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Abstract
In this paper, it is investigated how different features of membrane systems can be simulated by the boundary rule

application. Firstly, it is discussed how the effect of maximally parallel mode can be obtained by non-cooperative boundary

rules applied only in sequential mode, then it is also demonstrated how membrane dissolution, or the application of using

promoters and inhibitors can be simulated.

Keywords Symbol object P system � Multiset approximation space � Rough set � Maximal parallel mode �
Non-cooperative rule

1 Introduction

Membrane systems, introduced in Păun (2000), are bio-

logically inspired models of computation: similarly to the

cells functioning in an organism, the membranes exhibit

independent behaviour and, on the contrary, the whole

system shows a synchronized computational manner. The

computation proceeds in distinct regions, which are called

membranes or compartments. The membranes contain

multisets and each computational step means the local

evolution of multisets in the membranes obeying certain

rules. In each big step of computation we assume that the

membranes act in a maximally parallel manner, that is, as

many multiset rules are performed simultaneously in each

membrane as possible starting from the actual membrane

content. The computation is synchronized: at the end of a

big operational step the membranes wait for the others to

finish their maximal computational step and the next cycle

begins only after that. Concerning the computational mode,

several variants of P systems have been introduced and

studied, see the monograph (Păun 2002) for a thorough

introduction, or the handbook (Păun et al. 2010) for a

summary of notions and results of the area.

The question of how to define dynamically changing

membrane structures using topological spaces, and how the

underlying topologies influence the behaviour of P systems

was already examined in Csuhaj-Varjú et al. (2012, 2015).

Multiset approximation spaces were defined in Mihálydeák

and Csajbók (2013, 2014), which made it possible to talk

about lower and upper approximations of the contents of

the membranes of a P system. This also opened the door to

various definitions of the membrane rules: permitting only

rules that allow the manipulation of multisets being on the

boundaries of the membranes or working only with rules in

the inner parts of the membranes led to membrane systems

of different computational strengths (Battyányi and Vaszil

2019). The first results in this area appeared in Mihálydeák

and Vaszil (2015), where symport/antiport rules were

examined together with a notion of closeness of mem-

branes. The investigations were continued in Battyányi

et al. (2019), where it was proved that, for generalized P

systems, certain topological restrictions on rule applica-

tions are itself enough to ensure Turing completeness, that

is, we are able to substitute maximal parallelism with

relying only on rules defined on the boundaries provided

the respective membranes are close to each other in some

sense. In Battyányi and Vaszil (2019), we also examined

generalized P systems, but we managed to free ourselves

from the notion of closeness of membranes and we leaned

merely on the various forms of rule applications. We

considered a rule executable only if the left hand side is

either in the inner part or on the boundary of the com-

partment, respectively. It turned out that it is only the use
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of the boundary rules, i. e., the rules which can only

manipulate objects on the boundaries of the compartments,

that resulted in a computational model equivalent in

strength to Turing machines.

In this paper, it is examined how the idea of boundary

rule application can be used to obtain the effects of

membrane system features like maximally parallel rule

application, membrane dissolution, or the use of promoters/

inhibitors in the usual symbol object membrane systems. It

is proven that boundary rules are in themselves enough to

compensate for maximally parallel rule application in

symbol object membrane systems, and, moreover, mem-

brane dissolution and the applications of promoters/in-

hibitors can also be simulated by choosing an appropriate

approximation space. In addition, all the membrane sys-

tems presented here operate with non-cooperative rules in

sequential mode, which is an improvement compared to the

previous results.

2 Preliminaries

Let N and N[ 0 demote the set of non-negative integers

and the set of positive integers, respectively, and let O be a

finite nonempty set, which is called the set of objects. A

multiset M over O is a pair M ¼ ðO; f Þ, where the mapping

f : O ! N gives the multiplicity of each object a 2 O. The

set suppðMÞ ¼ fa 2 O j f ðaÞ[ 0g is called the support of

M. If suppðMÞ ¼ ;, then M is the empty multiset. If

a 2 suppðMÞ, then a 2 M, and a 2n M if f ðaÞ ¼ n. If I is an

index set and ai are objects ði 2 IÞ, then we denote the set

formed by the elements ai by fai j i 2 Ig, as usual. The

number of elements in a multiset M is denoted by |M|.

Let M1 ¼ ðO; f1Þ;M2 ¼ ðO; f2Þ. Then ðM1 uM2Þ ¼
ðO; f Þ where f ðaÞ ¼ minff1ðaÞ; f2ðaÞg; ðM1 tM2Þ ¼
ðO; f 0Þ, where f 0ðaÞ ¼ maxff1ðaÞ; f2ðaÞg; ðM1 �M2Þ ¼
ðO; f 00Þ, where f 00ðaÞ ¼ f1ðaÞ þ f2ðaÞ; ðM1 �M2Þ ¼ ðO; f 000Þ
where f 000ðaÞ ¼ maxff1ðaÞ � f2ðaÞ; 0g; and M1YM2, if

f1ðaÞ� f2ðaÞ for all a 2 O.

For any n 2 N, n-times addition of M, denoted by �nM,

is given by the following inductive definition:

• �0M ¼ ;;
• �1M ¼ M;

• �nþ1M ¼ ð�nMÞ �M.

Let M1 6¼ ;;M2 be two multisets. For any n 2 N,

M1Y
nM2, if �nM1YM2 but �nþ1M1 6 YM2. In case of

M1 ¼ ;, let M1Y
nM2 be false for any multiset M2 and any

n 2 N.

The number of copies of objects in a finite multiset

M ¼ ðO; f Þ is its cardinality: cardðMÞ ¼ Ra2suppðMÞf ðaÞ.
Such an M can be represented by any string w over O for

which jwj ¼ cardðMÞ, and jwja ¼ f ðaÞ where jwj denotes

the length of the string w, and jwja denotes the number of

occurrences of symbol a in w.

We define the MSnðOÞ, n 2 N, to be the set of all

multisets M ¼ ðO; f Þ over O such that f ðaÞ� n for all

a 2 O, and we let MS\1ðOÞ ¼
S

n� 0 MSnðOÞ.
MS\1ðOÞ is abbreviated by MSðOÞ unless stated

otherwise.

2.1 Multiset approximation spaces

In his seminal papers (Pawlak 1982, 1991), Pawlak pro-

posed rough set theory as a theory of dealing with impre-

cise, partial information. The basic concept relied on an

equivalence relation defined on the objects of the under-

lying set, the objects belonging to the same partition with

respect to that equivalence relation were considered to be

indiscernable. This means, one could observe the equiva-

lence class as a whole without being able to distinguish its

elements. Any union of these partitions constituted a

definable set. The question was how it was possible to

describe any subset of the universe by the known infor-

mation, i.e., by definable sets. A lower approximation

could be considered as the union of all definable sets

contained in the underlying set, while the upper approxi-

mation is the union of all definable sets which have non-

empty intersection with the set in question. Deriving from

Pawlak’s original notion of rough sets various ways of set

approximations in rough set theory have been proposed.

One possibility is to define approximations based on a set

of base sets and, without leaning on an underlying equiv-

alence relation, one can construct the definable sets starting

from the base sets. The lower and upper approximations

can be constructed for any set in a way similar to the

original method. This natural generalization of set

approximation was defined in Mihálydeák and Csajbók

(2013). The lower and upper approximations rely on base

sets which can be thought of as representants of the

available knowledge: we are able to discover the elements

of each set only to the amount of its constituent or bor-

dering base sets. In possession of the concepts of lower and

upper approximations, we can also introduce the concept of

boundary as the difference between these two.

The set approximation framework for multisets is gen-

eralized in order to be able to define the respective

approximation multisets for membranes. The notion of

multiset approximation spaces has been introduced in

Mihálydeák and Csajbók (2013) (see also Mihálydeák and

Csajbók 2014 for more details). We adopt the definitions

there to our present situation.

A multiset approximation space is a quintuple

ðO;B; l; u; bÞ where O is a finite set, B � MS\1ðOÞ is a
base system (a set of base multisets). We assume none of
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the base sets are empty. The functions b; u; l :

MS\1ðOÞ ! MS\1ðOÞ are termed the approximation

functions generated by B.

For any multiset M ¼ ðO; f Þ 2 MS\1ðOÞ, the
lower approximation function can be defined as:

lðMÞ ¼
G

f�nB j B 2 B and BYnMg:

The boundary function can be written as:

bðMÞ ¼
G

f�nB j B 2 B and B u ðM � lðMÞÞYnM � lðMÞg;

and and the upper approximation function is:

uðMÞ ¼ lðMÞ t bðMÞ:

In addition, we also define the the internal part of the

boundary of M as

biðMÞ ¼ bðMÞ uM:

Let N � MS\1ðOÞ be finite and assume DY tN. Then

D is fully observable with respect to N if, for every N 2 N,

if D u N 6¼ ;, then D u NYbiðNÞ. (The case D u N ¼ ; is

not relevant.) In other words, every submultiset of D that is

contained in a multiset N 2 N is on the boundary of N. We

call a nultiset u observable with respect to N if there exists

a multiset D fully observable with respect to N and N 2 N

such that uYD u N. We say that u is on the observable

boundary of N in this case or, on the observable boundary

in short. We may omit the phrase ‘‘with respect to N’’ if it

is clear from the context. Observe that every fully

observable base set is the finite union of observable sets.

Let us consider an example illuminating the key con-

cepts discussed here.

Example 1 Let O ¼ fa; b; c; d; eg and M1 ¼ a4b2c,

M2 ¼ d2e. Assume B ¼ fab; a2c; de; ae; bdg. Then
lðM1Þ ¼ a2b2 t a2c ¼ a2b2c;

and

bðM1Þ ¼ a2b2 t a2c t a2e2 ¼ a2b2ce2:

Similarly,

lðM2Þ ¼de;

bðM2Þ ¼bde:

LetN ¼ fM1;M2g. Then, for example, B1 ¼ a2b2de is fully

observable with respect to N, while B2 ¼ a2b2d2e is not.

2.2 Regulating rule application in the multiset
approximation framework

In Battyányi et al. (2019), P systems with dynamical

structure were considered where the dynamic character of

the membrane system was encoded in the reformulation of

the region structure regarding a closeness property defined

among the membranes based on the actual configuration of

the system. In Battyányi and Vaszil (2019), we examined

what kind of questions arise when we require that in order

for a rule to be applicable in a generalized P system, the

multisets on its left hand side must conform to certain

properties defined in the multiset approximation frame-

work associated with the system. We also considered the

approach demanding that the multisets on the left hand

sides of the rules should come from the boundaries of the

respective compartments. We came to the conclusion that

rules from the inner part ensure only limited computational

capacity, while the rules on the boundaries lend full com-

putational strength to the P system. That is, membrane

systems with boundary rules are equivalent in computa-

tional strength to the general Turing machine concept. The

present paper deals with symbol object membrane systems

and even improves the previous results by demanding only

non-cooperative rules to ensure the full computational

power of the original P systems. We also give a direct

construction of how to eliminate additional computational

features like membrane dissolution and promoters/in-

hibitors for the P system by keeping their computational

strength at the same time. The constructions we implement

here are making use of non-cooperative rules in sequential

execution mode or at least can be led back to computa-

tional models of that kind. This involves that the result of

the simulations could yield a computational model that is

in a different complexity class than the original P system,

though the computed multisets are the same, since every

parallel action of the original P system is modeled in our

devices by a series of sequential computational steps.

3 The power of boundary rules

In this section, we prove that a symbol object membrane

system with the maximally parallel mode can be simulated

by a membrane system with the boundary rules in

sequential mode. In addition, the rules of the newly con-

structed membrane system are non-cooperative rules.

Below, we give the usual definition of P systems, though,

in the subsequent sections, a little bit informal definition is

sufficient, as we will see later.

Definition 1

1. A P system of degree n� 1 is P ¼ ðO; l;w1; . . .;
wn;R1; . . .;RnÞ where O is an alphabet of objects, l is a

membrane structure of n membranes, and let

parðmjÞ ¼ mi denote that the parent membrane of mj

is mi if mj 6¼ m1, wi 2 MSðOÞ with 1� i� n are the
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initial contents of the n regions, Ri with ð1� i� nÞ are
the sets of evolution rules associated with the regions;

they are of the form u ! v, where u 2 MSðOÞ and

v 2 MS\1ðO	 ftargÞ, where tar 2 fhere; outg [
finj j 1� j� ng. We name membrane m1 the skin

membrane.

2. Let r ¼ u ! v 2 Ri for some i 2 f1; . . .; ng. We collect

the objects a in the multiset v1 such that

ða; hereÞ 2 rhsðrÞ. Similarly, we collect the objects b

in the multiset v2 such that ðb; outÞ 2 rhsðrÞ. Finally,
we collect the objects c in the multiset v3 such that

ðc; injÞ 2 rhsðrÞ for some 2� j� n and parðjÞ ¼ i.

With this notation, we write r ¼ ðv1; hereÞ
ðv2; outÞðv3; inÞ for r, or, more briefly, r ¼ v1
ðv2; outÞðv3; inÞ.

We discuss the semantics of the above membrane sys-

tem. The P system changes its configuration by performing

a computational step, which consists of the following

actions. Firstly, a configuration is a tuple C ¼ ðw1; . . .;wnÞ,
where wi are the multiset content of compartment mi

ð1� i� nÞ. A computational step is a transition from

configuration C to configuration C0, in notation C ) C0,
which is implemented in the following way. Let mi be an

arbitrary region, consider r ¼ u ! v 2 Ri. If lhsðrÞYwi,

we subtract the multiset u from wi. The rule applications

follow a maximally parallel mode, that is, we subtract the

left hand side of a rule until no more multisets can be

subtracted. We may use the same rule arbitrary many

times. In the same time we collect the objects standing on

the right hand sides of the rules. Having finished the sub-

traction of the left hand sides, we add the right hand sides

to the respective regions in the following way. If we have

an object (a, here), then we add a to membrane mi. Fur-

thermore, if we have an object (a, out), then we add a to

the parent membrane of mi provided mi is not the skin

membrane. In this case a is sent out into the environment.

Finally, an object ða; injÞ means adding a to mj, where

parðmjÞ ¼ mi. When all objects with target indication are

moved to their correct place, then the new configuration C0

is obtained and we are able to initiate the next computa-

tional step. For a more complete description, the reader is

referred to Freund and Verlan (2007) and Păun (2002).

As was mentioned before, we assume that m1 is the skin

membrane and, additionally, no object in O evolves in the

skin membrane. For the sake of simplicity and in order to

demonstrate the difference that may sometimes occur

between the treatment of elementary and non-elementary

membranes in the subsequent constructions, we assume

that mn is an elementary membrane, that is, a membrane

containing no submembranes. This assumption does not

reduce the validity of our argumentation.

In the next section, additional features of the membrane

system are considered. First of all, we may assume that a

membrane can disappear in the course of the computation.

Namely, the set of objects is extended with an additional

object d. If d appears in a rule r 2 Ri ð1� i� nÞ, then the

computational step is performed as above, but after that, as

the effect of the presence of d, the region mi together with

its set of rules disappear from the P system. This means

that the objects of mi are passed over to the parent region

(except for d, which disappears), and the rules in Ri are not

applied anymore. Note that the outermost region (the skin

region) cannot dissolve. In the case of membrane dissolu-

tion, we will adopt a more convenient definition as will be

described in the subsequent section.

Secondly, we can add promoters and inhibitors to the

rules. These are multisets of objects that regulate the rule

applications in a way that the promoter promðrÞ 2 MSðOÞ
being assigned to rule r 2 Ri means that prom(r) must be

present in mi by any application of r. In our notation, r can

only be applied if, besides the condition lhsðrÞYmi,

promðrÞYmi holds provided r 2 Ri for some 1� i� n.

While the inhibitor inh(r), where inhðrÞ 2 MSðOÞ, pre-
vents the rule r 2 Ri from being applied if any object of

inh(r) is present in the region i ði 2 f1; . . .; ngÞ. That is, the
rule r 2 Ri, where 1� i� n, is blocked if inhðrÞ u wi 6¼ ;.

Finally, we make it more accurate what we mean by a

membrane system with boundary rules. The fully observ-

able base sets and observable sets are defined in the pre-

vious section. We adapt this notion to the case of P

systems. The extra notion compared to P systems is the

underlying approximation space together with rule appli-

cations regulated by observability. The observability con-

dition can be considered a tool for expressing imperfect

information. We apply it to P systems to impose a global

context condition, allowing for powerful synchronization

across the membranes as the following definition shows.

Definition 2 (P system with boundary rules) Let P ¼
ðO; l;w1; . . .;wn;R1; . . .;RnÞ be a P system of order n and

let B � MSðOÞ be a set of base multisets. Let us impose

the following condition: a rule u !
ðv1; hereÞðv2; outÞðv3; inÞ is applicable in a configuration

C ¼ ðx1; :::; xnÞ if, in addition to the standard semantics

described following Definition 1, u is observable with

respect to X ¼ fx1; x2; . . .; xng. ThenP is called a P system

with boundary rules.

Observe that, as the membrane system evolves, the

applicability of the rules may change. The primary reason

is, naturally, the emergence and disappearing of the objects

constituting the multisets of the regions, but, the other

reason may be that the observability property of the base

multisets changes. When the membrane system evolves, a
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multiset can turn from being observable into non-observ-

able and vice versa.

Now we are in a position to state our first assertion. In

the proofs that follow parallel rule application is simulated

by sequential one, and for this purpose a set O0 ¼ fa0 j
a 2 Og is introduced. An application of each rule of the

form u ! v is simulated by one or more rules transforming

u to v0, and only at the end of simulation of each compu-

tational step are the primed objects rewritten to the non-

primed ones.

We claim that the boundary rules in sequential mode

and with non-cooperative rules are enough to simulate

symbol object P systems with maximally parallel mode and

cooperative rules.

Theorem 1 Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;RnÞ be a P-

system of degree n with cooperative rules and maximally

parallel execution mode. Then there exists a P system eP
with non-cooperative, boundary rules and sequential mode

such that P and eP compute the same subsets of N.

Proof Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;RnÞ be a mem-

brane system as above. We define a membrane system eP
with boundary rules as follows. The main characteristic of

the construction is that we separate the steps where the rule

applications are simulated from the steps where the newly

introduced objects are finding their place. This is accom-

plished by introducing primed objects for every object and,

in the end of the simulation of a maximally parallel step,

we exchange the primed objects for their unmarked coun-

terparts. In the sequel, the phase where the rule applications

are treated will be termed the rule application phase while

the process where the primed objects are transformed into

non-primed objects will be termed the communication

phase.

In addition, for each object a 2 O so-called anti objects

exist. They are denoted by � a. The anti-objects push the

original objects into the inner part of the membrane, thus

restricting their further applicability in this way. A very

similar notion of anti-objects were introduced in Alhazov

et al. (2014), the difference between the two notions is

delicate: in our case the anti-object moves its object into

the inner part of the membrane but the object is not

eradicated completely. Its presence may contribute to

forming the inner part and, thus, the boundary of the

membrane as the P system evolves. Hence, the objects

‘‘expelled’’ into the inner part can still exert influence on

the evolution of the P system. Therefore, the objects � a

only mimic the role of anti-objects, they interact with the

original objects in a subtle way by means of changing the

structure of the underlying multiset approximation space.

Most importantly, objects and anti-object do not eliminate

each other by explicit rules of the membrane system.

Hence, it could be a question of discussion to what extent

the emerging rules can be considered non-cooperative

ones. As a shorthand, let ð�uÞ stand for �u1. . .� uk if

u ¼ u1. . .uk.
We assume that, besides the objects O and the anti-

objects, we have some designated objects, which are local

or global control objects. None of them counts in the result

computed by the membrane system. This approach is

similar to the so-called terminal filtering, which was

applied, for example, in Alhazov and Freund (2015). In our

situation, the auxiliary objects do not mix with the usual

objects. Either the auxiliary objects come up unchanged on

both sides of a rule or the rule contains no objects

other than auxiliary objects. Hence, our version of ‘‘termi-

nal filtering’’ seems to be very weak.

Regarding the control objects, we reserve a separate

membrane for each membrane in the newly constructed P

system: if mi is a membrane in our construction, then the

control objects are placed in a membrane denoted by mi,

except for the skin membrane. We assume that mi is

elementary and is a child of mi. The skin membrane has no

child of this kind. Furthermore, we assume that the skin

membrane, which is membrane 1, is the output membrane

both for P and for eP and no evolution rule concerning the

objects of O occurs in the skin membrane. In what follows,

we present the description of the multiset approximation

space.

Since the newly defined P system does not enjoy

maximally parallel rule application, the auxiliary objects O0

for the objects constitute a ‘‘real’’ part of eP: they appear in

the rules of eP. In accordance with this, we introduce a

convenient notation for the subsequent proof. Let u ! v 2
Ri for some 2� i� n be a rule in mi and assume v1; . . .; vk
are the objects in v without the target indicators. Then, if r0

is the rule corresponding to r in eP, the notation v0 standing
on the right hand side of r0 is understood as follows. We

move the objects v0j ð1� j� kÞ to their respective places

except for the case when parðmiÞ ¼ skin. In this case, the

objects moving to the skin membrane are not primed.

Furthermore, let us assume that the object d introduced be-

low is in the environment, outside the skin membrane. This
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supposition is not inevitable, but makes the presentation

simpler. In what follows, we distinguish the membranes of

the newly constructed P system from those of the old one

by writing em instead of m. Similarly, we write ew instead of

w.

O1 ¼O [ O0 [ ð�OÞ [ fa; a0; e; s; dg[
fbr j r ¼ u ! v 2 Rg[
fai; ci; c€i ; c|i ;ui; pi j 2� i� ng;

B0 ¼fau; eu j u ! v 2 Rg[
fa0braiu; aid; sd j r ¼ u ! v 2 Rig[
fciu; cici; ; c|i c|i ; pipi; c€i u; c€i d; ciuc|i j 2
� i� n; u ! v 2 Rig[
fað�aÞ j a 2 Og[
fa0u2. . .ukg

and

ew1 ¼a;

ewi ¼wi t fbrpi j r 2 Rig if 2� i� n;

ewi ¼ai if 2� i� n;

where the multisets ew1, ew2, ew2; . . .; ewn; ewn denote the

initial multisets in the membranes of eP. We can define the

sets of rules as follows:

R0
1 ¼fa ! a0; a0 ! eg;
R0
i ¼fbr ! ð�uÞv0br; c€i ! uic

|
i piðeici; inemi

Þ j u ! v 2 Rig

provided 2� i� n;

R0
i ¼fai ! ciðc€i c|i ; outÞ; ci ! s; s ! sg provided 2� i� n:

Let us give a brief explanation on how the rules operate.

The example following this proof also gives some clues

about the operation of the simulation. The process starts

with the rule a ! a0. When the rule is applied, we know

that there is an applicable rule in some of the compartments

of P by virtue of the fact that au 2 B0 for every

r ¼ u ! v 2 R. The fully observable base sets fa0braiu j
i 2 I; r 2 Rig make us possible to simulate a rule applica-

tion, since br 2 bið emiÞ if r ¼ u ! v 2 Ri is applicable. Let

us fix an index 2� i� n and let the rule r 2 Ri be arbitrary.

We recall that the skin membrane of P does not have rules

manipulating the objects in O. If lhsðrÞYwi, then, as was

mentioned above, because of a0braiu 2 B0
, br falls on the

boundary of emi and, hence, br ! ð�uÞv0br is applicable.

This involves that we simulate the changes in wi by adding

the objects denoted by v0 to their respective places and, at

the same time, we annihilate the objects of u from ewi.

Hence, our rules remain non-cooperative in the constructed

P system eP taking into account the remark in the begin-

ning of the proof. When there are no more rules applicable

in mi, the control element ai evolves into ci in the mem-

brane emi and c€i and c|i are emitted into emi. The appear-

ance of c€i and c|i symbolizes the end of the rule

application phase for emi, which is made explicit by the

emergence of ui in emi by virtue of the rule

c€i ! uic
|
i piðeici; inemi

Þ. The fact a0u2. . .un 2 B0
syn-

chronizes the operation of the membranes. Only if each

compartment has finished its work can we shift to the

communication phase by performing the rule a0 ! e. The
object pi on the right hand side of the rule is a control

object that could have remained from previous applica-

tions. Those remaining objects are pushed into the inner

part of emi taking into account the relations pipi 2 B0
. What

happens when we change from ai to ci too early, that is,

there are still applicable rules that have remained in mi,

yet? In this case, since c€i u 2 B0 for any u 2 MSðOÞ,
where u ! v 2 Ri, the object c€i cannot evolve in emi.

Instead, by virtue of ciuc
|
i 2 B0

for every r ¼ u ! v 2 Ri,

the fact ciuc
|
i 2 B0 pushes ci onto the boundary of emi and,

at the same time, makes ciuc
|
i fully observable since uc|i is

on the boundary of emi. By this, the rule ci ! s becomes

applicable, which introduces the trap object s.
Now we demonstrate how the communication phase can

be simulated. The communication phase simply means

substituting every object a0 2 O0 with a 2 O.

O2 ¼fki; k0i j 2� i� ng;
B00 ¼fea0 j a 2 Og

[ feid; kia0; k0ia0; k
0
id;uiui; kiki; j 2� i� n; a 2 Og

[ fep2. . .png;

where

R00
1 ¼fe ! ag;

R00
i ¼fa0 ! a j a 2 Og

[ fei ! kiðk0i; outÞ j 2� i� ng
[ fki ! s; k0i ! piuiðki; inemi

Þ j 2� i� ng:

Finally, we are able to put together the components of the

membrane system

eP ¼ ð eO; el; ew1; ew2; ew2. . .; ewn; ewn; eR1; eR2; eR2. . .; eRn; eRnÞ

with boundary rules and underlying multiset approxima-

tion space B, where
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eO ¼O1 [ O2;

B ¼B0 [B00;

eR1 ¼R0
1 [ R00

1 ;

eRi ¼R0
i [ R00

i ;

eRi ¼R0
i ð2� i� nÞ:

Moreover, el is the same as l, except for the fact that every
emi 2 l that is not the skin membrane is augmented with an

additional child membrane mi, which is an elementary

membrane ð2� i� nÞ. The multisets ew1; ew2; ew2. . .; ewn; ewn

were defined above.

Let us give an informal explanation of how the

communication step is simulated. As it was remarked

before, the communication phase models the placement of

the objects on the right hand side of the rules into their

respective membranes. The start of the communication

phase is indicated by the appearance of e in the skin

membrane. Then, by the fact ea0 2 B00 ða0 2 O0Þ, the rule

a0 ! a is applicable. As before, let 2� i� n be arbitrary.

The objects a0 are transformed back to the objects a at this

stage. When there are no more a0 2 ewi, then ei !
kiðk0i; outÞ is applied. The rules k0i ! piuiðki; inemi

Þ are

triggered by the fact k0id 2 B00, which make in the end the

application of e ! a possible by reason of the fact

ep2. . .pn 2 B00
. What can be said when the objects ki; k

0
i

are introduced too early and there are still a0 in emi? Assume

a0 2 ewi for some a0 2 O0. In this case, the object k0i is stuck
in the inner part of emi, that is, in lð emiÞ, however, the rule

ki ! s can be applied by virtue of kia0 2 B00
. But this

introduces the trap object s. Hence, the computation

remains meaningful only if, in each membrane, the point

when the elements a0 are eliminated is guessed correctly. In

this case, a appears in the skin membrane and a new

computational step can be simulated. h

Let us look at an example, to see how a P system with

maximal parallel execution mode is simulated in our con-

struction. Our example contains only one additional

membrane besides the skin membrane, since the intention

is to demonstrate how the maximal parallel step is actually

simulated together with keeping the membrane systems as

simple as possible to facilitate reading.

Example 2 Let P ¼ ðO; l;w1;w2;R1;R2Þ be a P-system,

where

w2 ¼a3b2c;

R2 ¼fr21 : ab ! aðc; outÞ; r22 : a2c ! bg:

moreover, let us assume that w1 is the null multiset and R1

is empty. We simulate the maximally parallel step that

consists of the applications of the rules r21, r22 in R2.

Initially, eP ¼ ðO [ O0; el; ew1; ew2; ew2;R
0
1 [ R00

1 ; R
0
2 [ R00

2;

R0
2Þ, where

el ¼½ ½ ½
2 
2 
1;
ew1 ¼a;

ew2 ¼a3b2c t br21br22p2;

ew2 ¼a2;

In addition,

R0
1 ¼fa ! a0; a0 ! eg;

R0
2 ¼fr021 : br21 ! ð�abÞa0ðc; outÞbr21 ; r

0
22 :

br22 ! ð�a2cÞb0br22 ;
c€2 ! u2c

|
2 p2ðe2c2; inem2

Þg;

R0
2 ¼fa2 ! c2ðc€2 c|2 ; outÞ; c2 ! s; s ! sg;

R00
1 ¼fe ! ag;

R00
2 ¼fa0 ! a j a 2 Og

[ fe2 ! k2ðk02; outÞg
[ fk2 ! s; k02 ! p2u2ðk2; inem2

Þg;

Now we define the base sets for the approximation space:

B0 ¼faab; aa2c; eab; ea2cg
[ fa0br21a2ab; a

0br22a2a
2c; a2d; sdg

[ fc2ab; c2a2c; c2c2; c|2 c|2 ; p2p2;
c€2 ab; c

€
2 a

2c; c€2 d; c2abc
|
2 ; c2a

2cc|2 g
[ fað�aÞ j a 2 Og
[ fa0u2g;

B00 ¼fea0 j a 2 Og
[ fe2d; k2a0; k02a0; k02d;u2u2; k2k2 j a 2 Og
[ fep2g:

We follow some of the computational steps. Firstly, let us

examine what happens in membrane 2 when rules r21 and

r22 are applied in the maximally parallel step. Since

abYw2 and aab 2 B0
, the object a is on the boundary of

em1 and aab is fully observable, hence, a ! a0 is applica-

ble. This is the only rule that can be applied in eP at that

step. Now, a0 is introduced in em1. Since a0br21aiab 2 B0,

and a0br21aiab is fully observable, then br21 is on the

observable boundary of w2. Thus we can apply

br21 ! ð�abÞa0ðc; outÞbr21 . Continuing in this spirit, we

obtain the following reduction sequence:

a3b2cbr21br22p2

! ð�abÞa0ðc; outÞa3b2cbr21br22p2
! ð�a3bcÞa0b0ðc; outÞa3b2cbr21br22p2:
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If we perform a2 ! c2ðc€2 c|2 ; outÞ in em2 next, then c2 will

appear in ew2 and c€2 and c|2 will be introduced to em2. Now,

since ð�a3bcÞa3bcYlð em2Þ, none of the base sets in which

c2 appears can be fully observable. Hence, the rule c2 ! s

is suppressed. On the other hand, c€2 can evolve because of

c€2 d 2 B0
. This results in ew2 ¼ ð�a3bcÞa0b0a3b2cbr21

br22p2p2c
|
2 c

|
2 /2. Observe that c is not an element of ew2. By

the same rule, a copy of c2 is moved into em2. This means

that a0 falls on the observable boundary of em1 and, hence,

a0 ! e is applicable. The erasure of the possibly emerging

objects a0; b0 is the subsequent step of the simulation in

order to return to the next computational step of the

computation.

We examine now the case when the simulation of a

maximally parallel step would end prematurely. Assume

that, in the previous process, we have simulated rule r21
correctly, but, instead of continuing with the simulation of

r22 we abandon that sequence of rule applications. This

means that we apply rule a2 ! c2ðc€2 c|2 ; outÞ in em2 as the

next step following r021. Then the configuration

ð�abÞa0a3b2cbrp2c€2 c
|
2 arises in em2. Now, since a2 is

replaced by c2 in em2 and a
2c 2 bið em2Þ, the base set c2a2c is

fully observable and the rule c2 ! s can be applied, which

introduces the trap object s. On the other hand, since

c€2 a
2c 2 B0

, the object c€2 is sent into the inner part of em2,

while the fact c2a
2cc|2 2 B0 ensures that a2c remains on the

boundary of em2 preserving the observability of c2.

4 Boundary rules and auxiliary membrane
computational features

In this section, it is investigated how boundary rules can

replace both membrane dissolution and promoter/inhibitor

rules. In the sequel, to make matters simpler, we assume

the presence of the maximally parallel execution mode.

However, it should be clear by the above discussion that

after having eliminated the membrane dissolution or the

promoter/inhibitor rules we are able to eliminate the

remaining maximally parallel execution and simulate the P

system with non-cooperative rules in sequential mode.

Let us begin our discussion with membrane dissolution.

We assume maximally parallel execution mode and we

prove that boundary rules are enough to simulate mem-

brane dissolution. We recall that the symbol d marks a

region for dissolution. When it is introduced in the mem-

brane by an application of a rule, then, after the maximally

parallel and communication steps, the actual membrane

containing d disappears. Its objects, except for d, move to

the parent membrane and its rules cannot be applied

anymore.

Let us choose a rather convenient way of interpreting

the behaviour of the membrane system in the presence of

the object d: we do not dissolve the membranes where d is

introduced. However, we implement the synchronization

demanded by the d object as follows: firstly, the rule

applications are performed together with the communica-

tion phase. A timing construct ensures that these processes

finish at the same time in each membrane. Then we check

whether d is present in the membrane. In this case, the

necessary redirection of the objects into the parent mem-

brane is performed. The process must be recursive: if the

parent membrane of a membrane already contains d, then
the objects must find its parent membrane and so on. Let us

choose the easier way here: instead of a bottom-up

traversal of the tree let us iterate this process sufficiently

many times in order to ensure that the placement of the

objects finishes.

As before, new sets of objects, ‘‘anti-objects’’, are

introduced: if a is any object, the pair a, �a extinguish

each other, or, better to say, an object a is neutralized by

the introduction of the anti-object �a, however, they can

affect the further evolution of the P system as was dis-

cussed in the proof of Theorem 1. In effect, this means that

að�aÞ moves into the inner part of the membrane. This is

the tool that ensures that every membrane of our con-

structed P system, eP, should contain the correct number of

objects when it turns to simulation of rules ofP. As before,

we write ð�uÞ for �u1. . .� uk if u ¼ u1. . .uk.

Theorem 2 Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;RnÞ be a

symbol object P system of degree n with membrane dis-

solution and maximally parallel execution mode. Then

there exists a P system eP with non-cooperative boundary

rules and sequential mode such that P and eP compute the

same subsets of N.

Proof Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;RnÞ be a symbol

object P system of degree n with membrane dissolution. As

we have discussed before, it is enough to show that

membrane dissolution can be simulated with non-cooper-

ative boundary rules in the maximally parallel mode, since

the maximally parallel execution mode can then be

replaced by a sequential execution mode by Theorem 1.

Since we return to the maximally parallel execution mode

even by the simulating P systems, in the following proof

we omit dealing with primed objects. The objects directly

move to their appropriate places during the rule applica-

tions and the system simply ‘‘knows’’ when a maximal

multiset of rules has been chosen. When the maximally

parallel rule application is finished, we have to ensure the

correct placement of the objects but only in connection

with d. The novelty, compared to the previous section, is

that the rearrangement of the objects of the P system due to
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the presence of d must also be translated in terms of the

boundary rules. Having finished the rule applications, the

objects of a compartment where d is present must move to

the parent membrane and this process is continued till each

compartment containing a d is emptied (except for the d).
The next computational step can only take place after

having removed every object from the membranes with d,
however, d is not removed from a membrane. As before,

we denote the membranes of eP by em instead of m and the

configurations by ew instead of w, respectively.

Turning to the simulation itself, the appearance of object

a in the skin membrane will indicate the start of the

simulation of a new computational step. The first phase of a

computational step is termed the rule application phase and

the phase where the objects find their membranes moving

through the membranes marked for disappearance by d will
be called the d phase. The simulation of the d phase starts

with the introduction of e in the skin membrane. However,

there is a problem that must be addressed appropriately.

Since the objects of O are manipulated not only in the rule

application phase but also in the d phase, the entanglement

of the two kinds of applications should be avoided. We

resolve this by creating ‘‘second copies’’ of the original

membrane contents. If a 2 ewi for any membrane emi

ð1� i� nÞ and any object a 2 O, then the corresponding

object a# will also appear in emi. Regarding the construc-

tion below, first of all it is described how eP simulates the

rule application part of a computational step ofP. This part

is very similar to the proof of Theorem 1 owing to our

effort to remain by a non-cooperative membrane system.

The presence of the maximally parallel mode simplifies the

construction a bit, however. Then we discuss how mem-

brane dissolution is handled. It is assumed that there are no

evolution rules concerning the objects of O in the skin

membrane, which is membrane em1. Moreover, for the sake

of simplicity, let us assume that em1 ¼ parð em2Þ. In the

following construction, the initial objects and rules for

membrane 2 will differ from those of the rest of the

membranes. Additionally, as in Theorem 1, we assume that

only objects of O are transported into the skin membrane

from its child membranes. We do not indicate this by the

formulation of the rules to keep the presentation uniform.

This does not mean any restriction, however, since the skin

membrane does not contain evolutionary rules for the

objects of O. Let eP ¼ ð eO; el; ew1; . . .; ewn; eR1; . . .; eRnÞ be

defined as follows.

eO ¼ O [ O# [ �O [ �O# [ fdg [ fpr j r ¼ u ! v 2 Rg
[ fa; a0; e; e0; e00; c; c0; h; h0; l; m; s;/;wg;
B ¼ fau j u 2 MSðOÞ; u ! v 2 Ri; emi 6¼ sking
[ fprua0 j u 2 MSðOÞ; u ! v 2 Ri; emi 6¼ sking
[ fch0l; c0h0mg [ fcu j r ¼ u ! v 2 Rg
[ fað�aÞ j a 2 Og
[ fa#ð�a#Þ j a 2 Og
[ fe0h0/; e00h0wg
[ fea#d; e0ad j a 2 Og
[ fa0d; ed; hd; sd; cc; c0c0; e00e00; h0h0g;

and

fw1 ¼a;

fw2 ¼w2w
#
2 t lm/w t fpr j r 2 Rig;

fwi ¼wiw
# t fpr j2 Rigi ð3� i� nÞ:

Letalso

eR ¼ eR1 [
n

i¼2

eRi;

with eRi ¼ eR1
i [ eR2

i , where

eR1 ¼fa ! a0; a0 ! ch; c ! c0; e ! e0h; h ! h0g;
eR1
2 ¼fl ! ðec0h0; outÞ; m ! s;w ! s; s ! sg

[ fpr ! vv# � ðuu#Þpr j u ! v 2 R2g;
eR2
2 ¼fa# ! ð�aÞðaa#; outÞ; e0 ! e00;/ ! ðae00h0; outÞ;w ! sg;

eR1
i ¼fpr ! vv# � ðuu#Þpr j u ! v 2 Rig and

eR2
i ¼fa# ! �aðaa#; outÞg ð3� i� nÞ:

The structure el of the P system is the same as that of P.

First of all, let us recall that em1 is supposed to be the skin

membrane. Let d be an object in the ‘‘environment’’ out-

side of em1. In what follows, the simulation is described in

an informal way. As mentioned above, two copies of the

objects are created, the original ones being elements of

O while the copies are elements of O#. The rule applica-

tions are simulated in membrane emi ð2� i� nÞ by the rules

fR1
i , while the rules fR2

i serve for the placement of the

objects in connection with the appearance of d. Let

2� i� n be arbitrary. We discuss the case of the rule

applications first. The rule a ! a0 in em1 initiates the

computational step if a falls on the boundary of em1 by

virtue of au 2 B for every r ¼ u ! v 2 R. If there are

applicable rules, then the objects pr will lie on the

boundary of emi. The rules of Ri are simulated by the non-

cooperative rules pr ! vv# � ðuu#Þpr . This means that we

add the objects of v# and those of the original right hand

side v to emi and we also subtract the objects in u and u#
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from emi by introducing their ‘‘anti-objects’’. We continue

in this way until there are no more applicable rules in mi.

We try to guess when the rule application phase is over by

preforming the rule a0 ! ch in em1. If the rule was applied

in the right time, then h changes into h0 but c cannot evolve.
In the next time instance, owing to the fact cs0l 2 B, l
evolves and ec0h0 is placed in membrane 1 and, at the same

time, c is transformed into c0 (since we are in maximally

parallel execution mode), which means the annihilation of

c0 and h0 in em1 by expelling them from the boundary to the

inner part and the d phase can start. Otherwise, if r ¼ u !
v 2 R would still be applicable in the presence of c, then,
by reason of cu 2 B, c evolves to c0 and, since c0h0m 2 B, m
creates s in membrane 2, which is a trap object.

The implementation of the dissolution part is started

with the introduction of e in em1. By virtue of the facts

ea#d 2 B, the rule a# ! ð�aÞðaa#; outÞ becomes appli-

cable when d is present in the membrane. This mimics

expelling an object a into the parent membrane: in our case

we have to move its ‘‘twin’’ object simultaneously. Finally,

when the placement of the objects finishes, the rule e ! e0

is applied. If the rule was applied correctly, then, by

e0h0/ 2 B, / ! ðae00h0; outÞ can be performed and a new

computational step can be simulated. (e0 evolves to e00 in the
same time.) Otherwise, by reason of e0ad 2 B ða 2 OÞ and
the maximally parallel execution mode, e0 and h can evolve

simultaneously. Then, because of e00h0w 2 B, w falls on the

boundary of em2, and, hence, introduces the trap object s. h

Finally, the simulation of rules with promoter and

inhibitor is discussed. We recap again that, in the presence

of promoters and inhibitors, we assign to each rule r 2 R

the so called promoter/inhibitor multisets (prom(r)/inh(r)),

which fall under the conditions that r can be applied to wi

only if, besides the usual requirement lhsðrÞYwi, every

object of prom(r) is present in wi, that is, promðrÞYwi and,

in the same time, no element of inh(r) can be found in wi.

In other words, inhðrÞ u wi ¼ ;. The basic idea of the

construction is simple: if the multiset prom(r) is present in

the membrane, then we add an object pr to the membrane

such that the execution of rule r becomes enabled. In case

an inhibitor object is present, we move pr into the inner

part of the membrane thus preventing the application of the

membrane rule. The only difficulty emerging is that we

must check whether promðrÞYwi and inhðrÞ u wi 6¼ ; for

every membrane mi and every rule r 2 Ri ð1� i� nÞ before
applying the rule. Since the promoters and inhibitors can

compete for the membrane objects, we can only do this one

by one for each rule separately. Let us assume that every

membrane contains exactly s rules (we apply dummy rules,

if necessary). Having finished with the examination of all

the rules, the simulation of the actual rule applications can

begin. In order to uniform rule applications in the

membranes of eP, we also assume that each promoter is of

exactly the same length. The key idea is that the checking

for the promoters and inhibitors should finish in the same

time in each membrane and, thus, we ensure a synchro-

nization for the whole P system. Below, we describe the

approximation space together with the rules.

Theorem 3 Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;RnÞ be a

symbol object P system of degree n with promoters/in-

hibitors and maximally parallel execution mode. Then

there exists a P system eP with non-cooperative boundary

rules and sequential mode such that P and eP compute the

same subsets of N.

Proof Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;RnÞ be a symbol

object P system of degree n with promoters/inhibitors. As

before, it is proven that the promoter/inhibitor construction

can be eliminated with the help of non-cooperative boundary

rules when the the maximally parallel execution mode is

applied. From the above constructions it is clear that, having

removed promoters/inhibitors from the P system, we are able

to substitute the maximally parallel execution mode with a

sequential mode following the argumentation of Theorem 1.

As before, two copies of the object set is maintained, this time

the second copy is denoted byO.We alsohave the set of ‘‘anti-

objects’’ both for O and O. For notational convenience, let us

assume that there are as many as s rules in each compartment

and the promoters have equal lengths for each rule (we use

dummy objects if necessary). Similarly to the proof of The-

orem 1, a child membrane mi, which is an elementary mem-

brane, is created for each membrane mi, except for the skin

membrane. The auxiliary objects not underlined are usually

belong to membranes mi, while their underlined counterparts

are kept or created in the original membranemi. In the sequel

we use the notation promðrÞ ¼ promðr; 1Þ. . .promðr; dÞ for
the promoter of the rule r, where d ¼ jpromðrÞj the common

length of the promoters. The skin membrane does not have

rules for the evolution of the objects inO and, in the course of

the computation, it doesnot contain objects except for t and the

objects forming the result. The equations below define the

membrane system eP ¼ ð eO; el; em1; em2; em2; . . .; emn; emn; eR1;

eR2; eR2; . . .; eRn; eRnÞ.
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eO ¼O [ �O [ O [ �O [ fp0r ; pr; q0r ; qr j r 2 Rg
[ faki ; aki ; aki ; bi j 1� i� s; 1� k� d ¼ jpromðriÞjg

[ fc1; c2; tg;
B ¼faki promðri; kÞ j 1� i� s; 1� k� dg

[ faki promðri; kÞ j 1� i� s; 1� k� dg
[ fbia j 1� i� s; a 2 inhðriÞg
[ fbia j 1� i� s; a 2 inhðriÞg
[ faki t; aki t j 1� i� s; 1� k� dg

[ fc1a j a 2 Og
[ fup0ri t j ri ¼ u ! v 2 Rj; 1� i� sg
[ fupri t j ri ¼ u ! v 2 Ri; 1� i� sg
[ fc1p0ri t; c1q

0
ri
t; c2t j 1� i� sg

[ fpriqri j 1� i� sg; and

ew1 ¼t;

ewi ¼wiwi a
1
1;

ewi ¼a11 ð2� i� nÞ

Inwhat follows, we present the set of rules eRk ¼ eR0
k [ eRk

00

for membrane emk and the set of rules eRk for emk, where emk

is a fixed membrane different from the skin membrane and

the set of rules eR1 for the skin membrane. We obtain eR if

we let eR ¼ eR1

S
[n
k¼2ð eR0

k [ eRk
00 [ eRkÞ. Let 2� k� n

bearbitrary.

eR1 ¼;;
eR0
k ¼fa j

i ! ajþ1
i ðpromði; jÞ

�
� a j

i promði; jÞ
�
ajþ1
i ; outÞ j

1� i� s; 1� j\d ¼ jpromðriÞjg
[ fadi ! ðp0ri ; outÞa

1
iþ1ðpromði; dÞ�promði; dÞ

�
�adi

�
a1iþ1; outÞ j

d ¼ jpromðriÞj; 1� i\sg
[
�
a j
i ! ajþ1

i

�
� a j

i ; inemk

�
j 1� i\s; 1� j� d

�

[
�
a j
i ! ajþ1

i j 1� j� d
�

[
�
adi ! a1iþ1

�
a1iþ1; inemk

�
j 1� i\s

�

[
�
adi ! a1iþ1

�
a1iþ1; inemk

�
j 1� i\s

�

[
�
ads ! b1

�
p0rs

�
promðs; dÞ�promðs; dÞ � ads

�
b1
�
; out

�

[
�
ads ! b1

�
� adsb1; inemk

��

[
�
ads ! b1

�
b1; inemk

��

[
�
bi ! biþ1ðq0rið�biÞ biþ1; outÞ;

bi ! biþ1ðbiþ1; inemk
Þ j 1� i\s

�

[
�
a ! a j a 2 O

�

[
�
bs ! c1ð�bs; outÞ

�

and

eR
00
m ¼

�
pri ! ð�uÞvð�uÞv j r ¼ u ! v 2 Rj

�

[
�
p0ri ! pri ; q

0
ri
! qri j 1� i� s

�
;

Rm ¼
�
c1 ! c2; c2 ! a11ða11; outÞ

�
:

Again,an informal explanation is presented. Prior to every

rule application of P, let us collect the rules that are

allowed by their promoters or prohibited by their inhibitors

in that computational step. Firstly, we check whether

promðriÞYwj if ri 2 Rj. This is done as follows. As above,

we write promðriÞ ¼ promðri; 1Þ. . .promðri; dÞ with

promðri; lÞ 2 O and d ¼ jpromðriÞj. We examine in each

membrane separately whether the conditions imposed by

promðriÞ and inhðriÞ are fulfilled. In order to maintain

synchronization, each membrane is supposed to contain

exactly as many as s rules, hence the process finishes at the

same time everywhere in the P system. Let 2� i� n be

arbitrary. The process starts by checking rule 1 of Ri, which

we denote by r1, with the help of a11. Note that there is a

slight impreciseness here: we do not indicate the fact that

r1 2 Ri in the notation used for the as and bs in order to not
overburden our notation and we do not show that r1 2 Ri in

the indexing of the rule, either. By the stipulation

a11 promðr1; 1Þ 2 B the rule a11 ! a21 ðpromðr1; 1Þ�
ða11 promðr1; 1ÞÞ a21; outÞ can always be applied provided

promðr1ÞYwi. This means that a21 appears in emi and a11 is

neutralized by �a11 in emi and a21 is also sent out to emi. At

the same time, a copy of promðr1; 1Þ is erased from emi by

driving �promðr1; 1Þ into emi. The auxiliary element

promðr1; 1Þ is placed in emi in order to enable us to restore

promðr1Þ when necessary. On the other hand, if

promðr1ÞY ewi does not hold and it turns out because of the

fact promðr1; 1Þ 62 ewi, then a11 falls at the boundary of emi

due to a11t 2 B and the rule a11 ! a21ð�a11; inemi
Þ applies. If

the object a21 is introduced, we never return to the objects

ap1, hence p0r1 will not appear in emi. We iterate the process

for the other rules of Ri until we reach b1. If promðrjÞY ewi

was indeed the case, then p0rj is added to emi. Otherwise, we

switch to the objects akj and akj until we reach a1jþ1 and p0rj

will not be introduced. The objects p0rj indicate that rule rj

satisfies the requirement imposed by promðrjÞ. Otherwise,
if an element of the multiset inhðrjÞ occurs in ewi provided

rj 2 Ri, then rj is inhibited. In this case, the object q0rj is

added to ewi. We check this for every rule one by one going

through the objects bj ð1� j� sÞ. This time each bj is

connected with a rule, namely rj 2 Ri. The overall process

is finished when we reach bs. There is one administrative

task left: we checked the correct simulation of the multisets

promðrjÞ by eliminating in membrane ewi the already found

elements promðrj; lÞ and, in the same time, we sent an

object promðrj; lÞ into ewi. The created objects promðrj; lÞ
should be transformed back to objects promðrj; lÞ in order
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to give back to ewi the missing elements. This is done in the

presence of c1 and in one maximally parallel step by the

rules a ! a ða 2 OÞ.
Lastly, the simulation of the rule applications of P can

start with the introduction of c1. Termination is ensured by

the conditions up0ri t 2 B, where ri ¼ u ! v 2 Rk for some

2� k� n and 1� i� s. Only when at least one of them is

fulfilled can the process be continued. Then the objects p0ri
and q0ri evolve to pri and qri , respectively. When pri is

present, the rule ri ¼ u ! v 2 Rk can be simulated by

virtue of the fact upri t 2 B. The appearance of qri ,

however, blocks the rule application, since priqri 2 B. At

the same time, c2 is introduced and this leads back to the

beginning of the process since c2 creates a11 and a11. h

5 Conclusion

In this paper, P systems equipped with an underlying

multiset approximation space were studied. The idea grew

out from the works of Pawlak concerning rough sets as a

way of reasoning about data in artificial intelligence

(Pawlak 1982, 1991), and was further pursued in Mihály-

deák and Csajbók (2013, 2014), Mihálydeák and Vaszil

(2015), Battyányi et al. (2019) and Battyányi and Vaszil

(2019). Symbol object membrane systems were considered

with the maximally parallel execution mode and it has been

shown that the dynamic rule applicability property ensured

by the underlying multiset approximation space was

enough for simulating the computational properties of the

original membrane system by a membrane system with

multiset approximation space in sequential mode and

operating only with non-cooperative rules. Furthermore, it

was demonstrated that the membrane dissolution extension

and the presence of promoter/inhibitor rules could be

simulated with P systems with appropriate multiset

approximation spaces. It is enough to utilize only non-

cooperative rules in sequential execution mode in the

newly constructed P systems. To sum up, this in turn means

that P systems with approximation space operating only

with non-cooperative rules and in sequential execution

mode can alone compensate for the features of maximally

parallel rule execution, membrane dissolution and pro-

moter/inhibitor rules.
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Csuhaj-Varjú E, Gheorghe M, Rozenberg G, Salomaa A, Vaszil

G (eds) Membrane computing. Springer, Berlin, pp 277–294
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