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Accepted: 13 September 2022 / Published online: 19 October 2022
� The Author(s) 2022

Abstract
In the framework of Membrane Computing, several efficient solutions to computationally hard problems have been given.

To find new borderlines between families of P systems that can solve them and the ones that cannot is an important task to

tackle the P versus NP problem. Adding syntactic and/or semantic ingredients can mean passing from non-efficiency to

presumed efficiency. Here, we try to get narrow frontiers, setting the stage to adapt efficient solutions from a family of P

systems to another one. In order to do that, a solution to the SAT problem is given by means of a family of tissue P systems

with evolutional symport/antiport rules and cell separation with the restriction that both the left-hand side and the right-

hand side of the rules have at most two objects; that is, with recognizer P systems from TSECð2; 2Þ. This result improves a

previous one, when 3 objects could be used in the left-hand side of the evolutional communication rules

Keywords Membrane computing � Symport/antiport rules � The P versus NP problem � SAT problem

1 Introduction

Membrane computing is a bio-inspired computing para-

digm based on the structure and behaviour of living cells.

There are several variants of P systems, the computational

models of this paradigm. It was first introduced in Păun

(2000), defining one of the main variants, cell-like P sys-

tems that abstract the hierarchical arrangement of mem-

branes within a single cell. In Martı́n-Vide et al. (2003), the

idea of the interactions of networks of cells (placed in the

nodes of a directed graph) between cells and between cells

and their environment is used to develop tissue-like

P systems, named by the ensemble of cells in living beings.

Another approach with the same structure are the so-called

spiking neural P systems (Ionescu et al. 2006), SN P sys-

tems for short, inspired by the way that neurons commu-

nicate with each other by means of short electrical impulses

(spikes).

Within these models, several variants can be defined

only by changing syntactic and/or semantic ingredients,

such as kinds of rules possible, length of rules, parallelism

permitted, number of objects and so on. Computational

complexity theory in the framework of Membrane Com-

puting use special variants of P systems called recognizer

membrane systems, devices that, given an initial
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configuration depending on an instance of a decision

problem, they return yes or no depending of the answer of

such instance. A deep vision of complexity can be seen in

Pérez-Jiménez (2005); Pérez-Jiménez et al. (2003).

In this work, we focus on tissue P systems, which have

been widely investigated from the computational com-

plexity point of view, giving characterizations for most of

their variants. For instance, in Gutiérrez-Naranjo et al.

(2009) and Porreca et al. (2012), the borderline of effi-

ciency for tissue P systems with symport/antiport rules and

cell division by means of the length of communication

rules is given, that is, passing from 1 object to 2 objects in

the left-hand side of the rules means passing from non-

efficiency to presumably efficiency. In Pan et al. (2012)

and Pérez-Jiménez and Sosı́k (2012), a similar result is

given for tissue P systems with symport/antiport rules and

cell separation, but in this case, rules with length at most 3

are needed in order to solve efficiently computationally

hard problems. Thus, three frontiers of efficiency can be

found here: the first two frontiers are the ones described

above; that is, by means of the length of the rules, and the

third frontier is, while using rules with length at most 2,

there is a borderline between separation and division rules.

Song et al. (2017), a new variant of tissue P systems is

defined. Based on the chemical reactions within cells and

how reactives evolve into new components, evolutional

communication rules are described as a movement of

components between different cells or a cell and the

environment but within the reaction, objects can change

into something new. It is interesting to study these systems

from the computational complexity theory point of view,

and in Pan et al. (2018), an efficient solution to the SAT

problem is given by these systems with some restrictions

about the length of their rules, more precisely, three objects

are allowed in the left-hand side of the rules and two

objects are allowed in the right-hand side of the rules. The

main result is thus that NP [ co� NP � PMCTSECð3;2Þ.

This leaves an unknown concerning to what happens if we

restrict the number of object of the left-hand side also to

two. In this work, we focus on this topic and we give an

efficient solution to SAT with a family of P systems from

TSECð2; 2Þ; that is, recognizer tissue P systems with evo-

lutional communication rules and separation rules where

both the lengths left-hand side and the right-hand side of

the rules are limited to two, reducing the number of max-

imum objects of the left-hand side by one.

The paper is organized as follows: first, we recall some

concepts that are going to be used through the work. In

Sect. 3 the framework of tissue P systems with evolutional

symport/antiport rules is introduced. After that, Sects. 4

and 5 are devoted to give a solution to SAT by means of a

family of P systems with evolutional symport/antiport rules

with cell separation and rules with length at most (2, 2) and

a formal verification of a design. Finally, some conclusions

and open research lines are exposed.

2 Preliminaries

In order to do this work self-contained, we introduce some

concepts that are going to be used through the paper.

2.1 Alphabets and sets

An alphabet C is a non-empty set and their elements are

called symbols. A string u over C is an ordered finite

sequence of symbols, that is, a mapping from a natural

number n 2 N onto C. The number n is called the length of

the string u and it is denoted by j u j. The empty string

(with length 0) is denoted by k. The set of all strings over

an alphabet C is denoted by C�. A language over C is a

subset of C�.
A multiset over an alphabet C is an ordered pair ðC; f Þ

where f is a mapping from C onto the set of natural num-

bers N. The support of a multiset m ¼ ðC; f Þ is defined as

suppðmÞ ¼ fx 2 C j f ðxÞ[ 0g. A multiset is finite (resp.,

empty) if its support is a finite (resp., empty) set. We

denote by ; the empty multiset, MðCÞ the set of all mul-

tisets over C and MþðCÞ ¼ MðCÞ n ;
Let m1 ¼ ðC; f1Þ, m2 ¼ ðC; f2Þ be multisets over C, then

the union of m1 and m2, denoted by m1 þ m2, is the mul-

tiset ðC; gÞ, when gðxÞ ¼ f1ðxÞ þ f2ðxÞ for each x 2 C.

2.2 Decision problems

A decision problem X can be informally defined as one

whose solution is either yes or no. This can be formally

defined by an ordered pair ðIX; hXÞ, where IX is a language

over a finite alphabet RX and hX is a total Boolean function

over IX . The elements of IX are called instances of the

problem X. Each decision problem X has associated a

language LX over the alphabet RX as follows:

LX ¼ fu 2 EX j hXðuÞ ¼ 1g. Conversely, every language L

over an alphabet R has associated a decision problem XL ¼
ðIXL

; hXL
Þ as follows: IXL

¼ R� and hXL
ðuÞ ¼ 1 if and only if

u 2 L. Then, given a decision problem X we have XLX ¼ X,

and given a language L over an alphabet R we have

LXL
¼ L.

It is worth pointing out that any Turing machineM (with

input alphabet RM) has associated a decision problem

XM ¼ ðIM ; hMÞ defined as follows: IM ¼ R�
M , and for every

u 2 R�
M , hMðuÞ ¼ 1 if and only if M accepts u. Obviously,

the decision problem XM is solvable by the Turing

machine.
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3 Tissue P systems with evolutional
communication rules

Definition 1 A tissue P system with evolutional symport/

antiport rules and cell separation of degree q� 1 is a tuple

P ¼ ðC;C0;C1; E;M1; . . .;Mq;R; ioutÞ

where:

• C and E are finite alphabets whose elements are called

objects, and C is non empty;

• fC0;C1g is a partition of C;
• E � C;
• M1; . . .;Mq are multisets over C;
• R is a finite set of rules, of the following forms:

1. Evolutional communication rules:

(a) ½ u �i½ �j ! ½ �i½ u0 �j, where 1� i; j� q,

i 6¼ j, u 2 MþðCÞ and u0 2 MðCÞ (evolutional
symport rules);

(b) ½ u �i½ v �j ! ½ v0 �i½ u0 �j, where 1� i; j� q,

i 6¼ j, u; v 2 MþðCÞ and u0; v0 2 MðCÞ (evo-

lutional antiport rules);

2. ½ a �i ! ½C0�i½C1�i, where i 2 f1; . . .; qg; i 6¼ iout
and a 2 C; (separation rules);

• iout 2 f0; 1; . . .; qg.

A tissue P system with evolutional symport/antiport

rules and cell separation of degree q� 1

P ¼ ðC;C0;C1; E;M1; . . .;Mq;R; ioutÞ

can be viewed as a set of q cells, labelled by 1; . . .; q such

that (a) M1; . . .;Mq represent the multisets of objects

initially placed in the q cells of the system; (b) E is the set

of objects initially located in the environment of the sys-

tem, all of them available in an arbitrary number of copies;

(c) iout represents a distinguished region which will encode

the output of the system. We use the term region i

(0� i� q) to refer to cell i in the case 1� i� q and to refer

to the environment in the case i ¼ 0.

A configuration at any instant of a tissue P system with

evolutional symport/antiport rules and cell separation is

describedby themultisets of objects in each cell and themultiset

of objects over C n E in the environment at that moment. The

initial configuration of P ¼ ðC;C0;C1; E;M1; . . .;

Mq;R; ioutÞ is ðM1; . . .;Mq; ;Þ.
An evolutional symport rule ½ u �i½ �j ! ½ �i½ u0 �j is

applicable at a configuration Ct at an instant t if there is a

region i from Ct which contains multiset u. By applying an

evolutional symport rule, the multiset of objects in region i

from Ct is consumed and the multiset of objects u0 is

generated in region j from Ctþ1.

An evolutional symport rule ½ u �i½ v �j ! ½ v0 �i½ u0 �j is

applicable at a configuration Ct at an instant t if there is a

region i from Ct which contains multiset u and there is a

region j which contains multiset v. By applying an evolu-

tional symport rule, the multiset of objects u in region i and

multiset of objects v in region j from Ct are consumed and

the multiset of objects u0 is generated in region j and the

multiset of objects v0 in region i from Ctþ1.

A separation rule ½ a �i ! ½C0 �i½C1 �i is applicable at a

configuration Ct at an instant t if there is a cell i from Ct which

contains object a and i 6¼ iout. By applying a separation rule

to such a cell i, (a) object a is consumed from such cell; (b)

two new cells with label i are generated at configuration Ctþ1;

and (c) objects from C0 from the original cell are placed in

one of the new cells, while objects from C1 from the original

cell are placed in the other one.

The rules of a tissue P system with evolutional symport/

antiport rules and cell separation are applied in a maximally

parallel manner, following the previous remarks, and taking

into account that when a cell i is being separated at one tran-

sition step, noother rules canbe applied to that cell i at that step.

A transition from a configuration Ct to another configura-

tion Ctþ1 is obtained by applying rules in a maximally parallel

manner following the previous remarks. A computation of the

system is a (finite or infinite) sequence of transitions starting

from the initial configuration, where any term of the sequence

other than the first one is obtained from the previous config-

uration in one transition step. If the sequence is finite (called

halting computation) then the last term of the sequence is a

halting configuration, that is, a configuration where no rule is

applicable to it. A computation gives a result only when a

halting configuration is reached, and that result is encoded by

the multiset of objects present in the output region iout.

A natural framework to solve decision problems is to

use recognizer P systems.

Definition 2 A recognizer tissue P system with evolutional

symport/antiport rules and cell separation of degree q� 1 is

a tuple

P ¼ ðC;C0;C1;R; E;M1; . . .;Mq;R; iin; ioutÞ;

where

– the tuple ðC;C0;C1; E;M1; . . .;Mq;R; ioutÞ is a tissue

P system with evolutional symport/antiport rules of

degree q� 1.
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• Where C strictly contains an (input) alphabet R and two

distinguished objects yes and no, and Mi (1� i� q)

are multisets over C n R;

– iin 2 f1; . . .; qg is the input cell and iout is the label of

the environment;

– for each multiset m over the input alphabet R, any

computation of the system P with input m, represented

as Pþ m, starts from the configuration of the form

ðM1; . . .;Miin þ m; . . .;Mq; ;Þ, it always halts and

either object yes or object no (but not both) must

appear in the environment at the last step.

For each ordered pair of natural numbers

ðk1; k2Þ; k1; k2 � 1, the class of recognizer P systems with

evolutional symport/antiport rules and cell separation with

evolutional communication rules of length at most ðk1; k2Þ
is denoted by TSECðk1; k2Þ. This means that, given an

evolutional communication rule ½ u �i½ v �j ! ½ v0 �i½ u0 �j the

LHS (resp., RHS) of any evolutional communication rule

in a system from TSECðk1; k2Þ involves at most k1 ¼j u j
þ j v j objects (resp., k2 ¼j u0 j þ j v0 j objects).

Next, we define the concept of solving a problem in a

uniform way and in polynomial time by a family of rec-

ognizer tissue P systems with evolutional symport/antiport

rules and cell separation.

Definition 3 A decision problem X ¼ ðIX ; hXÞ is solvable
in a uniform way and in polynomial time by a family P ¼
fPðnÞ j n 2 Ng of recognizer tissue P systems with evo-

lutional symport/antiport rules and cell separation if the

following conditions hold:

1. the family P is polynomially uniform by Turing

machines; that is, there exists a Turing machine

capable of constructing the elements of such a family

in polynomial time; and

2. there exists a polynomial encoding (cod, s) of IX in P
such that (a) for each instance u 2 IX , s(u) is a natural

number and cod(u) is an input multiset of the system

PðsðuÞÞ; (b) for each n 2 N, s�1ðnÞ is a finite set; and

(c) the family P is polynomially bounded 1, sound 2

and complete 3 with regard to (X, cod, s) (Pérez-

Jiménez et al. 2003).

The set of all decision problems that can be solved by

recognizer tissue P systems with evolutional symport/

antiport rules and cell separation with evolutional com-

munication rules of length at most ðk1; k2Þ in a uniform way

and polynomial time is denoted by PMCTSECðk1;k2Þ.

4 Solution to SAT with evolutional
communication rules and separation rules

Pan et al. (2018) an efficient solution to the SAT problem is

given by means of a family of P systems from TSECð3; 2Þ.
A frontier of efficiency is given, but some open problems

remain, as indicate Fig. 1 of Pan et al. (2018). It shows that

the class of problems that can be solved by P systems from

TSECð2; kÞ with k� 2 is unknown. In this work we

improve this borderline closing the previous open ques-

tions, giving an efficient solution of the SAT problems by

means of a family of P systems from TSECð2; 2Þ.
Let us briefly recall the description of the SAT problem:

given a Boolean formula in conjunctive normal form

(CNF), to determine whether or not there exists an

assignment to its variables, called truth assignment, on

which it evaluates true.

Theorem 1 SAT 2 PMC TSECð2;2Þ

For each n; p 2 N, we consider the recognizer P system

Pðhn; piÞ ¼ ðC;C0;C1;R; E;M1; . . .;Mq;R; iin; ioutÞ

from TSECð2; 2Þ defined as follows:

LHS

RHS

1 2 3 4 5 6 7

1

2

3

4

5

6

7

P = PMCTSEC(k1,k2) NP ∪ co − NP ⊆ PMCTSEC(k1,k2)

Fig. 1 Computational efficiency of membrane systems from

TSECðk1; k2Þ

1 Being f a polynomial function, for each u 2 IX , every computation

of PðsðuÞÞ þ codðuÞ halts in at most f(|u|) steps.
2 For each u 2 IX , if there exists an accepting computation of

PðsðuÞÞ þ codðuÞ, then hXðuÞ ¼ 1.
3 For each u 2 IX , if hXðuÞ ¼ 1, then every computation ofPðsðuÞÞ þ
codðuÞ is an accepting computation.
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1. Working alphabet C:

fyes; no; y1; y2; n1; n2;#g
[ fai;j j 1� i� n; 0� j� ig
[ fa0i;j j 2� i� n; 0� j� i� 1g
[ faLi;j; aRi;j j 2� i� n; 1� j� i� 1g
[ faj; a0j; aLj ; aRj j 1� j� pþ 1g
[ fti; fi; t0i; t00i f 00i ; tLi ; tRi ; f Li ; f Ri j 1� i� ng
[ fbl;k; b0l;k; bLl;k; bRl;k j 0� k� n; 1� l� ng
[ fxi;j;k; xi;j;k; x�i;j;k j 1� i� n; 1� j� p; 1� k� nþ j� 1g
[ fx0i;j;k; x0i;j;k; x�

0
i;j;k; x

00
i;j;k; x

00
i;j;k; x

�00
i;j;k; x

000
i;j;k; x

000
i;j;k; x

�000
i;j;k;

j 0� i� n; 1� j� p; 1� k� ng
[ fcj;k j 1� j� p; j� k� pg [ fdi j 0� i� 4nþ pþ 2g
[ fd0i j 0� i� 4nþ pg:

2.

C1 ¼ C n C0;

C0 ¼ faLi;j j 2� i� n; 1� j� i� 1g
[ faLj j 1� j� pþ 1g [ ftLi ; f Li j 1� i� ng
[ fbLl;k j 0� k� n; k þ 1� l� ng

3. Input alphabet R: fxi;j;0; xi;j;0; x�i;k;0 j 1� i� n; 1�
j� pg.

4. Environment alphabet E: fcg.
5.

M1 ¼ fd0; d00g [ fbnþpþ1
l;0 j 1� l� ng;

M2 ¼ fai;0 j 1� i� ng [ faj j 1� j� pþ 1g:

6. The set of rules R consists of the following rules:

1.1 Rules for ð4k þ 1Þ-th steps.

½ ai;i�1 �2½ c �0 ! ½ a0i;i�1 t
0
i �2½ �0; for 1� i� n

½ ti �2½ c �0 ! ½ t00i �2½ �0
½ fi �2½ c �0 ! ½ f 00i �2½ �0

)
for 1� i� n

½ ai;j �2½ c �0 ! ½ a0i;j �2½ �0; for 2� i� n; 0� j� i� 2

½ aj �2½ c �0 ! ½ a0j �2½ �0 ; for 1� j� pþ 1

½ bl;k �1½ c �0 ! ½ b0l;k �1½ �0
o
for

0� k� n;

k þ 1� l� n

�
½ xi;j;k �1½ c �0 ! ½ x0i;j;k �1½ �0
[ xi;j;k �1½ c �0 ! ½ x0i;j;k �1½ �0
½ x�i;j;k �1½ c �0 ! ½ x�0i;j;k �1½ �0

9>>>=
>>>;

for

1� i� n;

1� j� p;

0� k� n� 1

:

8>><
>>:

1.2 Rules for ð4k þ 2Þ-th steps.

½ a0i;i�1 �2½ c �0 ! ½ ai;i f Ri �2½ �0
½ t0i �2½ c �0 ! ½ tLi �2½ �0g for 1� i� n

½ t00i �2½ c �0 ! ½ tLi tRi �2½ �0
½ f 00i �2½ c �0 ! ½ f Li f Ri �2½ �0

)
for 1� i� n

½ a0i;j �2½ c �0 ! ½ aLi;jþ1 a
R
i;jþ1 �2½ �0 ; for

2� i� n;

0� j� i� 1

(

½ a0j �2½ c �0 ! ½ aLj aRj �2½ �0 ; for 1� j� pþ 1

½b0l;k �1½ c �0 ! ½bLl;kþ1 b
R
l;kþ1 �1½ �0 ; for

0� k� n;

k þ 1� l� n

(

½ x0i;j;k �1½ c �0 ! ½ x002i;j;kþ1 �1½ �0
[ x0i;j;k �1½ c �0 ! ½ x002i;j;kþ1 �1½ �0
½ x�0i;j;k �1½ c �0 ! ½ x�002i;j;kþ1 �1½ �0

9>>=
>>;; for

1� i� n;

1� j� p;

0� k� n� 1

:

8>><
>>:

1.3 Rules for ð4k þ 3Þ-th steps.

½ ai;i �2 ! ½C0 �2½C1 �2 :; for 1� i� n

½bOk;k �1½ �0 ! ½ �1½ b
O
k;k �0

½ bOl;k �1½ �0 ! ½ �1½ bl;k �0

)
for

O 2 fL;Rg;
1� k� n;

k þ 1� l� n

8><
>:

½ x00i;j;k �1½ c �0 ! ½ x000i;j;k �1½ �0
½ x00i;j;k �1½ c �0 ! ½ x000i;j;k �1½ �0
½ x�00i;j;k �1½ c �0 ! ½ x�000i;j;k �1½ �0

9>=
>; for

1� i� n;

1� j� p;

1� k� n

1.4 Rules for (4k)-th steps.

½ aOi;j �2½ b
O
k;k �0 ! ½ ai;j �2½ �0

½ rOi �2½ b
O
k;k �0 ! ½ ri �2½ �0

)
for

O 2 fL;Rg;
r 2 ft; fg;
1� i� n;

1� j� n;

1� k� n

8>>>>>><
>>>>>>:

½ aOj �2½b
O
k;k �0 ! ½ aj �2½ �0 ; for

O 2 fL;Rg;
1� j� pþ 1;

0� k� n

8><
>:

½ x000i;j;k �1½ c �0 ! ½ xi;j;k �1½ �0
[ x000i;j;k �1½ c �0 ! ½ xi;j;k �1½ �0
½ x�000i;j;k �1½ c �0 ! ½ x�i;j;k �1½ �0

9>=
>; for

1� i� n;

1� j� p;

0� k� n

8><
>:

½ �1½bl;k �0 ! ½bl;k �1½ �0 ; for 0� k� n; k þ 1� l� n:
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2.1

Rules to check satisfied clauses.

½ ti �2½ xi;j;nþj�1 �1 ! ½ cj;j ti �2½ �1
½ ti �2½ xi;j;nþj�1 �1 ! ½ ti �2½ �1
½ ti �2½ x�i;j;nþj�1 �1 ! ½ ti �2½ �1
½ fi �2½ xi;j;nþj�1 �1 ! ½ fi �2½ �1

½ fi �2½ xi;j;nþj�1 �1 ! ½ cj;j fi �2½ �1
½ fi �2½ x�i;j;nþj�1 �1 ! ½ fi �2½ �1

9>>>>>>>>>=
>>>>>>>>>;

for 1� i� n; 1� j� p

½ xi;j;nþk �1½ c �0 ! ½ xi;j;nþkþ1 �1½ �0
½ xi;j;nþk �1½ c �0 ! ½ xi;j;nþkþ1 �1½ �0

½ x�i;j;nþk �1½ c �0 ! ½ x�i;j;nþkþ1 �1½ �0

9>>>>>>>>>=
>>>>>>>>>;

for

1� i� n;

1� j� p;

0� k� j� 2& ½ cj;k �2½ c �0 ! ½ cj;kþ1 �2½ �0 ; for 1� j� p; j� k� p� 1:

3.1 Rules to check if all clauses are satisfied by a

truth assignment.

½ apþ1 �2½ d
0
4nþp �1 ! ½ a0pþ1 �2½ �0

½ aj cj;p �2½ �0 ! ½ �2½# �0 ; for 1� j� p:

4.1 General counters.

½ di �1½ c �0 ! ½ diþ1 �1½ �0 ; for 0� i� 4nþ pþ 1

½ d04iþ1 �1½ c �0 ! ½ d024iþ2 �1½ �0 ; for 0� i� n� 1

½ d04iþk �1½ c �0 ! ½ d04iþkþ1 �1½ �0 ; for 0� i� n� 1; k 2 f0; 2; 3g
½ d04nþi �1½ c �0 ! ½ d04nþiþ1 �1½ �0 ; for 0� i� p� 1:

4.2 Rules to give a negative answer.

½ aj a0pþ1 �2½ �0 ! ½ �2½ n1 �0 ; for 1� j� p

½ �2½ n1 �0 ! ½ n1 �2½ �0
½ n1 �2½ d4nþpþ2 �1 ! ½ n2 �2½ �1

½ n2 �2½ �0 ! ½ �2½ no �0

4.3 Rules to give an affirmative answer.

½ a0pþ1 �2½ d4nþpþ2 �1 ! ½ y1 �2½ �1
½ y1 �2½ c �0 ! ½ y2 �2½ �0
½ y2 �2½ �0 ! ½ �2½ yes �0

7. The input cell is the cell labelled by 1 (iin ¼ 1) and the

output region is the environment (iout ¼ env).

Let u ¼ C1 ^ . . . ^ Cp an instance of SAT problem con-

sisting of p clauses Cj ¼ lj;1 _ . . . _ lj;rj , 1� j� p, where

VarðuÞ ¼ fx1; . . .; xng, and lj;k 2 fxi;:xi j 1� i� ng,
1� j� p; 1� k� rj. Let us assume that the number of

variables, n, and the number of clauses, p, of u, are greater
than or equal to 2.

We consider the polynomial encoding (cod, s) from

SAT in P defined as follows: for each u 2 ISAT with n

variables and p clauses, sðuÞ ¼ hn; pi and
codðuÞ ¼fxi;j;0 j xi 2 Cjg [ fxi;j;0 j :xi 2 Cjg

[ fx�i;j;0 j xi 62 Cj;:xi 62 Cjg

For instance, the formula u ¼ ðx1 _ x2 _ :x3Þ ^ ð:x2 _
x4Þ ^ ð:x2 _ x3 _ :x4Þ is encoded as follows:

codðuÞ ¼
x1;1;0 x2;1;0 x3;1;0 x�4;1;0
x�1;2;0 x2;2;0 x�3;2;0 x4;2;0

x�1;3;0 x2;3;0 x3;3;0 x4;3;0

0
B@

1
CA

We use here matrix representation to make easier the view

of the encoding, but let us recall that codðuÞ is a multiset of

objects. We define codkðuÞ as the set of elements of

codðuÞ when the third subscript equals k. In the same way,

we define cod0kðuÞ, cod00k ðuÞ and cod000k ðuÞ as the sets of

elements of codðuÞ when the third subscript equals k and

elements are primed, double primed and triple primed,

respectively. For notation convenience, we define codjkðuÞ
the subset of elements of codkðuÞ with elements of

Cj; . . .;Cp. For instance, cod
2
4ðuÞ would be the following

set:

cod24ðuÞ ¼
x�1;2;4 x2;2;4 x�3;2;4 x4;2;4

x�1;3;4 x2;3;4 x3;3;4 x4;3;4

 !

The Boolean formula u will be processed by the system

PðsðuÞÞ þ codðuÞ. Next, we informally describe how that

system works.

The solution proposed follows a brute force algorithm in

the framework of recognizer tissue P systems with sepa-

ration and evolutional communication rules, and it consists

of the following stages:

• Generation stage: using separation rules each 4 steps,

we produce 2n membranes labelled by 2 containing

each possible truths assignment. At the same time, we

generate 2n copies of codnðuÞ. This stage spends n

computation steps exactly, n being the number of

variables of u.
• First checking stage: With rules from 2.1, we can check

which clauses from the input formula u have been

satisfied by a specific truth assignment. This stage takes

exactly p steps.

• Second checking stage: with rules from 3.1, we remove

objects aj such that they are removed from a membrane

if and only if the truth assignment associated to that

membrane makes true clause Cj. This stage takes

exactly one step.
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• Output stage: with rules from 4.2 and 4.3, we can give

an affirmative or a negative answer depending on if the

input formula is satisfiable or not. This stage spends

exactly 4 steps, regardless of whether the formula is

satisfiable or not.

5 A formal verification

In this section, an exhaustive verification of the system is

given.

5.1 Generation stage

At this stage, all truth assignments for the variables asso-

ciated with the Boolean formula uðx1; . . .; xnÞ are going to

be generated, by applying separation rules from 1.2 in

membranes labelled by 2. In such manner that in the

4iþ 2-th step (1� i� n� 1) of this stage, separation rule

associated with an object ai;i is triggered, two new cells

distributing ti and fi between them. In the last step of this

stage, each membrane labelled by 2 will contain a truth

assignment of the formula.

Proposition 2 Let C ¼ ðC0; C1; . . .; CqÞ be a computation of
the system PðsðuÞÞ with input multiset codðuÞ, and let

CtðhÞ the contents of the membrane labelled by h in the

configuration Ct.

ðA0Þ For each 4k (0� k� n� 1) at configuration C4k we

have the following:

• C4kð1Þ ¼ fd4k; d02
k

4k; codkðuÞ
2kg [ fb2kl;k j k þ 1� l� ng

• There are 2k membranes labelled by 2 such that each

of them contains

– objects akþ1;k; . . .; an;k;

– objects r1; . . .; rk, being r 2 ft; fg; and
– objects a1; . . .; apþ1.

ðA1Þ For each 4k þ 1 (0� k� n� 1) at configuration

C4kþ1 we have the following:

• C4kþ1ð1Þ ¼ fd4kþ1; d
02k
4kþ1; cod

0
kðuÞ

2kg [ fb02
k

l;k j k þ 1� l� ng
• There are 2k membranes labelled by 2 such that each

of them contains

– objects a0kþ1;k; . . .; a
0
n;k;

– objects r001 ; . . .; r
00
k , being r 2 ft; fg

– an object t0kþ1; and

– objects a01; . . .; a
0
pþ1.

ðA2Þ For each 4k þ 2 (0� k� n� 1) at configuration

C4kþ2 we have the following:

• C4kþ2ð1Þ ¼ fd4kþ2; d
02kþ1

4kþ3; cod
00
kþ1ðuÞ

2kþ1

g[

fbO2k

l;k j O 2 fL;Rg; k þ 1� l� ng
• There are 2k membranes labelled by 2 such that each

of them contains

– objects akþ1;k; . . .; an;k;

– objects r1; . . .; rk, being r 2 ft; fg; and
– objects a1; . . .; apþ1.

ðA3Þ For each 4k þ 3 (0� k� n� 1) at configuration

C4kþ3 we have the following:

• C4kþ3ð0Þ ¼ fbO2k

kþ1;kþ1g [ fb2kþ1

l;kþ1 j k þ 2� l� ng
• C4kþ3ð1Þ ¼ fd4kþ3; d

02kþ1

4kþ3; cod
000
kþ1ðuÞ

2kþ1

g [ fb2kl;k j k þ 1� l� ng
• There are 2kþ1 membranes labelled by 2 such that

each of them contains

– objects akþ1;k; . . .; an;k;

– objects r1; . . .; rk, being r 2 ft; fg; and
– objects a1; . . .; apþ1.

(B) C4nð1Þ ¼ fd4n; d02
n

4n; cod4nðuÞ
2ng, and there are 2n

membranes labelled by 2 such that each of them contains

objects a1; . . .; apþ1, as well as a different subset

fr1; . . .; rng, being r 2 ft; fg.

Proof ðAkÞ; 0� k� 3 is going to be demonstrated by

induction on k.

ðA0Þ The base case k ¼ 0 is trivial because at the

initial configuration we have:

C0ð1Þ ¼ fd0; d00; cod0ðuÞg [ fbl;0 j 1� l� ng
and there exists a single

membranelabelled by 2 containing objects

a1; . . .; apþ1 and objects a1;0; . . .; an;0. Then,

configuration C0 yields configuration C1 by

applying the rules:

½ a1;0 �2½ c �0 ! ½ a01;0 t01 �2½ �0
½ ai;0 �2½ c �0 ! ½ a0i;0 �2½ �0 ; for 2� i� n

½ aj �2½ c �0 ! ½ a0j �2½ �0 ; for 1� j� pþ 1

½ bl;0 �1½ c �0 ! ½b0l;0 �1½ �0 ; for 1� l� n

½ xi;j;0 �1½ c �0 ! ½ x0i;j;1 �1½ �0
½ xi;j;0 �1½ c �0 ! ½ x0i;j;1 �1½ �0
½ x�i;j;0 �1½ c �0 ! ½ x�0i;j;1 �1½ �0

9>=
>; for 1� i� n; 1� j� p

½ d0 �1½ c �0 ! ½ d1 �1½ �0
½ d00 �1½ c �0 ! ½ d01 �1½ �0
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ðA1Þ Thus, C1ð1Þ ¼ fd1; d01; cod01ðuÞg [ fb0l;0 j 1� l� ng
and in C1 there exists one membrane labelled by

2 such that its contents is the set of objects

fa01;0; . . .; a0n;0g, the object t01 and objects

a01; . . .; a
0
pþ1. Then, configuration C1 yields

configuration C2 by applying the rules:

½ a01;0 �2½ c �0 ! ½ a1;1 f R1 �2½ �0
½ t01 �2½ c �0 ! ½ tL1 �2½ �0

½ a0i;0 �2½ c �0 ! ½ aLi;1 aRi;1 �2½ �0 ; for 2� i� n

½ a0j �2½ c �0 ! ½ aLj aRj �2½ �0 ; for 1� j� pþ 1

½ b0l;0 �1½ c �0 ! ½ bLl;1 bRl;1 �1½ �0 ; for 1� l� n

½ x0i;j;0 �1½ c �0 ! ½ x002i;j;1 �1½ �0
[ x0i;j;0 �1½ c �0 ! ½ x002i;j;0þ1 �1½ �0
½ x�0i;j;0 �1½ c �0 ! ½ x�002i;j;0þ1 �1½ �0

9>>=
>>; for

1� i� n;

1� j� p

½ d1 �1½ c �0 ! ½ d2 �1½ �0
½ d01 �1½ c �0 ! ½ d022 �1½ �0

ðA2Þ Thus, C2ð1Þ ¼ fd2; d022; cod001ðuÞg [ fbOl;1 j O 2 fL;Rg; 1� l� ng
and in C2 there exists one membrane labelled by

2 such that its contents is the set of objects

fa1;1; . . .; an;1g, objects tL1 and f R1 and objects

aO1 ; . . .; a
O
pþ1, for O 2 fL;Rg. Then, configuration

C2 yields configuration C3 by applying the rules:

½ a1;1 �2 ! ½C0 �2½C1 �2 ; for 1� i� n

½ bO1;1 �1½ �0 ! ½ �1½ b
O
1;1 �0

½ bOl;1 �1½ �0 ! ½ �1½ bl;1 �0

)
for

O 2 fL;Rg;
2� l� n

½ x00i;j;0 �1½ c �0 ! ½ x000i;j;0 �1½ �0
½ x00i;j;0 �1½ c �0 ! ½ x000i;j;0 �1½ �0
½ x�00i;j;0 �1½ c �0 ! ½ x�000i;j;0 �1½ �0

9>=
>; for

1� i� n;

1� j� p;

½ d2 �1½ c �0 ! ½ d3 �1½ �0
½ d02 �1½ c �0 ! ½ d03 �1½ �0

ðA3Þ Thus, C3ð1Þ ¼ fd3; d023; cod0001 ðuÞg, at the
environment there is the multiset

fbO1;1 j O 2 fL;Rgg [ fb2l;1 j 2� l� ng and in C2

there exists two membranes labelled by 2 such

that its contents is the set of objects faO2;1; . . .; aOn;1g
with O ¼ L (resp., O ¼ R), object

tL1 (resp., f R1 ) and objects aO1 ; . . .; a
O
pþ1, for O ¼ L

(resp., O ¼ R). Hence, the result holds for k ¼ 0

	 Supposing that, by induction, result is true for k

(1� k� n� 1); that is,

ðA0Þ For each 4k (0� k� n� 1) at configuration C4k we

have the following:

– C4kð1Þ ¼ fd4k;d02
k

4k; codkðuÞ
2kg [ fb2kl;k j kþ 1� l�ng

– There are 2k membranes labelled by 2 such that each

of them contains

objects akþ1;k; . . .; an;k;

objects r1; . . .; rk, being r 2 ft; fg; and
objects a1; . . .; apþ1.

ðA1Þ For each 4k þ 1 (0� k� n� 1) at configuration

C4kþ1 we have the following:

– C4kþ1ð1Þ ¼ fd4kþ1; d
02k
4kþ1;

cod0kðuÞ
2kg [ fb02

k

l;k j k þ 1� l� ng
– There are 2k membranes labelled by 2 such that each

of them contains

objects a0kþ1;k; . . .; a
0
n;k;

objects r001 ; . . .; r
00
k , being r 2 ft; fg

an object t0kþ1; and

objects a01; . . .; a
0
pþ1.

ðA2Þ For each 4k þ 2 (0� k� n� 1) at configuration

C4kþ2 we have the following:

– C4kþ2ð1Þ ¼ fd4kþ2; ; d
02kþ1

4kþ2cod
00
kþ1ðuÞ

2kþ1

g

[fbO2k

l;k j O 2 fL;Rg; k þ 1� l� ng
– There are 2k membranes labelled by 2 such that each

of them contains

objects akþ1;k; . . .; an;k;

objects rO1 ; . . .; r
O
k , being r 2 ft; fg;O 2 fL;Rg;

and

objects aO1 ; . . .; a
O
pþ1;O 2 fL;Rg.

ðA3Þ For each 4k þ 3 (0� k� n� 1) at configuration

C4kþ3 we have the following:

– C4kþ3ð0Þ ¼ fbO2k

kþ1;kþ1g [ fb2kþ1

l;kþ1 j k þ 2� l� ng

– C4kþ3ð1Þ ¼ fd4kþ3; d
02kþ1

4kþ3; cod
000
kþ1ðuÞ

2kþ1

g
– There are 2kþ1 membranes labelled by 2 such that

each of them contains

objects akþ1;k; . . .; an;k;

objects rO1 ; . . .; r
O
k , being r 2 ft; fg;O 2 fL;Rg;

and

objects aO1 ; . . .; a
O
pþ1;O 2 fL;Rg.

	 Then, by the induction hypothesis, we want to prove the

result for k þ 1.

ðA0Þ Then, configuration C4kþ3 yields configuration

C4ðkþ1Þ by applying the rules:
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½ aOi;j �2½ b
O
kþ1;kþ1 �0 ! ½ ai;j �2½ �0

½ rOi �2½ b
O
kþ1;kþ1 �0 ! ½ ri �2½ �0

)
for

O 2 fL;Rg;
r 2 ft; fg;
1� i� n;

1� j� n

½ aOj �2½b
O
kþ1;kþ1 �0 ! ½ aj �2½ �0 ; for O 2 fL;Rg; 1� j� pþ 1

½ x000i;j;kþ1 �1½ c �0 ! ½ xi;j;kþ1 �1½ �0
[ x000i;j;kþ1 �1½ c �0 ! ½ xi;j;kþ1 �1½ �0
½ x�000i;j;kþ1 �1½ c �0 ! ½ x�i;j;kþ1 �1½ �0

9>=
>; for 1� i� n; 1� j� p

½ �1½bl;kþ1 �0 ! ½ bl;kþ1 �1½ �0 ; for k þ 2� l� n

½ d4kþ3 �1½ c �0 ! ½ d4ðkþ1Þ �1½ �0
½ d04kþ3 �1½ c �0 ! ½ d04ðkþ1Þ �1½ �0

Therefore, the following holds:

–

C4ðkþ1Þð1Þ ¼fd4ðkþ1Þ; d
02kþ1

4ðkþ1Þ; codkþ1ðuÞ2
kþ1

g

[ fb2kþ1

l;kþ1 j k þ 2� l� ng

– There are 2kþ1 membranes labelled by 2 such that

each of them contains

objects akþ2;kþ1; . . .; an;kþ1;

objects r1; . . .; rkþ1, being r 2 ft; fg; and
objects a1; . . .; apþ1.

ðA1Þ Then, configuration C4ðkþ1Þ yields configuration

C4ðkþ1Þþ1 by applying the rules:

½ akþ1;k �2½ c �0 ! ½ a0kþ1;k t
0
kþ1 �2½ �0

½ ti �2½ c �0 ! ½ t00i �2½ �0
½ fi �2½ c �0 ! ½ f 00i �2½ �0

�
for 1� i� k

½ ai;kþ1 �2½ c �0 ! ½ a0i;kþ1 �2½ �0 ; for 2� i� n

½ aj �2½ c �0 ! ½ a0j �2½ �0 ; for 1� j� pþ 1

½ bl;kþ1 �1½ c �0 ! ½b0l;kþ1 �1½ �0
�
for k þ 2� l� n

½ xi;j;kþ1 �1½ c �0 ! ½ x0i;j;kþ1 �1½ �0
[ xi;j;kþ1 �1½ c �0 ! ½ x0i;j;kþ1 �1½ �0
½ x�i;j;kþ1 �1½ c �0 ! ½ x�0i;j;kþ1 �1½ �0

9>=
>; for 1� i� n; 1� j� p

½ d4ðkþ1Þ �1½ c �0 ! ½ d4ðkþ1Þþ1 �1½ �0
½ d04ðkþ1Þ �1½ c �0 ! ½ d04ðkþ1Þþ1 �1½ �0

Therefore, the following holds:

– C4ðkþ1Þþ1ð1Þ ¼fd4ðkþ1Þþ1; d
02kþ1

4ðkþ1Þþ1; cod
0
kþ1ðuÞ

2kþ1

g

[ fb02
kþ1

l;kþ1 j k þ 1� l� ng

– There are 2kþ1 membranes labelled by 2 such that

each of them contains

objects a0kþ2;kþ1; . . .; a
0
n;kþ1;

objects r001 ; . . .; r
00
kþ1, being r 2 ft; fg

an object t0kþ2; and

objects a01; . . .; a
0
pþ1.

ðA2Þ Then, configuration C4ðkþ1Þþ1 yields configuration

C4ðkþ1Þþ2 by applying the rules:

½ a0kþ1;k �2½ c �0 ! ½ akþ1;kþ1 f
R
kþ1 �2½ �0

½ t0kþ1 �2½ c �0 ! ½ tLkþ1 �2½ �0
½ t00i �2½ c �0 ! ½ tLi tRi �2½ �0
½ f 00i �2½ c �0 ! ½ f Li f Ri �2½ �0

)
for 1� i� k

½ a0i;kþ1 �2½ c �0 ! ½ aLi;kþ2 a
R
i;kþ2 �2½ �0 ; for 2� i� n

½ a0j �2½ c �0 ! ½ aLj aRj �2½ �0 ; for 1� j� pþ 1

½ b0l;kþ1 �1½ c �0 ! ½bLl;kþ2 b
R
l;kþ2 �1½ �0 ; for k þ 2� l� n

½ x0i;j;kþ1 �1½ c �0 ! ½ x002i;j;kþ2 �1½ �0
[ x0i;j;kþ1 �1½ c �0 ! ½ x002i;j;kþ2 �1½ �0
½ x�0i;j;kþ1 �1½ c �0 ! ½ x�002i;j;kþ2 �1½ �0

9>>=
>>;

1� i� n;

1� j� p

½ d4ðkþ1Þþ1 �1½ c �0 ! ½ d4ðkþ1Þþ2 �1½ �0
½ d04ðkþ1Þþ1 �1½ c �0 ! ½ d024ðkþ1Þþ2 �1½ �0

Therefore, the following holds:

– C4ðkþ1Þþ2ð1Þ ¼ fd4ðkþ1Þþ2; d
02kþ2

4ðkþ1Þþ2; cod
00
kþ2ðuÞ

2kþ2

g
[fb2kþ1

l;k j k þ 1� l� ng
– There are 2kþ1 membranes labelled by 2 such that

each of them contains

objects akþ2;kþ1; . . .; an;kþ1;

objects r1; . . .; rkþ1, being r 2 ft; fg; and
objects a1; . . .; apþ1.

ðA3Þ Then, configuration C4ðkþ1Þþ2 yields configuration

C4ðkþ1Þþ3 by applying the rules:

½ akþ1;kþ1 �2 ! ½C0 �2½C1 �2 ; for 1� i� n

½ bOkþ1;kþ1 �1½ �0 ! ½ �1½ b
O
kþ1;kþ1 �0

½ bOl;kþ1 �1½ �0 ! ½ �1½ bl;kþ1 �0

)
for O 2 fL;Rg; k þ 2� l� n

½ x00i;j;kþ2 �1½ c �0 ! ½ x000i;j;kþ2 �1½ �0
½ x00i;j;kþ2 �1½ c �0 ! ½ x000i;j;kþ2 �1½ �0
½ x�00i;j;kþ2 �1½ c �0 ! ½ x�000i;j;kþ2 �1½ �0

9>=
>; for

1� i� n;

1� j� p

½ d4ðkþ1Þþ2 �1½ c �0 ! ½ d4ðkþ1Þþ3 �1½ �0
½ d04ðkþ1Þþ2 �1½ c �0 ! ½ d04ðkþ1Þþ3 �1½ �0

Therefore, the following holds:

– C4ðkþ1Þþ3ð0Þ ¼fbO2kþ1

kþ2;kþ2g

[ fb2kþ2

l;kþ2 j k þ 3� l� ng

– C4ðkþ1Þþ3ð1Þ ¼ fd4ðkþ1Þþ3;

d0
2kþ2

4ðkþ1Þþ3; cod
000
kþ2ðuÞ

2kþ2

g [ fb2kþ1

l;kþ1 j k þ 2� l� ng
– There are 2kþ2 membranes labelled by 2 such that each

of them contains
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objects akþ2;kþ1; . . .; an;kþ1;

objects r1; . . .; rkþ1, being r 2 ft; fg; and
objects a1; . . .; apþ1.

• In order to prove (B) it is enough to notice that, on the

one hand, from ðA3Þ configuration C4n�1
4 holds:

– C4n�1ð1Þ ¼ fd4n�1; d
02n
4n�1; cod

000
n ðuÞg.

– There are 2n membranes labelled by 2 such that

each of them contains

a different subset frO1 ; . . .; rOn g, being r 2 ft; fg
and O 2 fL;Rg; and
objects aO; . . .; aOpþ1, for O 2 fL;Rg.

• On the other hand, configuration C4n�1 yields config-

uration C4n by applying the rules:

½ rOi �2½b
O
n;n �0 ! ½ ri �2½ �0 ; for

O 2 fL;Rg;
r 2 ft; fg;
1� i� n

½ aOj �2½ b
O
n;n �0 ! ½ aj �2½ �0 ; for O 2 fL;Rg; 1� j� pþ 1

½ x000i;j;n �1½ c �0 ! ½ xi;j;n �1½ �0
½ x000i;j;n �1½ c �0 ! ½ xi;j;n �1½ �0
½ x�000i;j;n �1½ c �0 ! ½ x�i;j;n �1½ �0

9>=
>; for 1� i� n; 1� j� p

½ d4n�1 �1½ c �0 ! ½ d4n �1½ �0
½ d04n�1 �1½ c �0 ! ½ d04n �1½ �0

• Then, we have C4nð1Þ ¼ fd4n; d02
n

4n; cod4nðuÞ
2ng, and

there are 2n membranes labelled by 2 such that each of

them contains objects a1; . . .; apþ1, as well as a different

subset fr1; . . .; rng, being r 2 ft; fg.
h

5.2 First checking stage

Following the generation stage comes the first checking

stage, where objects cj;j are created in order to know if

clause Cj has been satisfied by the truth assignment enco-

ded in membranes labelled by 2. In each step, we fire rules

for a single clause, therefore in p steps we can obtain

objects cj;p if this clause is satisfied. This can be because of

two reasons:

• Literal xi appears in clause Cj, and the truth value of

variable xi in a truth assignment is True. Then, we can

say that such truth assignment satisfies this clause; or

• Literal :xi appears in clause Cj, and the truth value of

variable xi in a truth assignment is False. Then, we

can say that such truth assignment satisfies this clause.

In any other way, variable xi has nothing to do with clause

Cj. At the final step of this stage, membranes labelled by 2

will have objects cj;p where Cj are clauses satisfied by such

truth assignment. We obtain an object a0pþ1 to use it in the

next stage.

Proposition 3 Let C ¼ ðC0; C1; . . .; CqÞ be a computation of
the system PðsðuÞÞ with input multiset codðuÞ.

(a) For each k (0� k� p� 1) at configuration C4nþk we

have the following:

• C4nþkð1Þ ¼ fd4nþk; d
02n
4nþk; cod

k
nðuÞ

2ng
• There are 2n membranes labelled by 2 such that

each of them contains

– objects r1; . . .; rn, being r 2 ft; fg;
– objects a1; . . .; apþ1; and

– objects c1;k; . . .; ck;k, where cj;k represents that

clause Cj has been satisfied by the truth

formula encoded in such membrane.

(B) C4nþpð1Þ ¼ fd4nþp; d
02n
4nþpg, and there are 2n mem-

branes labelled by 2 such that each of them contains

objects a1; . . .; apþ1, a different subset fr1; . . .; rng
and objects cj when clause Cj is satisfied in that

membrane.

Proof (a) is going to be demonstrated by induction on k.

• (a) The base case k ¼ 0 is trivial because at the initial

configuration we have: C4nð1Þ ¼ fd4n; d02
n

4n; cod4nðuÞg
and there exist 2n membranes labelled by 2 containing

objects a1; . . .; apþ1 and a different subset fr1; . . .; rng,
being r 2 ft; fg. Then, configuration C4n yields config-

uration C4nþ1 by applying the rules:

½ ti �2½ xi;1;n �1 ! ½ c1;1 ti �2½ �1
½ ti �2½ xi;1;n �1 ! ½ ti �2½ �1
½ ti �2½ x�i;1;n �1 ! ½ ti �2½ �1
½ fi �2½ xi;1;n �1 ! ½ fi �2½ �1

½ fi �2½ xi;1;n �1 ! ½ c1;1 fi �2½ �1
½ fi �2½ x�i;1;n �1 ! ½ fi �2½ �1

9>>>>>>>>>=
>>>>>>>>>;

for 1� i� n; 1� j� p

½ xi;j;nþk �1½ c �0 ! ½ xi;j;nþkþ1 �1½ �0
½ xi;j;nþk �1½ c �0 ! ½ xi;j;nþkþ1 �1½ �0
½ x�i;j;nþk �1½ c �0 ! ½ x�i;j;nþkþ1 �1½ �0

9>=
>; for 1� i� n; 2� j� p

½ d4n �1½ c �0 ! ½ d4nþ1 �1½ �0
½ d04n �1½ c �0 ! ½ d04nþ1 �1½ �0

Thus, C4nþ1ð1Þ ¼ fd4nþ1; d
02n
4nþ1; cod

1
4nþ1ðuÞ

2ng and in

C4nþ1 there exist 2n membranes labelled by 2 such that

their contents are objects a1; . . .; apþ1, a different subset

4 Here, 4n� 1 ¼ 4k þ 3 for k ¼ n� 1.
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fr1; . . .; rng, being r 2 ft; fg and objects c1;1 if some

literal present in Cj satisfies it.
5 Hence, the result holds

for k ¼ 1.

Supposing that, by induction, result is true for k

(0� k� p� 1); that is,

• C4nþkð1Þ ¼ fd4nþk; d
02n
4nþk; cod

k
nðuÞ

2ng
• There are 2n membranes labelled by 2 such that each

of them contains

– objects r1; . . .; rn, being r 2 ft; fg;
– objects a1; . . .; apþ1; and

– objects c1;k; . . .; ck;k, where cj;k represents that

clause Cj has been satisfied by the truth formula

encoded in such membrane.

Then, configuration C4nþk yields configuration C4nþkþ1

by applying the rules:

½ ti �2½ xi;kþ1;nþk �1 ! ½ ckþ1;kþ1 ti �2½ �1
½ ti �2½ xi;kþ1;nþk �1 ! ½ ti �2½ �1
½ ti �2½ x�i;kþ1;nþk �1 ! ½ ti �2½ �1
½ fi �2½ xi;kþ1;nþk �1 ! ½ fi �2½ �1

½ fi �2½ xi;kþ1;nþk �1 ! ½ ckþ1;kþ1 fi �2½ �1
½ fi �2½ x�i;kþ1;nþk �1 ! ½ fi �2½ �1

9>>>>>>>>>=
>>>>>>>>>;

for 1� i� n; 1� j� p

½ xi;j;nþk �1½ c �0 ! ½ xi;j;nþkþ1 �1½ �0
½ xi;j;nþk �1½ c �0 ! ½ xi;j;nþkþ1 �1½ �0
½ x�i;j;nþk �1½ c �0 ! ½ x�i;j;nþkþ1 �1½ �0

9>=
>;

for 1� i� n; k þ 2� j� p

½ cj;k �2½ c �0 ! ½ cj;kþ1 �2½ �0 ;
for 1� j� p; k� k� p� 1

½ d4nþk �1½ c �0 ! ½ d4nþkþ1 �1½ �0
½ d04nþk �1½ c �0 ! ½ d04nþkþ1 �1½ �0

Thus, C4nþkþ1ð1Þ ¼ fd4nþkþ1; d
02n
4nþkþ1;cod

kþ1
4nþkþ1ðuÞ

2ng
and in C4nþkþ1 there exist 2n membranes labelled by 2

such that their contents are objects a1; . . .; apþ1, a dif-

ferent subset fr1; . . .; rng, being r 2 ft; fg and objects

c1;k; . . .; ck;k if some literal present in Cj satisfies them.

In order to demonstrate (B) it is enough to notice that, on

the one hand, from (a) configuration C4nþp�1 holds:

• C4nþp�1ð1Þ ¼ fd4nþp�1; d
02n
4nþp�1; cod

p�1
n ðuÞ2

n

g
• There are 2n membranes labelled by 2 such that each of

them contains

– objects r1; . . .; rn, being r 2 ft; fg;
– objects a1; . . .; apþ1; and

– objects c1;p�1; . . .; cp�1;p�1, where cj;p�1 represents

that clause Cj has been satisfied by the truth formula

encoded in such membrane.

On the other hand, configuration C4nþp�1 yields configu-

ration C4nþp by applying the rules:

½ti �2½xi;p;nþp�1 �1!½cp;p ti �2½ �1
½ti �2½xi;p;nþp�1 �1!½ti �2½ �1
½ti �2½x�i;p;nþp�1 �1!½ti �2½ �1
½fi �2½xi;p;nþp�1 �1!½fi �2½ �1
½fi �2½xi;p;nþp�1 �1!½cp;p fi �2½ �1
½fi �2½x�i;p;nþp�1 �1!½fi �2½ �1

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

for 1�i�n;1�j�p

½cj;p�1 �2½c�0!½cj;p �2½ �0 ; for 1�j�p�1

½d4nþp�1 �1½c�0!½d4nþp �1½ �0
½d04nþp�1 �1½c�0!½d04nþp �1½ �0

Then, we have C4nþpð1Þ ¼ fd4nþp; d
02n
4nþpg, and in C4nþp

there are 2n membranes labelled by 2 such that each of

them contains a different subset fr1; . . .; rng, being

r 2 ft; fg6, objects a1; . . .; apþ1 and objects cj;p when clause

Cj has been satisfied by the truth assignment encoded in

such membrane. h

5.3 Second checking stage

Here, when rules from 3.1 are fired at the ð4nþ pþ 1Þ-th
step, objects aj within a membrane labelled by 2 are

removed if and only if the truth assignment associated to

that membrane makes true clause Cj, that is, if there is at

least one object cj in such membrane. At configuration

C4nþp we have C4nþpð1Þ ¼ fd4nþp; d
02n
4nþpg and each mem-

brane labelled by 2 contains objects a1; . . .; ap and objects

cj such that the corresponding truth assignment satisfies the

clause Cj. By applying rules from 3.1 and rule

½ d4nþp �1½ c �0 ! ½ d4nþpþ1 �1½ �0, object d4nþp evolves into

d4nþpþ1 within the membrane labelled by 1, and in each

membrane labelled by 2, objects aj such that their corre-

sponding object cj;p are ‘‘removed’’ from the system, and

let the next stage to check whether or not they are present,

besides the object apþ1, that is prepared, evolving to a0pþ1,

to react with the remaining objects aj. This stage takes

exactly one step.

5.4 Output stage

The output phase starts at the ð4nþ pþ 2Þ-th step, and

takes exactly four steps, regardless of whether the input

formula u is satisfied or not by some truth assignment.

5 Here, objects # are created, but they are not used anymore, so they

are not going to be noted here.

6 This subset is not used anymore, so it will not be noted from now

on.
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• Affirmative answer: if the input formula u of SAT

problem is satisfiable then at least one of the truth

assignments from a membrane with label 2 has satisfied

all clauses. Then, there will be a membrane labelled by

2 such that all objects aj, with 1� j� p have disap-

peared in the previous step. At configuration C4nþpþ1,

we have C4nþpþ1ð1Þ ¼ fd4nþpþ1g and in each mem-

brane labelled by 2 there remain objects aj if the

corresponding truth assignment does not make true

clause Cj and one object a0pþ1. In this step, only rule

½ d4nþpþ1 �1½ c �0 ! ½ d4nþpþ2 �1½ �0 will be fired and

rules ½ aj a0pþ1 �2½ �0 ! ½ �2½ n1 �0 will be fired in

membranes labelled by 2 such that at least one clause

is not satisfied by the corresponding truth assignment.

Then, at configuration C4nþpþ2, we have C4nþpþ2ð1Þ ¼
fd4nþpþ2; n

t
1g, being t the number of truth assignments

that have at least one clause not satisfied by the

corresponding truth assignment, and membranes

labelled by 2 contains an object a0pþ1 if and only if

the corresponding truth assignment makes true all

clauses from u, and can contain objects aj, 1� j� p, if

clause Cj is not satisfied by the corresponding truth

assignment.

In the next step, applying rules ½ �2½ n1 �0 !
½ n1 �2½ �0 and ½ a0pþ1 �2½ d4nþpþ2 �1 ! ½ y1 �2½ �1, we

obtain an object y1 in a membrane labelled by 2 if

and only if the corresponding truth assignment makes

true the input formula. Let us remark that more than one

membrane labelled by 2 can contain a truth assignment

that makes true u, but in this case, we as we want to

know if at least one truth assignment makes true the

input formula u, we only want one object y1. Then, at

configuration C4nþpþ3 we have that C4nþpþ3ð1Þ ¼ ; and

in membranes labelled by 2, we can have objects n1,
7

adding up to t in all membranes labelled by 2, being t

the number of truth assignments that do not make true

the input formula, an object a0pþ1 if the corresponding

truth assignment makes true all clauses, excepting one

membrane labelled by 2 which corresponding truth

assignment makes true the input formula that will

contain an object y1, and can contain objects aj,
1� j� p, if clause Cj is not satisfied by the correspond-

ing truth assignment. In the next step the only rule that

can be fired is ½ y1 �2½ c �0 ! ½ y2 �2½ �0, that will be

useful to synchronize the affirmative and the negative

answer. Let us note that rule ½ n1 �2½ d4nþpþ2 �1 !
½ n2 �2½ �1 cannot be fired because object d4nþ3 has

been consumed in the previous step by an object a0pþ1.

Then, at configuration C4nþpþ4, we have that

C4nþpþ4ð1Þ ¼ ; and in membranes labelled by 2, we

can have objects n1, adding up to t in all membranes

labelled by 2, being t the number of truth assignments

that do not make true the input formula, an object a0pþ1

if the corresponding truth assignment makes true all

clauses, excepting one membrane labelled by 2 which

corresponding truth assignment makes true the input

formula that will contain an object y2, and can contain

objects aj, 1� j� p, if clause Cj is not satisfied by the

corresponding truth assignment. At the last step of the

computation, rule ½ y2 �2½ �0 ! ½ �2½ yes �0 is fired,

sending an object yes to the environment. Then, at

configuration C4nþpþ5, we have that C4nþpþ5ð1Þ ¼ ; and

in membranes labelled by 2, we can have objects n1,

adding up to t in all membranes labelled by 2, being t

the number of truth assignments that do not make true

the input formula, an object a0pþ1 if the corresponding

truth assignment makes true all clauses, excepting one

membrane labelled by 2 which corresponding truth

assignment makes true the input formula, and can

contain objects aj, 1� j� p, if clause Cj is not satisfied

by the corresponding truth assignment, and there will be

an object yes in the environment. Here, the compu-

tation halts and returns an affirmative answer.

• Negative answer: If the input formula u of SAT

problem is not satisfiable then none of the truth

assignments encoded by a membrane labelled by 2

makes the formula u true. Thus, some object aj
(1� j� p) will be within all membranes labelled by 2

will not remain in such membranes. At configuration

C4nþpþ1, we have C4nþpþ1ð1Þ ¼ fd4nþpþ1g and in each

membrane labelled by 2 there remain objects aj if the
corresponding truth assignment does not make true

clause Cj. In this step, only rules ½ aj a0pþ1 �2½ �0
! ½ �2½ n1 �0, for 1� j� p and rule ½ d4nþpþ1 �1½ c �0 !
½ d4nþpþ2 �1½ �0 will be fired. Then, at configuration

C4nþpþ2 we have in the environment 2n copies of object

n1, C4nþpþ2ð1Þ ¼ fd4nþpþ2g and membranes labelled by

2 will contain objects aj (1� j� p) when clauses Cj are

not satisfied by the corresponding truth assignment. In

the ð4nþ pþ 3Þ-th step, rule ½ �2½ n1 �0 ! ½ n1 �2½ �0
will be fired. Here, objects n1 will be sent to a

membrane labelled by 2. Then, at configuration C4nþpþ3

we have C4nþpþ3ð1Þ ¼ fd4nþpþ2g and membranes

labelled by 2 contain objects aj (1� j� p) if clause Cj

is not satisfied by the corresponding truth assignment,

and can contain t objects n1 (0� t� 2n). At the

6 This subset is not used anymore, so it will not be noted from now

on.

7 Let us note that a membrane containing an object n1 does not say

that the corresponding truth assignment does not makes true the input

formula. In fact, we can have more than one object n1 within a single

membrane labelled by 2.
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ð4nþ pþ 4Þ-th step rule ½ n1 �2½ d4nþpþ2 �1 ! ½ n2 �2½ �1
is fired, since object d4nþ3 has not been consumed by

any rule from 4.3, creating an object n2 in a membrane

labelled by 2. Then, at configuration C4nþpþ4 we have

C4nþpþ4ð1Þ ¼ ; and membranes labelled by 2 contain

objects aj (1� j� p) if clause Cj is not satisfied by the

corresponding truth assignment, and can contain t

objects n1 (0� t� 2n), and one of them contains an

object n2. At the last step of the computation, rule

½ n2 �2½ �0 ! ½ �2½ no �0 is fired, sending an object no

to the environment. Then, at configuration C4nþpþ5 we

have that C4nþpþ5ð1Þ ¼ ; and membranes labelled by 2

contain objects aj (1� j� p) if clause Cj is not satisfied

by the corresponding truth assignment, and can contain

t objects n1 (0� t� 2n), and there will be an object no

in the environment. Here, the computation halts and

returns a negative answer.

5.5 Result

Proof The family of P systems previously constructed

verifies the following:

• Every system of the family P is a recognizer P systems

from TSECð2; 2Þ.
• The family P is polynomially uniform by Turing

machines because for each n; p 2 N, the rules of

Pðhn; piÞ of the family are recursively defined from

n; p 2 N, and the amount of resources needed to build

an element of the family is of a polynomial order in

n and p, as shown below:

– Size of the alphabet: 9n2pþ 6n2 þ 3np2

2
� 3npþ

22nþ p2

2
þ 13p

2
þ 14 2 H ðmaxfn2p; np2gÞ.

– Initial number of cells: 2 2 Hð1Þ.
– Initial number of objects in cells: n2 þ nðpþ 2Þ

þpþ 3 2 Hðn2Þ.
– Number of rules: 8n3 þ 27n2p

2
þ 4n1 þ 19np

2
þ 23nþ

p2

2
þ 17p

2
þ 11 2 Hðn3Þ.

– Maximal number of objects involved in any rule:

4 2 Hð1Þ.

• The pair (cod, s) of polynomial-time computable func-

tions defined fulfil the following: for each input formula

u of SAT problem, sðuÞ is a natural number, codðuÞ is
an input multiset of the system PðsðuÞÞ, and for each

n 2 N, s�1ðnÞ is a finite set.

• The family P is polynomially bounded: indeed for each

input formula u of SAT problem, the deterministic P

system PðsðuÞÞ þ codðuÞ takes exactly 4nþ pþ 5

steps, being n the number of variables of u and p the

number of clauses.

• The family P is sound with regard to (X, cod, s):

indeed, for each formula u, if the computation of

PðsðuÞÞ þ codðuÞ is an accepting computation, then u
is satisfiable.

• The family P is complete with regard to (X, cod, s):

indeed, for each input formula u such that it is

satisfiable, the computation of PðsðuÞÞ þ codðuÞ is

an accepting computation.

h

Corollary 4 NP [ co� NP � PMCTSECð2;2Þ.

Proof It suffices to notice that SAT problem is a NP-

complete problem, SAT 2 PMC TSECð2;2Þ, and the com-

plexity class PMCTSECð2;2Þ is closed under polynomial-time

reduction and under complement. h

6 Conclusions and future work

Pan et al. (2018), a tight frontier of efficiency in the

framework of tissue P systems with evolutional symport/

antiport rules and cell separation is defined by the length of

the right-hand side of communication rules; that is, passing

from 1 object to 2 objects is enough to pass from non-

efficiency to presumable efficiency while the length of the

left-hand side is at least 3. This result was demonstrated by

giving a solution of the SAT problem by means of a family

of P system from TSECð3; 2Þ. But an open problem was

opened here: what happens with P systems from

TSECðk; 2Þ (k� 2)? Can we solve computationally hard

problems restricting the length of the LHS to 2?

In this paper, we focus on this topic, and we give an

efficient solution to the SAT problem by means of a family

of P systems from TSECð2; 2Þ, filling the gap previously

open. Then, we can conclude here with a similar figure to

the one presented in Pan et al. (2018), but while in the

reference there are question marks in the second column

from (2, 2) upwards, we have closed this problem giving

demonstrating that with these types of P systems presum-

ably hard computational problems can be efficiently

solved.

Of course, after this work we can define several clear

research lines to continue investigating these kinds of P

systems.

– What happens when the environment ‘‘disappears’’?

– Do the structure matter? By this we mean using cell-

like structure with this kind of rules.

– In Song et al. (2017) another definition of length is

given. Let k be the length of the rule defined as follows:

if r 
 ½ u �i½ v �j ! ½ v0 �i½ u0 �j, k ¼ j u j þ j v j þ j u0 j
þ j v0 j. Then the complexity class of tissue P systems
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with evolutional communication rules with at most

length k and cell separation is denoted by PMCTSECðkÞ.

What are the borderline here?

– What is the upper bound of these systems? Leporati

et al. (2017) a characterization of tissue P systems with

symport/antiport rules and both cell division and

separation is given matching their efficiency to the

class P#P, and it seems that this class of P system can

reach the same complexity class.
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Characterizing tractability by tissue–like p systems. In:

Gutiérrez-Escudero R, Gutiérrez-Naranjo MA, Păun G, Pérez-
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