al. 2019;

Gil-Gala et al. 2022), we have seen that Genetic Pro-

gramming is a suitable hyper-heuristic to evolve priority

rules to solve the TSP. In our experimental study, these

rules outperformed some classic heuristics, such as Nearest

Neighbour or Nearest Insertion. From the comparison

between GPHH (Duflo et al. 2019) and the GP proposed in

this work, we can see that using a small number of problem

attributes, the search space of GP is reasonably low.

Therefore, it may reach better rules than those obtained

from the search space generated from a large set of

attributes.

We have also seen that ensembles of rules may produce

better results than single rules at the cost of linear increase

Table 8 Comparison of the best rule and ensembles achieved by GP

and GA against the Nearest Neighbour (NN) and Nearest Insertion

(NI) heuristics, Genetic Programming Hyper-heuristic (GPHH)

proposed in Duflo et al. (2019), Hyper-heuristic Ant Colony Optimi-

sation (HACO) proposed in Singh and Pillay (2022), and the best-

known (BK) solutions (BK 2022) solving the whole test set

Instance BK Best rule Best rule Best ensemble HACO

GPHH NN NI GP Collaborative Competitive

ts225 126643 136412.40 147941.80 151884.60 139766:63 139766:63 139978.00 131820.10

rat99 1211 1381.68 1474.92 1465.88 1383.86 1362.84 1361:88 1344.50

rl1889 316536 383303.70 391697.00 393573.50 377690.12 369445.48 368533:90 375383.20

u1817 57201 69334.72 69901.17 70970.14 66867.66 68765.38 68643:83 66247.10

d1655 62128 73740.45 76950.71 75390.58 74108.73 76421.03 72468:16 72292.10

bier127 118282 136781.20 145784.90 145544.10 129579.91 130718.90 127755:71 128104.10

lin318 42029 48039.78 52865.57 52299.12 47684.21 47987.33 47197:19 48190.90

eil51 426 469.46 562.16 494.75 479.06 480.57 450:92 452.30

d493 35002 40453.72 43403.90 42140.47 42007.21 41546.29 39352:09 40717.70

kroB100 22141 25254.54 27955.27 26908.61 25441.15 25005.23 24798:05 24394.50

kroC100 20749 24114.56 26094.22 25780.57 23024.51 22254.85 22362:36 22618.70

ch130 6110 7012.58 7677.60 7283.95 6668.41 7139.50 6616:58 6778.90

pr299 48191 56980.64 63334.80 60263.85 55341:71 55341:71 55456.73 55738.30

fl417 11861 14555.84 15706.24 14887.62 15079.67 14300.26 14214:60 13537.40

d657 48912 56882.87 63456.26 60081.63 58942.05 58423.95 57567:52 58546.70

kroA150 26524 30660.12 33440.39 31588.40 31239.31 29916.93 29538:72 30428.40

fl1577 22249 26163.75 27813.25 27625.77 26148.49 26588.93 25678:45 25308.50

u724 41910 48423.29 53834.65 52629.51 47955.74 48292.80 46571:66 48465.30

pr264 49135 60908.02 57915.59 65978.21 59363.51 60306.69 57017:63 54425.30

pr226 80369 92837.77 100178.30 102887.20 86995.73 84509:99 84851.38 89027.90

pr439 107217 130114.30 136546.50 133663.80 123155.76 130133.56 122781:52 126402.70

Avg 59277.43 69705.97 73549.30 73492.49 68520.16 68509.95 67295:09 67629.70
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of the execution time with the size of the ensembles. From

the two kinds of ensembles analysed, competitive ensem-

bles showed much better performance than collaborative

ones. Nevertheless, we have to be aware that both of them

were evaluated on building solutions for static TSP

instances, which is a suitable framework when a DTSP is

viewed as a sequence of static TSP instances over time.

However, in other situations, the dynamic problems require

on-line solutions, i.e., the route is being travelled at the

same time as it is being built. In these cases, competitive

ensembles may not be used, so collaborative ones may also

represent a good alternative to single rules.

In future work, we plan to consider alternative combi-

nation methods (Durasević et al. 2023; Park et al. 2018)

and multiobjective optimisation (Durasević et al. 2023).

Additionally, we are interested in analysing alternative rule

representations, such as neural networks (Branke et al.

2015; Jia et al. 2022) or pheromone matrices (Singh and

Pillay 2022), to build ensembles.

Author Contributions All authors reviewed the manuscript. The

specific contribution of each author is as follows: Francisco Javier Gil

Gala: Conceptualisation, Methodology, Software, Validation, Formal

Analysis, Investigation, Resources, Data curation, Writing-Original

Draft, Visualisation. Marko Durasević: Conceptualisation, Method-
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