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Abstract
In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one

hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of

proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with

different search strategies are analyzed. In this latter case, our methods based on a memetic combination between

differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in

the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing

possibilities of integration of both alternatives.

Keywords Protein structure prediction � Differential evolution � Evolutionary computing niching methods �
Crowding niching method � Deep learning

1 Introduction

The structure of proteins largely determines their function,

hence the great importance of determining their native

three-dimensional structure. For this purpose, traditional

laboratory methods, such as X-ray crystallography, Nuclear

Magnetic Resonance (NMR) and electron cryo-mi-

croscopy, are expensive and time-consuming. As an alter-

native, computational Protein Structure Prediction (PSP)

methods attempt to close the gap between the number of

proteins with known sequence (on the order of millions)

and the number of resolved proteins with known structure

(about 200,000 in the Protein Data Bank - PDB database

(http://www.wwpdb.org)).

A first alternative in PSP is the use of templates with

structural information of resolved proteins (their structure

is known). For example, PSP methods of homology mod-

eling are based on finding a PDB-resolved protein with a

homologous amino acid sequence, since with high

homology the structures are the same. PSP threading is

another possibility if there are no resolved proteins with a

homologous sequence. In the latter case, for a target protein

and a library of possible templates (folds), threading

methods search for the fold in which the target sequence

best fits.

In the most difficult and challenging alternative of PSP,

called ab initio, only the primary sequence information of

the protein (its amino acid sequence) is used. This ab initio

prediction is based on Anfinsen’s dogma (Anfinsen 1973),

which states that the native structure of the protein is

determined solely by the amino acid sequence, as well as

that the native structure corresponds to the one with the

lowest Gibbs free energy (thermodynamic hypothesis).

Consequently, an alternative in ab initio PSP is the use of

search methods that attempt to discover the structure with

minimum energy, once a protein representation and energy

models have been established. The problem is that PSP

energy landscapes are high-dimensional and full of local

minima. Thus, evolutionary computing search or
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optimization methods have been used intensively, given

their global search capability in multidimensional and

multimodal energy landscapes.

This possibility, based on the search for the minimum in

the energy landscape, has been one of the traditional PSP

approaches, with simplified lattice models for protein

representation (Santos and Diéguez 2011; Varela and

Santos 2017) and with atomic models (Garza-Fabre et al.

2016), where metaheuristics, especially evolutionary and

bio-inspired approaches (Márquez-Chamorro et al. 2015),

play an essential role due to the complexity of the search

landscape. With atomic models of protein representation,

the Rosetta system (http://www.rosettacommons.org) is

one of the leading methods for PSP with these energy-

based approaches. Rosetta ab initio protocol uses small

protein fragments (from resolved proteins) and the classical

Metropolis criterion (Metropolis et al. 1953) to decide

whether a structural fragment replaces a part of the current

conformational structure of the target protein, with the goal

of finding the structure with the minimum energy. Working

with the fragment replacement technique as a local search

operator, our evolutionary/memetic computational solu-

tions (HybridDE and CrowdingDE) (Varela and Santos

2019, 2020, 2022) outperform Rosetta ab initio protocol

when searching for structures with minimal energy and

under the same number of conformational energy

evaluations.

Nevertheless, a more recent approach in PSP is to pre-

dict the contact map or the interdistance map between

amino acids, which is a simpler representation of the pro-

tein three-dimensional structure. This prediction typically

uses the information from Multiple Sequence Alignment

(MSA) of the target protein sequence as input to deep

learning schemes, such as the initial approaches of trRo-

setta (Yang et al. 2020) and DeepMind’s AlphaFold

(Evans et al. 2018; Senior et al. 2020). DeepMind’s recent

deep learning-based method, called AlphaFold2 (Jumper

et al. 2021), has shown a very large improvement over

previous approaches, as demonstrated by the results in the

CASP (Critical Assessment of protein Structure Prediction)

competition (CASP14 in 2020) (http://predictioncenter.org/

). In addition, in a partnership between DeepMind and the

European Molecular Biology Laboratory (EMBL), Alpha-

Fold2 was used to publicly provide structure predictions

(over 200 million protein structure predictions including

the � 20,000 proteins expressed by the human genome)

(https://alphafold.ebi.ac.uk/).

Likewise, RoseTTAFold (Baek et al. 2021), also based

on a deep learning architecture, has shown a very consid-

erable improvement over the traditional counterpart based

on energy minimization, as well as over other deep learn-

ing approaches, as tested with proteins in the Continuous

Automated Model EvaluatiOn (CAMEO) project (https://

cameo3d.org/). Moreover, RoseTTAFold allows the pre-

diction of accurate protein-protein complex models only

from sequence information, as a new avenue to short-cir-

cuit the traditional docking approach.

The objective of this paper is to analyze the advantages

and problems of different ab initio PSP strategies (energy

minimization and deep learning-based approaches),

extending the previous work presented at conference

IWINAC 2022 (Filgueiras et al. 2022). The recent methods

based on deep learning AlphaFold2 (Jumper et al. 2021)

and RoseTTAFold (Baek et al. 2021) were selected, ana-

lyzing the problems of these approaches with proteins with

few homologous sequences. On the other hand, the widely

used Rosetta PSP protocol for the discovery of energy-

minimized conformations is also considered, together with

our proposals based on memetic approaches between Dif-

ferential Evolution (Price et al. 2005) and the local search

provided by the Rosetta fragment replacement technique.

The rest of the paper is organized as follows. Section 2

provides a brief summary of the main aspects of the PSP

approaches considered, while Sect. 3 discusses the com-

parison of PSP alternatives and their problems using

selected proteins. Finally, a discussion based on the results

presented is provided in Sect. 4.

2 Methods

2.1 Rosetta ab initio protocol

Two protein representations are used by the Rosetta sys-

tem: coarse-grained and all-atom. The coarse-grained rep-

resentation only considers the main atoms of the protein

backbone (with their dihedral angles), whereas the side

chains are modeled with a pseudo-atom located at their

center of mass (Fig. 1).

The Rosetta ab initio PSP protocol (Rohl et al. 2004)

(http://www.rosettacommons.org), with the low-resolution

protein representation, employs a search technique in

which a Monte Carlo procedure decides whether the

dihedral angles of small protein fragments can replace the

original ones (Kaufmann et al. 2010; Rohl et al. 2004). A

protein fragment is a group of consecutive amino acids of a

resolved protein. Fragments are selected by considering

their sequence similarity with respect to the window of

consecutive residues of the target protein into which the

fragments will be inserted. The decision regarding whether

the dihedral angles of a selected fragment replace those of

the target protein is based on the Metropolis criterion

(Metropolis et al. 1953). This criterion always accepts the

changes that improve the energy (lower values), while

occasionally accepting dihedral angle changes that worsen

the energy, with the probability of accepting the fragment
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depending on the increase in energy relative to the previous

state of the target protein.

In Rosetta, the energy of a protein conformation is

defined as a weighted linear combination of different

energy terms that model the molecular forces acting

between the amino acid atoms. For example, steric overlap

between backbone and side-chain atoms is penalized, while

other Rosetta’s energy terms correspond to van der Waals

interactions, electrostatics effects and solvation, hydrogen

bonding, repulsion and scores related to protein secondary

structure (e.g., helix-strand packing and strand pairing).

The detailed definition of the energy terms can be found,

for example, in Rohl et al. (2004), and the weight sets for

the individual energy terms for the definition of every

Rosetta score are detailed in (http://www.rosettacommons.

org). The Rosetta score function named score3 integrates

all of the energy components.

In the search for protein conformations with minimum

energy, the stochastic Metropolis Monte Carlo procedure is

run thousands of times. For this, the Rosetta ab initio

protocol is divided into four stages, which use different

score functions (progressively incorporating new energy

terms) and number of fragment insertion attempts. Detailed

information about these four stages can be found, for

example in Rohl et al. (2004) and Varela and Santos

(2022), while Fig. 2 illustrates schematically the search

process of the Rosetta ab initio protocol with its four

stages. Rosetta uses the coarse-grained protein represen-

tation and its fragment insertion technique (with the

Metropolis criterion) throughout these four stages to gen-

erate new structural conformations. The final conforma-

tions (‘‘decoys’’) in this ab initio protocol, can be refined in

an ‘‘Ab initio Relax’’ procedure using the Rosetta’s full

atomic model.

2.2 HybridDE and CrowdingDE PSP approaches

We defined a memetic combination for PSP between Dif-

ferential Evolution (DE) (Price et al. 2005) and the

Rosetta’s fragment replacement technique (HybridDE

memetic approach). The genetic population encodes pos-

sible protein conformations using the Rosetta’s coarse-

grained representation (encoding the dihedral angles for

each amino acid). The hybrid combination integrates the

advantage of the global search of the evolutionary algo-

rithm with the local search provided by the replacement of

fragments. The fragment insertion technique is used in DE

to refine the population solutions and to refine the DE

candidate or trial solutions. The memetic search follows a

three-stage evolutionary process, as the fitness of the

encoded conformations corresponds to different Rosetta

score functions in each stage, while the first stage of

Rosetta is used to define the initial population (with par-

tially folded and different conformations). The memetic

version is detailed in Varela and Santos (2019, 2020).

HybridDE outperforms the Rosetta ab initio protocol in

obtaining conformations with minimum energy and under

the same number of conformational energy evaluations.

Figure 3 corresponds to an example of the fitness evo-

lution in the three-stage evolutionary process of HybridDE.

The example uses an evolution with a population size of

100 individuals, 100 generations (in each of the three

evolutionary stages) and SARS-CoV-2 protein orf8 as

target. In each evolutionary phase, the fitness is associated

to the energy score that Rosetta uses in its corresponding

phase and, consequently, it has different ranges in each

evolutionary stage. Note that, using Rosetta nomenclature

in Stage 3, score5 was the final energy (with energy terms

focused on compactness and secondary structure), although

score3 in the final Stage 4 is the energy score incorporating

all energy components. This evolutionary process with

different stages, integrating in each of them more detailed

energy functions, allows a progressive structural

refinement.

Nevertheless, obtaining energy-optimized conforma-

tions is not the only goal when the energy landscape is

deceptive (such as the inaccurate Rosetta’s energy model).

This occurs when the conformation with the minimum

energy does not correspond to the conformation closest to

the real native structure. Consequently, one strategy is to

obtain a set of optimized conformations (with minimal

energy) with structural diversity. For this purpose, we

introduced niching methods such as crowding, fitness

sharing and speciation into the HybridDE version, thus

Fig. 1 Rosetta’s coarse-grained

model for protein

representation. It considers only

the main atoms of the protein

backbone, while pseudo-atoms

represent the lateral residues. x,
/ and w dihedral angles encode

each protein conformation
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forcing the search algorithm to obtain optimized confor-

mations in different niches (with different structural con-

formations) (Varela and Santos 2022). This increases the

chances of obtaining candidate structures close to the

native structure. The crowding niching method was found

to be the most useful niching technique in the application,

given its simple parameter decision process, defining the

CrowdingDE version, detailed in Varela and Santos

(2020, 2022).

2.3 AlphaFold and RoseTTAFold

The recent deep learning-based methods of Alpha-

Fold2Jumper et al. (2021) and RoseTTAFold Baek et al.

(2021) for PSP were considered here. AlphaFold2 is the

latest version of DeepMind’s effort in PSP with deep NN

architectures, which is an improvement of the first version

AlphaFold (Evans et al. 2018; Senior et al. 2020). In the

case of AlphaFold2, the system receives the MSA of a

Fig. 2 Workflow of the Rosetta Ab initio protocol, working with the

coarse-grained representation. Each of the four stages uses a

particular score function (incorporating new energy terms in each

stage), different number of fragment insertion attempts, as well as

fragments with length of 3 or 9 mers

Fig. 3 Energy/fitness evolution of HybridDE in a run with SARS-

CoV-2 protein orf8 as target: evolution of the average energy of the

population (green line) and the energy of the best individual (red

line). There are three sequential evolutionary stages, corresponding to

the same Rosetta stages (using the same fragment lengths and Rosetta

energy score functions)
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target sequence as input information. MSA algorithms

provide the alignment of evolutionarily related protein

sequences, with a 2D matrix representation where the

horizontal axis represents the residues of the target protein

and the vertical axis corresponds to homologous protein

sequences with an optimized alignment with respect to the

other sequences (alignment that may be suboptimal since

heuristics are used).

The idea behind the use of MSA as input information is

that correlated mutations between residues indicate their

spatial physical interaction. That is, if an amino acid

mutates at position i in a homologous sequence (with

respect to the target sequence), and a correlated mutation

appears at position j in the same homologous sequence,

then it is likely that residues i and j are in contact in the

tertiary structure, since the correlated mutation tends to

maintain the protein structure unchanged.

AlphaFold2’s architecture is detailed in Jumper et al.

(2021). Several self-attention operations are performed in

the deep NN architecture. Attention enables the NN to

guide the flow of information, by learning to select which

aspects of the input information should interact with other

aspects of the same input. For instance, MSA representa-

tions are processed with consecutive blocks of self-atten-

tion in rows and columns. The first generates attention

weights for amino acid pairs, allowing identification of

which amino acid pairs are most closely related. The sec-

ond attention process (in the vertical direction of MSA)

allows elements belonging to the same target amino acid

position to exchange information, i.e., it determines which

protein sequences are most informative in the MSA input

information.

One of the key modules of the internal architecture of

AlphaFold2 is the main network block called Evoformer, a

stack of several NN layers that performs feature embed-

ding. Evoformer works with an embedding of the MSA and

with an internal pair representation (a generalized version

of a distogram, i.e., a map of interdistances between resi-

dues). Both representations exchange information, as

updates in the MSA embedding provide new information to

change the structural hypothesis in the pair representation,

and vice versa.

Evoformer is followed by a NN module or Structure

Module that maps the embedding or abstract representation

of the Evoformer stack to concrete 3D coordinates of all

atoms (as well as the per-residue confidence commented

below). In this module, NN attention mechanisms (with

invariance to rotations and translations of the protein

conformation in space) are used to progressively refine the

structure (which includes the side-chain atoms). Finally,

the predicted structure information is returned to the Evo-

former blocks. Consequently, these two steps (Evorformer

and Structural Prediction) are repeated several times in

AlphaFold2 to progressively refine the final and predicted

model of the protein.

AlphaFold2 provides two confidence measures of the

predicted structures. The first is the predicted local-Dis-

tance Difference Test (plDDT), a per-residue measure of

local confidence (on a scale from 0-100). The local-Dis-

tance Difference Test (lDDT) is a superposition-free score

that evaluates local distance differences of all atoms in a

model (Mariani et al. 2013). The plDDT measure provided

by AlphaFold2 estimates how well the prediction would

agree with an experimental structure, since it predicts the

agreement of the lDDT (lDDT-Ca, considering only the

atom Ca in each amino acid) between the predicted and real

structures. The second metric is the Predicted Alignment

Error (PAE). PAE (x, y) reports the expected position error

at residue x, when the predicted and real structures are

aligned on residue y. Consequently, it provides a level of

confidence about the relative positions of the amino acids

(and different domains) of the protein.

RoseTTAFold (Baek et al. 2021) is also a recent method

based on deep learning and inspired by the DeepMind’s

framework, as the authors state. It is also an improvement

over the previous version of the same group at the

University of Washington, called trRosetta (Yang et al.

2020). RoseTTAFold uses a three-track neural network to

simultaneously process sequence, distance, and coordinate

information. The main new feature in RoseTTAFold Baek

et al. (2021), with respect to AlphaFold2, is the incorpo-

ration of a third track in the deep NN design, which

operates in the 3D coordinate space. As the authors state

(Baek et al. 2021), this provides a tighter connection

between the protein sequence, residue-residue distances

and their orientations, as well as the coordinates of all

atoms. Therefore, the neural architecture has 1D, 2D and

3D tracks with attention mechanisms. There are connec-

tions between the three tracks to allow simultaneous

learning of relationships within and between sequences,

distances and coordinates. RoseTTAFold (Baek et al. 2021)

outperformed other PSP servers with recent structures

submitted to PDB (CAMEO project (https://cameo3d.org/

)). RoseTTAFold also provides an estimate of the per-

residue precision, based on the estimated Ca RMS error,

i.e., the predicted distance with respect to the native

structure (using only the Ca atoms). This Ca RMS error is

estimated from the predicted lDDT-Ca, as detailed in Baek

et al. (2021).

The AlphaFold2 (https://colab.research.google.com/

github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb)

and RoseTTAFold (https://colab.research.google.com/

github/sokrypton/ColabFold/blob/main/RoseTTAFold.

ipynb) ColabFold servers were used in the predictions.

Coupled with Google Colaboratory, ColabFold (Mirdita

et al. 2022) is a free and accessible platform for protein
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folding that integrates the fast homology MMA search of

MMseqs2 (Steinegger and Söding 2017) with AlphaFold2

and RoseTTAFold. The commented measures of both deep

learning-based methods will be used to analyze the results.

3 Results

3.1 Setup of the PSP approaches

The PSP approaches discussed in the Methods section are

used with different proteins. In the case of Rosetta ab initio

PSP protocol, taking into account its stochasticity, the

protocol is run 1,000 times to generate 1,000 decoys

(candidate conformations). Rosetta parameter increase_-

cycles is set to 10 (which multiplies the default values of

fragment insertion cycles in the different Rosetta stages,

details in Rohl et al. (2004) and Varela and Santos (2022)),

as recommended on the Rosetta site (http://www.rosetta

commons.org).

Regarding the approaches based on DE (HybridDE and

CrowdingDE), the same setup used in Varela and Santos

(2019, 2020, 2022) was employed. DE parameters were

experimentally adjusted to generate candidate conforma-

tions in DE with slight variations with respect to their base

individual (random conformation of the population in the

DE scheme used), in order to minimize conflicts between

atoms in the DE trial or candidate solutions. Therefore, a

low weight factor (F ¼ 0:025) in the mutation operator is

needed, along with a high crossover probability

(CR ¼ 0:99). Moreover, DE strategy DE/rand/1/bin was

used, which provides low selective pressure (see Varela

and Santos (2020, 2022) for details).

With the same purpose of generating 1,000 decoy con-

formations, HybridDE and CrowdingDE were run 10

times, with a population of 100 solutions and over 100

generations in the 10 independent runs. Consequently, the

10 runs also generate 1,000 final solutions (joining the final

populations of the runs). These DE-based energy mini-

mization approaches will use the same number of fitness/

energy evaluations as Rosetta ab initio for generating the

1,000 decoys. It should be noted that energy evaluations

are synonymous with fragment insertion attempts, since an

insertion attempt involves the energy evaluation of the

resulting conformation. The fair comparison is obtained

since, in HybridDE and CrowdingDE, parameter in-

crease_cycles is set to 0.1 (100 times less than in the case

of Rosetta ab initio protocol), because the evolutionary

approaches refine 1,000 conformational solutions with the

same Rosetta approach based on fragment insertions, but

over 100 generations.

For the deep learning-based approaches (AlphaFold2

and RoseTTAFold), the default configuration provided by

the ColabFold servers was used, that is, using the MSA

information as input, while the servers provide five can-

didate models, those with the highest prediction

confidence.

3.2 Examples with PDB proteins

Proteins from PDB [20] were selected, i.e., proteins with

known structure. Consequently, these proteins serve to test

whether the predictions are close to the folded and resolved

structure deposited in PDB. Proteins with shallow MSA

information (few sequences homologous to the target

protein or with low sequence identity) were selected in

order to test the behavior of deep learning-based

approaches.

A first example is selected in which, even with the

scarce information provided by MSA, deep learning

methods show excellent prediction results. The example

corresponds with protein 1r69 (phage 434 repressor, 69

amino acids). Figure 4 shows the distribution of solutions

generated by the different methods. This is a standard

graph in PSP for evaluating the performance of energy

minimization methods, as it shows the distribution of the

optimized protein decoys (in terms of their distances from

the native structure), along with the optimization (in terms

of energy) obtained in the optimized solutions. The dis-

tances of the predicted/optimized conformations from the

native structure are calculated with the RMSD (Root Mean

Squared Deviation), taking into account the Ca atoms of

each amino acid, superimposing each conformation with

the native one. The energy of each conformation corre-

sponds to Rosetta’s coarse-grained representation (score3,

which includes all individual energy terms).

It should be noted that the RMSD distance can only be

calculated with proteins whose native structure is known a

priori, such as those considered here. That is, with these

proteins acting as a benchmark since their native structure

is known, we can analyze the quality of the predictions in

terms of their structural distance with respect to the native

reference structure.

Figure 4 shows that all AlphaFold2 and RoseTTAFold

predicted solutions are very accurate, with very low values

of RMSD with respect to the native structure deposited in

PDB. On the contrary, the energy-based approaches

(Rosetta ab initio, HybridDE and CrowdingDE) present

solutions with a large variety of RMSD values, with few

decoys with values lower than 2 Ȧ (angstroms) and several

solutions with large distances (in RMSD terms) to the

native structure.

Nevertheless, in terms of energy of the predicted solu-

tions, the comparison is totally different, since the deep

learning-based approaches present solutions with higher

energies. This is due to the fact that, in the AlphaFold2 and
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RoseTTAFold solutions, some atoms have collisions in the

side chains, a problem that can be improved by further

refinement of the structure. Considering the energy

minimization-based approaches, HybridDE and Crowd-

ingDE obtain solutions with better energy with respect to

Rosetta ab initio, showing the better ability of the evolu-

tionary approaches to sample the conformational space

under the same number of energy evaluations. However,

HybridDE obtains the best solution in energy terms, but it

corresponds to a solution that is farther away from the

native structure with respect to other solutions provided by

HybridDE and Rosetta. This shows the inaccuracies of the

Rosetta energy model, since the solutions with the best

energy do not have to correspond to those closest to the

native structure, defining a clear deceptive energy land-

scape for the search algorithms, in which the best

approaches in energy terms are those that provide the worst

solutions in RMSD terms.

To address the problem of deceptiveness in the energy

landscape, the inclusion of crowding in the memetic evo-

lutionary algorithm (CrowdingDE), allows us to obtain a

wider distribution of optimized solutions, as clearly shown

by the distributions in the violins in Fig. 4, but at the cost

(in this protein) of presenting solutions not as optimized (in

energy terms) as HybridDE. Nevertheless, the goal of

CrowdingDE is precisely this, to present a set of optimized

and structurally different proteins, as shown by the distri-

bution. However, even with the inclusion of crowding, in

this protein, CrowdingDE does not present solutions closer

to the native structure with respect to Rosetta ab initio.

Several comments can be made regarding the Alpha-

Fold2 and RoseTTAFold solutions. Figure 5 shows infor-

mation about the AlphaFold2 predictions. Figure 5

includes a representation of the MSA information, which is

the same input to AlphaFold2 and RoseTTAFold. The MSA

coverage graph shows that there is a large number of

homologous sequences, obtained from different genetic

databases, although without high sequence identity in most

cases. Nevertheless, the solutions provided by AlphaFold2

present quite high confidence in the predictions and in most

of the protein chain. This is shown by the high confidence

in the plDDT per residue (explained in Sect. 2.3), where

plDDT[90 corresponds to predictions modeled with high

accuracy, whereas areas where plDDT\50 should not be

considered reliable (Jumper et al. 2021). It is only at the

final amino acids that there is a drop in prediction confi-

dence, where there is also worse sequence coverage in the

MSA information. Similarly, the PAE graphs for the five

best-rated prediction models (considering the average

plDDT in the residues) show the high prediction confi-

dence, where the bluer, the lower the estimated error. The

PAE graph again shows that only the 10 final amino acids

exhibit low confidence in the structural prediction.

Figure 6 includes the confidence with the RoseTTAFold

solutions. The graphs in Fig. 6 correspond to the estimated

Ca RMS error (commented in Sect. 2.3) in each amino acid

Fig. 4 Energy (score3) vs. RMSD (from the native structure, in

angstroms - Ȧ) for proteins 1r69, 1ha8 and 2ksw. Gray: Rosetta

ab initio. Blue: HybridDE. Red: CrowdingDE. Green: AlphaFold2
solutions. Pink: RoseTTAFold solutions. The violin plots correspond

with the RMSD (upper) and energy (right) distributions. The quartiles

(black lines) and the median (light blue mark) are shown in the violins
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position, that is, the predicted distances (in Ȧ) between the

Ca positions (of each amino acid) of the native structure

and the predicted RoseTTAFold conformational solution.

That is, a lower value corresponds to a better prediction,

and a zero value corresponds to a perfect prediction of the

native structure. For each protein in Fig. 6, its confidence

Fig. 5 Information about AlphaFold2 models with proteins 1r69,
1ha8 and 2ksw. For each protein, top left: MSA sequence coverage.

Top right: predicted Local Distance Difference Test (plDDT) of the

predicted AlphaFold2 models. Bottom figures: PAE (Predicted

Aligned Error) of the five highest-rated AlphaFold2 models
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graph corresponds to the RoseTTAFold solution with the

best confidence (averaged over amino acid positions) of the

5 returned solutions (all five solutions exhibit fairly similar

confidence values). The confidence results of the Alpha-

Fold2 solutions (using plDDT, Fig. 5) and the confidence

results of the best RoseTTAFold solution (using Ca RMS,

Fig. 6) are very similar, with only a drop at the end of the

protein chain due to the poor quality of the MSA infor-

mation at the end of the amino acid sequence.

Regarding computing times, it should be noted that

Rosetta ab initio is not parallelized while HybridDE and

CrowdingDE are parallelized in MPI (Message Passage

Interface). Typical computing times are 45 min for each of

the parallelized 10 independent runs of HybridDE and

CrowdingDE (protein 1r69 as target). Rosetta Ab initio

requires an average of 24.64 h to generate 1,000 solutions.

The experiments were run in the Supercomputing Center of

Galicia (www.cesga.es), with Intel Xeon E5-2680 v3 pro-

cessors at 2.50GHz and 1GB of RAM. The computing time

for the deep learning approaches is variable, since these

were run in the ColabFold servers (https://colab.research.

google.com/github/sokrypton/ColabFold/blob/main/Alpha

Fold2.ipynb, https://colab.research.google.com/github/sok

rypton/ColabFold/blob/main/RoseTTAFold.ipynb). It can

vary from 4 min to 30 min (which includes MSA

calculation).

The second example corresponds with protein 1ha8

(pheromone from protozoan E. Raikovi, 51 amino acids).

As shown in Fig. 4, with protein 1ha8, now the energy

minimization approaches return solutions closer to the

native structure with respect to the deep learning approa-

ches. In the case of the former approaches, HybridDE and

CrowdingDE obtain solutions with better energy with

respect to Rosetta ab initio, again showing the enhanced

ability of evolutionary approaches to sample the confor-

mational space. Once again, HybridDE obtains the best

optimized solution in energy terms, a solution that is far-

ther away from the native structure with respect to many

other solutions, which again shows the deceptiveness of the

Rosetta energy landscape also with this protein. As with the

previous example, the inclusion of crowding

(CrowdingDE), allows us to obtain a wider distribution of

optimized solutions. In fact, now CrowdingDE presents the

closest solution to the native structure.

AlphaFold2 and RoseTTAFold present worse solutions

in terms of RMSD distance from the native structure. As

shown in Fig. 5, with protein 1ha8, again the MSA does

not present high sequence identity between the target

protein and the homologous ones and, in this case, it does

not include such a large number of homologous sequences

as in the previous protein. This information is not sufficient

for fairly high confidence in the predictions. This is shown

by the poor confidence in the plDDT per residue. Similarly,

the PAE graphs for the five best-rated prediction models

show the low prediction confidence. The analysis with the

RoseTTAFold solutions is similar, as Fig. 6 shows that the

confidence (estimated Ca RMS error) is worse with respect

to the previous protein and with poor confidence (RMS

error greater than 1.5 Ȧ) at both ends of the protein, which

is logical as the MSA information also has a drop at the

protein ends.

The third example corresponds to protein 2ksw (a beetle

hemolymph protein, 46 amino acids). Figure 4 shows again

that HybridDE and CrowdingDE provide better average

energy of the optimized solutions, although Rosetta

ab initio also discovers solutions with low energy. As in the

previous example, the AlphaFold2 and RoseTTAFold

solutions present high RMSD values from the native

structure and these are worse with respect to many solu-

tions of the energy minimization approaches. The reason is

that, in this case, the MSA map is simple, since there are no

homologous sequences found in the genetic databases

(except for the sequence itself which was found 3 times).

That is, it is an example with no information of proteins

with similar sequence. Consequently, the AlphaFold2

models present very low confidence at all positions in the

protein chain, as can be seen in Fig. 5 with the PAE plots

and with the plDDT measure.

Similarly, Fig. 6 shows that the confidence of the best

RoseTTAFold solution is also poor, with estimated Ca RMS

errors between 2 and 5 Å. Figure 6 shows that, however,

there is no match (considering the amino acid positions

Fig. 6 Estimated error (Ca RMS error, in Å) in each amino acid position for the RoseTTAFold solutions with the best average confidence and for

proteins 1r69, 1ha8 and 2ksw
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with the worst confidence), between the AlphaFold2 solu-

tions and the RoseTTAFold solution (Figs. 5 and 6).

The final example corresponds to protein orf8, a protein

component of the SARS-CoV-2 virus with 104 amino acids

(protein visualizations of predictions with SARS-CoV-2

proteins and the prediction methods can be seen in (https://

www.dc.fi.udc.es/ir/in845d-02/SARS-CoV-2_protein_pre

diction/index.html)). This protein has no homologous

proteins in the PDB database [20]. Even with the search for

homologous sequences in genetic databases, the MSA

coverage is poor (Fig. 7, top right). Consequently, the

prediction confidence of AlphaFold2 and RoseTTAFold

models is low.

Neither approach presents accurate solutions in RMSD

terms, as shown by the distribution of solutions in the

energy vs. RMSA plot (Fig. 7, top left), showing the dif-

ficulty of some proteins for the different PSP approaches.

Clearly, the solutions with deep learning approaches need a

posterior refinement, especially in the case of the RoseT-

TAFold solutions. Finally, the prediction confidence of

these latter approaches shows that the best RoseTTAFold

solution and the best AlphaFold2 solution exhibit low

confidence at the ends and middle positions of the protein,

especially the RoseTTAFold solution at the middle amino

acids.

4 Discussion and conclusions

This study has performed a comparison between PSP

approaches based on energy minimization and deep

learning. It is clear that energy minimization approaches

present better solutions in terms of minimized energy with

respect to deep learning approaches. In addition, in energy

minimization-based alternatives, memetic approaches

show better sampling of the energy landscape with respect

to the state-of-the-art Rosetta ab initio protocol. However,

imperfections in the energy landscape do not allow the best

optimized solutions with memetic approaches to corre-

spond to solutions closer to the native structure. The main

Fig. 7 MSA information input to AlphaFold2 and RoseTTAFold with

SARS-CoV-2 protein orf8. Top left: Energy (score3) vs. RMSD with

different PSP approaches (same colors as in Fig. 4). Top right: MSA

sequence coverage. Bottom left: PAE (Predicted Aligned Error) of the

highest rated AlphaFold2 model. Bottom right: Estimated error (Ca

RMS error) per amino acid for the RoseTTAFold solution with the

best average confidence
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conclusions on the comparison of the approaches consid-

ered can be summarized in Table 1.

Predictions with selected proteins show the dependence

of deep NN-based approaches on MSA input information.

When the MSA information is not detailed enough, deep

NN-based approaches can present predictions with low

confidence, as shown with selected proteins. As also stated

by Peng et al. Peng et al. (2022), there are proteins in

which deep learning based methods relying on MSA

information present poor predictions, such as proteins from

viruses without homologous sequences in genetic data-

bases, which is the case of the last example with a protein

of the SARS-CoV-2 virus. In this sense, a work to be done

will be an analysis of the correlation between the quality of

the MSA information and the confidence of the prediction

using a large number of proteins.

Nevertheless, it must be taken into account that proteins

with low sequence identity were chosen for the analysis,

and the recent approaches based on deep learning present

predicted solutions with very low distances to the real

native structure in the vast majority of proteins, showing a

great leap forward in this problem of computational

structural biology. For example, in the case of the human

proteome, 58% of residues present a confident prediction

(pLDDT[ 70) with AlphaFold2 Tunyasuvunakool et al.

(2021).

However, deep learning-based methods cannot provide

different predicted structures for proteins mutated in a few

amino acids, as discussed in Buel and Walters (2022);

Callaway (2022); Peng et al. (2022). Moreover, predictions

with deep learning schemes present solutions with high

energy, in most cases due to conflicts between atoms in the

side chains. In all cases, a refinement process is needed to

resolve these conflicts. A refinement process that integrates

the different approaches is a line of research to be explored,

using evolutionary algorithms to refine (in energy terms)

the predicted conformations. The initial population may

include different prediction models of different PSP alter-

natives, so that evolutionary optimization can obtain a

consensus refined model of the PSP approaches, thus

integrating the different approaches.
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Table 1 Summary of the main conclusions that can be drawn from the comparison of the results with the different protein structure prediction

approaches considered

Approaches based on energy minimization obtain better energy-optimized conformations than those based on deep learning.

In the energy minimization-based approaches, the memetic approaches (HybridDE and CrowdingDE) better sample the energy landscape with

respect to Rosetta ab initio under the same number of energy evaluations/fragment insertion attempts.

The incorporation of the crowding niching method into the memetic algorithm (CrowdingDE) allows obtaining a set of optimized conformations

with a higher structural diversity with respect to HybridDE, which is useful in proteins with a deceptive energy landscape.

Deep learning-based approaches (AlphaFold2 and RoseTTAFold) provide better solutions, in terms of distance (RMSD) from the native structure,

for most proteins (with known structure). However, their predictions are not reliable when MSA information is poor.

If the input MSA provides sufficient information, deep learning-based approaches tend to provide high quality predictions of the protein

backbone, while the side chains tend to present collisions. A refinement process, based on energy minimization, can improve their initial

predictions.
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