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Abstract
Many real-world multi-objective optimization problems inherently have multiple multi-modal solutions and it is in fact

very important to capture as many of these solutions as possible. Several crowding distance methods have been developed

in the past few years to approximate the optimal solution in the search space. In this paper, we discuss some of the

shortcomings of the crowding distance-based methods such as inaccurate estimates of the density of neighboring solutions

in the search space. We propose a new classification for the selection operations of Pareto-based multi-modal multi-

objective optimization algorithms. This classification is based on utilizing nearby solutions from other fronts to calculate

the crowding values. Moreover, to address some of the drawbacks of existing crowding methods, we propose two

algorithms whose selection mechanisms are based on each of the introduced types of selection operations. These algo-

rithms are called NxEMMO and ES-EMMO. Our proposed algorithms are evaluated on 14 test problems of various

complexity levels. According to our results, in most cases, the NxEMMO algorithm with the proposed selection mecha-

nism produces more diverse solutions in the search space in comparison to other competitive algorithms.

Keywords Pareto dominance-based algorithms � Multi-modal multi-objective optimization � Harmonic average distance �
Inter-front operations � Intra-front operations � Euclidiean distance

1 Introduction

In many real-world applications, there are several con-

flicting objective functions to be optimized simultaneously.

These types of optimization problem are called Multi-

Objective Optimization Problems (MOP), described as

follows:

minimize f~ðx~Þ ¼ ðf1ðx~Þ; f2ðx~Þ; :::; fmðx~ÞÞ
subject to x~2 S

ð1Þ

where S represents a n-dimensional decision (search) space

over real-valued variables. To compare two solution vec-

tors z~2 S and y~2 S, the dominance relation is used. z~ is

said to be dominated by y~ (denoted by y~� z~) if and only if

8j 2 f1; � � � ;mg, fjðy~Þ� fjðz~Þ, and 9k 2 f1; � � � ;mg,
fkðy~Þ\fkðz~Þ. A solution is said to be non-dominated, if it is

not dominated by any other solution. The Pareto set (PS)

represents these optimal solutions in the search space, and

the Pareto front (PF) represents their locations in the

objective space.

There have been numerous Multi-Objective Evolution-

ary Algorithms (MOEAs), which are developed to deal

with various kinds of MOPs. Three types of MOEAs can be

distinguished as: decomposition-based algorithms [e.g.

MOEA/D (Zhang and Li 2007)], Pareto-based algorithms

[e.g. NSGA-II (Deb et al 2002)], and indicator-based

algorithms [e.g. HypE (Bader and Zitzler 2011), and SMS-

EMOA (Beume et al 2007)]. These algorithms are aimed

to provide good coverage of the PF by expanding the

search process towards previously unexplored regions of

the objective space. Multi-objective evolutionary algo-

rithms often converge prematurely, before the search space

has been explored thoroughly (Osuna and Sudholt 2019).

& Mahrokh Javadi

mahrokh1.javadi@ovgu.de

Sanaz Mostaghim

sanaz.mostaghim@ovgu.de

1 Faculty of Computer Science, Otto von Guericke University

Magdeburg, Magdeburg, Germany

123

Natural Computing (2023) 22:341–356
https://doi.org/10.1007/s11047-022-09921-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-4787-8035
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-022-09921-2&amp;domain=pdf
https://doi.org/10.1007/s11047-022-09921-2


This is a result of diminishing diversity among the popu-

lation in the search space.

When solving real-world problems, there is often more

than one optimal solution set with the same or a bit inferior

quality [e.g. route planing problems (Weise and Mosta-

ghim 2021)]. Problems such as these are called Multi-

modal Multi-objective Optimization Problems (MMOP-

s) (Liang et al 2016). These problems can be divided into

two categories: either there are more than two Pareto-op-

timal solution sets (Type-1 MMOPs), or there is one Par-

eto-optimal solution set and several slightly less optimal

solution set of acceptable quality (Type-2 MMOPs) (Tan-

abe and Ishibuchi 2019).

Identifying and maintaining these different optimal

solutions is a challenging task, which is why it is necessary

to boost the populations’ diversity in the search space, so

the population could cover as many Pareto-optimal sets of

solutions as possible. Over the last decade, a number of

classic niche techniques were introduced to manipulate the

solutions’ distribution in the search space for Multi-modal

evolutionary optimization, including crowding (Thomsen

2004), clearing (Pétrowski 1996), speciation (Li et al

2002), and fitness sharing (Goldberg et al 1987). However,

all of these methods deal with single-objective optimiza-

tion algorithms. Since the environmental selection in

MOEAs usually aims to handle the distribution of solutions

in the objective space and approximate the PF more

accurately, these algorithms are unsuitable for dealing with

MMOPs. As a result, several algorithms have been devel-

oped to keep the decision space diverse when dealing with

multi-modality in multi-objective optimization algorithms.

They are known as Multi-modal Multi-Objective Evolu-

tionary Algorithms (MMOEAs).

The two major types of algorithms are decomposition-

based and Pareto dominance-based MMOEAs. The

decomposition-based MMOEAs in (Hu and Ishibuchi

2018a) are an enhanced version of MOEA/D algo-

rithm (Zhang and Li 2007). In (Hu and Ishibuchi 2018b)

and (Tanabe and Ishibuchi 2018), two extended versions of

MOEA/D are provided to solve MMOPs. Using weight

vectors, the MOEA/D algorithm separates an optimization

problem with M objectives into N single-objective prob-

lems, with each sub-problem assigned a single individual.

N individuals are then simultaneously evolved using

MOEA/D. In contrast to MOEA/D, its two variations in

managing MMOPs assigns one or more individuals to

handle equivalencies within each sub-problem (Tanabe and

Ishibuchi 2019).

The MMOEAs from the second category are mainly

extended versions of NSGA-II algorithms: the solutions are

sorted according to the non-dominance sorting relationship

into fronts which takes place in the environmental selec-

tion, then a secondary selection incorporates different niche

techniques to maintain the distribution of the solutions in

the search space. Examples of this method can be observed

in (Kramer and Danielsiek 2010; Kramer and Koch 2009),

where the diversity of solutions is preserved using clus-

tering techniques to keep multiple optimal solutions by

providing multiple stable subpopulations within a popula-

tion. In more recent approaches, external archives are used

to keep diverse non-dominated solutions in decision

space (Sebag et al 2005; Hiroyasu et al 2005; Kim et al

2004). Some proposed MMOEAs implemented the

crowding diversity measure in decision space to deal with

MMOPs (Yue et al 2018; Deb and Tiwari 2005; Liang

et al 2016; Javadi et al 2019; Javadi and Mostaghim 2021).

Moreover, it is noteworthy that there has been some

discussion about implementing diversity or convergence

indicators in set-oriented optimization, a technique that has

shown considerable promise. These indicators have the

potential to be incorporated into MMOEAs to preserve

distributions of solutions in the search space and provide

other interesting options (Grimme et al 2021). An example

of this is the gap indicator (or the average of the distance to

nearest neighbor) (Wang et al 2019), simple to implement

and fast to compute, resulting in the maximization of

diversity of obtained optimal solutions. Another example is

the Rietze s-energy indicator (Falcón-Cardona et al 2019),

which has the advantage of producing a uniform distribu-

tion of the points across a number of manifolds and its

computation is scalable in regards to the number of deci-

sion variables (Grimme et al 2021).

As most MMOEAs measure search quality according to

Pareto dominance, our paper primarily focuses on this type

of MMOEAs. This paper analyzes the drawbacks of using

the crowding distance method, including the illusion of the

solution being in a sparser area when it is not, and calcu-

lating crowding value for solutions on the same front

without accounting for neighbors on adjacent fronts.

Moreover, considering the effects of solutions located on

the same or other fronts within the selection process, we

classify the environmental selection operations of Pareto

dominance-based algorithms into two categories: (i) intra-

front selection operations and (ii) inter-front selection

operations. (i) The first type of density measurement entails

finding each solution’s crowding distance based on the

neighboring solutions that are located on the same front.

The crowding value calculation can give the impression

that the solution is far from other solutions in the decision

space, although it could be located near many other solu-

tions from previous fronts. As a result, the solution is more

likely to survive and pass on to future generations.

(ii) To define the second type of diversity measurement,

we count both the solutions in the same front of the search

space and the solutions in the neighborhood of the prior

fronts in the search space into the calculation of the
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diversity of the solutions. The crowding values of the

solutions are more accurately calculated using this method

of diversity measurement.

This paper additionally extends a previous paper in

which we presented an algorithm called NxEMMO using a

new selection operator (Javadi and Mostaghim 2021),

which fits within the inter-front operation categories of our

proposed selection operation types. Moreover, we propose

another operator called ES-EMMO, which belongs to the

category of intra-front operations.

The remainder of this paper is organized as follows:

Sect. 2 presents our proposed intra-front operations and

discusses other algorithms based intra-front selection

operations and their performances. The following section is

devoted to describing in detail the introduced inter-front

selection operation. Analysis of the experiments and dis-

cussion of the results are presented in Sect. 3. An overview

of our findings is provided in the last section of the paper,

followed by a discussion of future research possibilities.

2 Pareto dominance-based algorithms

Most Pareto-dominance-based MMOEAs are based upon

the NSGA-II algorithm (Deb et al. 2002), which is con-

sidered the most commonly used Pareto-dominance-based

MOEA (Yusoff et al 2011). In the current population,

Pareto dominance is used to evaluate fitness as the primary

criterion. A non-dominated solution has a high fitness value

than the dominated ones. Therefore, it is more likely to

survive and be passed on to future generations. Following

that, diversification is considered as a secondary criterion

for selection.

2.1 Intra-front selection operations

The Pareto-dominance-based MMOEA calculates the

crowding distance value of the solutions in the search space

in order to maintain a good distribution of solutions. This

value is calculated using a similar general structure as in

NSGA-II in the objective space: For each solution in the

Fronti, the mean distance between two adjacent solutions

on the left and right sides of the solution is calculated.

Calculating the crowding distance for each solution is done

by summation of these distances.

We call this type of method of calculating crowding

value the intra-front selection operation, since it ignores

the impact of solutions in the neighborhood of the solution

from other fronts. Most existing MMOEAs use the

crowding distance approach in the decision space to pro-

mote the population’s diversity, such as (Javadi et al. 2021;

Liang et al. 2016; Deb and Tiwari. 2008).

We present, in Fig. 1, an example of a visualized cal-

culation of the crowding distance for the intra-front

selection operations in order to better demonstrate the

concept of an intra-front selection operation.

According to Fig. 1 , the crowding value of the solution

A is calculated by taking into account the effects of the

closest solutions on both sides of the solution in the same

front, rather than other neighbouring solutions from other

fronts, both in the search space and objective space. The

volume of the orange highlighted regions indicates the

crowding value of solution A in the search space as well as

the objective space. This simple example clearly illustrates

the concept of intra-front selection operation.

An example of an MMOEA utilizing the intra-front

operation is the Omni-optimizer algorithm (Deb and

Tiwari 2008). The difference between this algorithm and

NSGA-II is that it takes both objective and decision space

into consideration when calculating the crowding distance

value.

For the ith solution in each front, the crowding distance

is computed the same manner as in the original NSGA-II.

In the search space, the crowding value is calculated sim-

ilarly to the objective space, with the exception that no

infinity large value is given to the boundary individuals.

This distance is calculated by summing the two-times

products of the mean distance of a boundary solution from

its adjacent solutions in each dimension.

After the crowding values of the solutions in decision

space have been normalized by dividing the values by the

number of decision variables, and the crowding values of

the solutions in objective space have been divided by the

number of objective functions, the average crowding value

is obtained for all the solutions in both decision and

objective spaces. In the situation where at least one of the

crowding values for a solution in either search or objective

space is greater than the average, the maximum value of

the crowding distance for the solution in the decision or

objective space is considered as the final crowding dis-

tance. Otherwise, the final crowding distance of the solu-

tions is calculated by taking the minimum crowding

distance value.

The Double Niched Evolutionary Algorithm

(DNEA) (Liu et al 2018), along with Omni-optimizer, used

two sharing functions in the search and objective spaces to

calculate the crowding values of solutions. As follows, the

crowding value fDSðxuÞ of each solution xu in the Fronti is

calculated using the double niche sharing function:

fDSðxuÞ ¼
X

xv2Fronti
Shareobjðu; vÞ þ Sharedecðu; vÞ ð2Þ

In this formulation, Shareobjðu; vÞ and Sharedecðu; vÞ are

computed as follows:
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Shareobjðu; vÞ ¼ max 0;
1� Eucobjðu; vÞ

robj

� �
ð3Þ

Sharedecðu; vÞ ¼ max 0;
1� Eucdecðu; vÞ

rdec

� �
ð4Þ

Where Eucdecðu; vÞ and Eucobjðu; vÞ are euclidean distances

between solutions xu and xv in the search and the objective

spaces. robj and rdec are the niche radius, in the search and

objective spaces, respectively.

As another approach, DN-NSGA-II (Liang et al. 2016)

is proposed to calculate crowding distances within the

search space, instead of the objective space.

The Mo-Ring-PSO-SCD algorithm (Yue et al. 2018)

calculates the crowding distance in the same fashion as

Omni-optimizer, but uses a different method for computing

the crowding value of boundary solutions in the objective

space. With the minimization problem, when the ith solu-

tion meets the minimum value for the mth objective, the

crowding value is 1, and when it meets the maximum value

for the mth objective, it is 0.

In another study, the so called Self-organizing MOPSO

(SMPSO-MM) is introduced to conserve diverse solutions

in decision space with the same objective function values

by utilizing spatial crowding distances and self-organizing

map networks (Liang et al. 2018).

In the NSGA-II-CDws algorithm which is proposed by

(Javadi et al. 2021), the crowding distance value for each

solution is calculated similar to the Omni-optimizer algo-

rithm, but the final crowding value for xu is determined

using a weighted sum approach:

CDfinalðxuÞ ¼ w1 � CDdecðxuÞ þ w2 � CDobjðxuÞ ð5Þ

where CDobjðxuÞ and CDdecðxuÞ represent the crowding

value of the solution xu both in the decision and objective

spaces. The weights associated with the crowding values in

the search and objective spaces are w1 and w1.

To maintain the diversity in the decision space, (Javadi

et al. 2020) presented a grid-based approach using the

Manhattan distance in the search space. The obtained value

is multiplied by its crowding distance value in the decision

space for a more accurate calculation of densities. The

following equation shows the assigned final crowding

value for the solution xu:

CDfinalðxuÞ ¼ CDdecðxuÞ �
X

xv2NBðxuÞ
n� GDðxu; xvÞð Þ

0
@

1
A

ð6Þ

where NBðxuÞ is the list of solutions placed in the neigh-

borhood of xu in the decision space. n represents the

number of decision variables. The grid-distance between xu
and xv is called the GDðxu; xvÞ.

Given all the above studies based on crowding distances,

we have identified several limitations, as described below.

The first limitation is that there are more neighboring

solutions in the decision space than in the objective space,

making calculating the crowding distance in the decision

space more challenging. Let’s consider there are two

objectives and two decision variables in a problem. The

crowding distance along a non-dominated front in the

objective space can be calculated by using two neighboring

solutions. In the search space, however, there can be up to

four (i.e., 2n) neighboring solutions for the same non-

dominated solution. An example of measuring the crowd-

ing distance in the search space is illustrated in Fig. 2. The

crowding distance calculated for C is calculated using four

solutions, F, B, D, and A, and the crowding distance for

E is calculated using three solutions, F, D, and G. As we

can see, C has a higher crowding distance value than E,

Fig. 1 An illustration of the measurement of crowding distance values in the intra-front selection procedure
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even if the solution C is near to the solution B. The reason

is that the crowding distance for C is heavily influenced by

the solution A.

Another shortcoming of the crowding distance calcula-

tion in the decision space is that the overlap of distinct PSs

in the search space creates the illusion that the solution is

located in a dense area, so it is excluded from selection

using crowding distance, even though it is essential to

preserve solutions that enable us to explore uncovered

areas in the decision space. Figure 3 shows the aforemen-

tioned drawback, when using the MMF4 test problem.

Despite being located in a sparse space and the only

solution covering PS2’s left side, the solution A is still

considered near the other solutions when crowding dis-

tances are calculated. This issue arises from the fact that

the PSs are overlapped in both dimensions of the search

space, making it appear crowded. As a consequence, if we

use crowding distance as the secondary selection criterion,

we eliminate these solutions from the search process and

lose the opportunity to search for solutions that are optimal

in the local area.

An alternative solution to the mentioned problems

involves developing a selection methodology that uses

euclidean distances among neighboring solutions on the

same front to determine the best solution. The presented

selection strategy is called Euclidean-based Selection

Evolutionary Multi-modal Multi-objective (ES-EMMO)

algorithm.

2.1.1 ES-EMMO algorithm

In this section, we propose the ES-EMMO algorithm which

has a modified environmental selection from the original

NSGA-II. The goal is to preserve solutions that cover

different and several PSs. This is because in MMOEAs we

aim to avoid removing solutions that are near each other in

objective space but far away in search space, which can

represent different PSs. Considering this concept and

aiming to give higher chances to solutions located near one

another in the objective space, but enough apart in the

search space, we measure Eucxy for each solution, which

is used for the environmental selection procedure.

Figure 4, illustrates an example of the Eucxy measure-

ment for the solution A to make it easier to comprehend the

concept. In the right figure, dAB and dAD represent the

euclidean distances between solution A and its neighbor

solution B and D, respectively. The left figure shows the

distance between solution A and these solutions in the

decision space with d0AB and d0AD representing the corre-

sponding euclidean distances. A solution’s final crowding

value is determined by multiplying its distance from its

neighboring solution B in the search space and objective

space, then by adding the distance between that solution

and its neighboring solution D in the search and objective

space.

In general, the Eucxy for each solution xu is calculated

as follows:

EucxyðxuÞ ¼
X

xv2NBðxuÞ
Eucðfu; fvÞ � Eucðxu; xvÞ ð7Þ

where NBðxuÞ contains all the xu’s adjacent solutions on

both sides of its corresponding front based on each

objective function, while Eucðfu; fvÞ and Eucðxu; xvÞ
represent the euclidean distances between xu and its

Fig. 2 An example of how crowding distance is measured, for two

solutions within a decision space

Fig. 3 An example of the limitation of crowding distances when

estimating density
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neighbor solution xv in the objective space and decision

space.

2.2 Inter-front selection operations

Another disadvantage of crowding distance measurements,

or any selection method that measures density by looking

at neighboring solutions on the same front, is that density

calculations do not consider the neighboring solutions on

previous fronts and therefore are inaccurate.

We can see an example of this problem in Fig. 5.

Crowding distance is calculated based on neighboring

solutions located on the same front. According to the fig-

ure, solution A has a larger crowding distance value since it

has a greater distance from the other solutions in the same

front in the search space (i.e. B, C, and D), as the volume of

the orange highlighted region denotes the crowding value

of solution A. Using the crowding distance metric, there-

fore, increases the chance of selecting solutions A that will

survive and transfer to the next population. In contrast,

however, it does not improve the distribution of the solu-

tions since the same area is already covered by some

solutions from Front1 to Fronti�1.

Therefore, we determine the density of the solutions in

the search space by considering both solutions on the same

front as well as neighboring solutions on previous fronts. In

our study, we refer to these types of selection mechanisms

as inter-front selection operations. Consequently, in the

following section, we present an alternative environment

selection method based on inter-front selection.

Fig. 4 An example of the concept of Eucxy approach

Fig. 5 An example of crowding distance and making the illusion that the solution A is located in a sparse area while it actually is not, by ignoring

the effects of other nearby solutions on previous fronts
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2.2.1 NxEMMO algorithm

The NxEMMO algorithm (Javadi and Mostaghim 2021) is

developed based on the NSGA-II including several modi-

fications. An overview of NxEMMO algorithm can be

found in Algorithm 1.

The population P(t) is initialized at generation t with

N random individuals (lines 1-2). The solutions are eval-

uated (line 3) and the parents are then determined using a

mating selection operator (line 5). Offspring Q are gener-

ated using the Simulated Binary Crossover (SBX) operator

and mutated by the Polynomial Mutation operator (Kumar

and Deb 1995) (lines 6-7). On the basis of the max-min

normalization techniques, the solutions are normalized in

the search space and then the modified environmental

selection mechanism is applied (line 10).

The proposed environmental selection mechanism

(Algorithm 2) is performed on the combination of P and Q.

The algorithm starts by applying non-dominated sorting as

in NSGA-II, and then sorting the solutions into several

fronts, each denoted by Fronti for its ith front (line 1). As

with NSGA-II, the solutions from Front1 to Fronti�1 are

passed onto the new population (Pðt þ 1Þ) (lines 2 to 7). It

is necessary to truncate the solutions in Fronti if they do not

fit into the new population.

The major differences between the NxEMMO and

NSGA-II is its truncation approach. NxEMMO has a new

crowding distance mechanism which replaces the one from

NSGA-II. There are two cases: 1) The Nearest Neighbor

Distance (NND) mechanism is used if the front selected for

truncation is itself Front1. This diversity estimated mea-

surement was originally proposed by Zitzler et al. (Zitzler

et al. 2001), which is designed to keep the size of a set of

solutions to a predefined value. The operation is named

Omission (line 10). 2) we perform the Harmonic Average

Distance (HAD) for truncation but different from the

crowding distance in NSGA-II, we compute HAD between

every single solution in Fronti and all other solutions in

Front1 to Fronti�1. In other words, we set l in Equation 7 as

the number of solutions in Front1 to Fronti�1. Addition is

referred to as this mechanism (line 8). Through this oper-

ator, the solution with the highest HAD value is transferred

to the new population (Pðt þ 1Þ). Once the HAD values for

the remaining solutions in Fronti have been updated, the

next individuals will be selected iteratively until Rðt þ 1Þ
has been filled up. Accordingly, HAD value is calculated as

the distance between a solution i and its k-nearest

neighbors:

HADðiÞ ¼ k
Pl

j¼1
1
dij

ð8Þ

Where the euclidean distance between a solution i and its

nearest neighbor jth is dij. The neighborhood size (i.e. k) is

calculated as follows:

k ¼
ffiffi
l

pj k
ð9Þ

Referring to Fig. 2, solution B and F are two nearest

neighbors to solution C, while G and D are two neighbors

to solution E. Let’s assume dBC ¼ 1, dCF ¼ 3, dEG ¼ 2 and

dED ¼ 4. As a result, the harmonic average distance is

smaller for C than E, i.e. HADðCÞ is smaller than HADðEÞ.
Though, these solutions have an opposite relationship in

the case of crowding value.

An example on the MMF1 test (Liang et al. 2016) in

Fig. 6 (left) illustrates the influence of the Addition func-

tion on the diversity of solutions in the decision space.

Solutions in Front1 to Fronti�1 can be found as �. A blue e

is used to identify the solutions in Fronti. Those solutions

in the red circle are the results of the Addition function. In

addition, the selected solutions are represented by purple h

based on the crowding distance method. The Addition

function only selects those solutions that are located in

sparse areas, considering all solutions, not just those in

1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1 1.5 2 2.5 3
-1

-0.5

0

0.5

1Fig. 6 Using the test problem

MMF1, an example of addition

(left) and omission (right)

functions (Javadi and

Mostaghim 2021)
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Fronti, but also all other solutions from Front1 to Fronti�1.

Comparatively, the crowding distance method does not

select the solutions evenly distributed across the decision

space.

Figure 6 (right) depicts an example of the Omission

function based on the NND mechanism. When only one

front exists, this function is activated, which means the

truncation occurs in Front1. We seek to omit two solutions

in this example. With a blue �, you can see non-dominated

solutions, while a * shows the result of omission using

NND function. As you can see in the figure, two solutions

(duplicates) occupy the same position (marked by the red

circle). One of the duplicate solutions and another solution

in the crowded area are eliminated using NND function.

Taking HAD function as opposed to NND gives a better

comparison of the result of the Omission function. HAD’s

result is represented by red circles. HAD selected the above

duplicates when selecting two solutions for omission. HAD

results in elimination of both duplicates, so the empty

position in that part of the decision space is left, whereas
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NND maintains one of the duplicates at the same position

(the red circle) and eliminates the other in a crowded area.

Because this is a non-dominated front, it has great

significance.

3 Experimental setup

The performance of these two types of inter- and intra-front

selection operations is evaluated and compared using

experiments on 14 different multi-modal multi-objective

test functions whose PFs and PSs have different shapes and

the number of PSs differs. The size population is set to 100.

To meet the termination criteria, all algorithms and testing

problems are limited to a maximum of 10000 function

evaluations each. Assuming n is the number of decision

variables, Pm ¼ 1=n and Pc ¼ 1 are the probability of

polynomial mutation and simulated binary crossover

(SBX), respectively. The distribution indices of these

operators are set to gc ¼ 20 and gm ¼ 20.

In the NSGA-II-CDws the weights in the weighted sum

approach have equal distribution in both the search and

objective spaces as wdec ¼ 0:5 and wobj ¼ 0:5.

Implementation of algorithms was performed on Pla-

tEmo Platform, version 2.8.0 (Tian et al. 2017), using

Matlab R2020a running at 3 GHz and with 16 GB of RAM

in a 64-bit environment using an Intel Core i7 processor.

In this study, we compare two of our proposed algo-

rithms, NxEMMO [that is based on inter-front selection

operations (Javadi and Mostaghim 2021)] and ES-EMMO

(that is based on inter-front selection operations), with their

competing algorithms that are based on inter-front opera-

tions. Moreover, the following algorithms were chosen for

comparison: Omni-optimizer (Deb and Tiwari 2008), DN-

NSGA-II (Liang et al. 2016), and NSGA-II-CDws and our

proposed ES-EMMO algorithms.

3.1 Metrics for evaluating performance

The following performance indicators are employed for

measuring the quality of the solutions obtained by the

algorithms: Inverted Generational Distance Plus in the

objective space (IGDþÞ (Ishibuchi 2015), Inverted Gener-

ational Distance in the decision space (IGDx) (Zhou et al.

2009), Pareto-Set Proximity (PSP) (Yue et al. 2018). IGDx

and PSP performance indicators represent algorithms’

performances in the search space, whereas (IGDþÞ indi-

cators display algorithms’ functionality in the objective

space.

The IGDx value represents both the convergence and the

diversity of the obtained optimized solutions:

IGDxðP�;RÞ ¼
P

v2P� R� vk k
jP�j ð10Þ

Where P� indicates the set of solutions which are uniformly

distributed in the PS, and jP�j is the cardinality of P�. R
denoted as the obtained solution set in decision space. The

euclidean distance R� vk k between a sampled point v and

any point in R is determined as the minimum euclidean

distance.

Moreover, the overlapping ratio between the bounding

of the PS and the obtained results is demonstrated by the

PSP value, which is calculated as the fraction of the cover-

rate to its obtained IGDx values:

PSPðP�;RÞ ¼ CRðP�;RÞ
IGDxðP�;RÞ ð11Þ

CR ¼
Yn

i¼1

di

 ! 1
2n

ð12Þ

where CR (i.e. the cover rate), is a modified version of the

Maximum Spread (MS) (Tang and Wang 2012) for search

space:

di ¼

0 if qmaxi 6 Qmin
i or qmini > Qmax

i

1 ifQmin
i ¼ Qmax

i

ðmin Qmax
i ; qmaxi

� �
� max Qmin

i ; qmini

� �

Qmax
i � Qmin

i

� �
otherwise

8
>>><

>>>:

ð13Þ

Where in the search space, Qmax
i and Qmin

i are maximum

and minimum values of the PS in dimension i, while qmaxi

and qmaxi are maximum and minimum obtained values by

the obtained optimal solutions in dimension i. The

dimensionality of the decision space is represented by n.

To measure the similarity between optimal solutions in

objective space and the PF, we applied the IGDþ perfor-

mance metric, a weakly Pareto-compliant version of the

IGD (Zhang et al. 2008) performance metric. Specifically,

In both the decision and the objective spaces, low values of

IGDx and IGDþ, as well as a high PSP value, indicate that

the solution set is distributed evenly in both spaces.

3.2 Benchmark problems

This study compares two types of optimization algorithms

using state-of-the-art test cases for multi-modal and multi-

objective optimization. We take 14 benchmark problems:

MMF1z, MMF1 to MMF9, MMF14, and Omni-test, SYM-

PART (simple and rotated) problems. We additionally take

the test problems from the CEC2019 competition on Multi-

modal Multi-Objective Optimization (Liang et al. 2019;

Yue et al. 2019). Both the decision variables and the

objective functions in the test problems are bi-dimensional.

As it is discussed in (Yue et al. 2019), depending on the PS
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and PF geometries, the overlap between PSs on each

dimension, the number of PSs, and the coexistence of local

and global PSs, the level of difficulty of the test problems

varies. The characteristics of the test cases presented in

Table 1 represent important information about the diffi-

culty of the test cases, as well as the reasons why certain

algorithms perform better in certain test cases, and vice

versa. For example, the number of PSs associated with

MMOPs is an important indicator of their complexity, as

problems with more PSs may become more difficult to

solve. The shape of the PF determines how the MMOEAs

will react to PFs of different shapes, such as linear/non-

linear, convex or concave. In some cases, algorithms per-

form best in convex shapes, while others perform best in

concave shapes. PF’s that are nonlinear are harder to find

than those that are linear. In addition, the performance of

the algorithms needs to be evaluated on different PS

shapes, such as linear, nonlinear, symmetrical and asym-

metric, and other complex ones. A nonsymmetric PS (e.g.

MMF1z) is complex to solve and is more similar to real-

life problems. Moreover, it is beneficial to examine the

operation of the MMOEAs in the escaping of the trap of

local PS by having test cases in which both the local and

global PS coexist.

4 Analysis

Experimental results are based on 31 independent runs on

each test problem for each algorithm. To examine the

significance of differences between best-performing and

the other algorithms, we present the median and

interquartile range for each of the performance indicators.

At the significance level of 5%, the null hypothesis of equal

medians is rejected on each test problem using the Mann-

Whitney-U statistic.

In Tables 2, 3, and 4 the best-performing algorithms

are displayed in bold, whereas an asterisk (*) demonstrates

significant statistical differences relative to the best-per-

forming algorithms. The values in the tables show the

algorithms regarding the selection categories. It is our

intention to compare the performance of the proposed

algorithms with the others, as well as to compare their

performance of two selection operations with each other.

In Tables 2 and 3, we can see that the NxEMMO

algorithm outperforms other algorithms in 11 out of 14 test

instances. As expected, these results meet our expectations

that modifications to the environmental selection and

replacing the crowding distance in the NxEMMO algo-

rithm lead to improved results. When NxEMMO is used, it

is possible to detect the solutions in sparse areas in the

decision space more effectively than the crowding distance

method used in the algorithm that utilizes inter-front

selection operations. Algorithm 2 describes how adding

and omitting in subsequent steps leads to enhanced PS

approximation. Moreover, as we see in Tables 2 and 3, ES-

EMMO performs the best among others of the three

algorithms on the MMF3 test case that involves local PS. It

appears that DN-NSGA-II and Omni-optimizer algorithms

are more prone to getting trapped into local PSs.

A closer look at the interquartile results for the IGDx

values in Table 2 reveals that in 10 out of the 14 test cases,

the NxEMMO has a lower score than its competition. It

means that the results obtained with the NxEMMO algo-

rithm are of better stability and robustness over several

runs of the algorithm, since they did not show much vari-

ation when compared to the other state-of-the-art algo-

rithms. Morover, when we compare the results for the

Table 1 Characteristics of Multi-modal multi-objective testing problems (Javadi et al. 2020)

Test problem No. of PSs Geometry in PF Geometry in PSs Local and global PSs coexist

Omni-test 27 Convex linear and symmetric No

SYM-PART-simple 9 Convex linear and symmetric No

SYM-PART-rotated 9 Convex linear and symmetric No

MMF1 2 Convex Non-linear and symmetric No

MMF1z 2 Convex Non-linear and non-symmetric No

MMF2 2 Convex Non-linear and symmetric Yes

MMF3 2 Convex Non-linear and symmetric Yes

MMF4 4 Concave Non-linear and symmetric No

MMF5 4 Convex Non-linear and symmetric No

MMF6 4 Convex Non-linear and symmetric No

MMF7 2 Convex Non-linear and symmetric No

MMF8 4 Concave Non-linear and symmetric No

MMF9 4 Convex Non-linear and symmetric No

MMF14 2 Concave Linear and symmetric No
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NxEMMO algorithm and the proposed ES-EMMO algo-

rithm, we can see that the NxEMMO algorithm does better

in 10 out of 14 test cases based on statistical significance

compared to ES-EMMO algorithms. In comparison to the

results for the MMF3 test cases, ES-EMMO did not differ

statistically from NxEMMO, regardless of the better IGDx

value.

The performance indicator for PSP consists of the ratio

of cover rate to IGDx, where cover rate (or overlap rate)

indicates the percentage of the defined region between the

optimal solution and the PS. The results in Tables 2 and 3

are nearly identical, since the overlap rate of the test results

is one, which is ideal value.

Table 3 A comparison of the PSP values obtained by different algorithms

Problems Inter-front operatons Intra-front operations

NxEMMO ES-EMMO NSGA-II-CDws DN-NSGA-II Omni-optimizer

MMF1 14.632 (2.8334) 14.193 (1.1166) 13.5223* (1.1236) 6.3719* (1.5845) 7.0324* (1.4886)

MMF1z 18.1833 (4.5993) 16.2748* (2.3338) 16.2743* (3.4372) 7.7746* (3.0687) 8.7832* (3.395)

MMF2 10.7635* (5.6645) 8.995* (9.7081) 13.2636 (8.692) 5.6296* (4.8101) 6.6486* (6.3993)

MMF3 11.3401 (10.1311 14.0732 (9.7318) 11.4225 (14.095) 6.8619* (3.4605) 7.2699* (5.3665)

MMF4 28.6876 (2.5845) 6.5626* (1.5742) 18.4703* (3.5828) 7.2117* (2.4515) 7.0469* (2.5041)

MMF5 1.2386 (0.030162) 1.2129* (0.069761) 1.1609* (0.034616) 3.9289* (0.8079) 3.7534* (0.652)

MMF6 10.3903 (1.2134) 7.6453* (1.0725) 8.3961* (0.68611) 5.0197* (0.85393) 4.6912* (0.74406)

MMF7 26.5611 (3.6799 21.9321* (6.2575) 23.93* (3.5717) 12.5578* (2.8021) 15.3057* (3.4277)

MMF8 3.5652* (1.5098) 0.82431* (0.11228) 4.804 (2.9008) 1.7645* (1.4959) 1.9937* (1.3525)

MMF9 132.6703 (7.5858) 52.2785* (25.4089) 40.368* (46.8601) 27.9712* (12.6302) 32.3216* (19.3085)

MMF14 129.067 (7.7256) 97.1082* (13.8962) 27.2835* (34.4196) 26.5181* (14.0926) 30.7475* (19.1567)

SYM-PARTsimple 15.4253 (1.4269) 0.29585* (0.14055) 0.44329* (0.66802) 0.13114* (0.06023) 0.1224* (0.077236)

SYM-PARTrotated 0.33579 (0.21216) 0.236 (0.2024) 0.31855 (0.17367) 0.095341* (0.059343) 0.078616* (0.060205)

Omni-test 28.420383 (2.151) 2.289396* (2.074257) 14.58106* (6.009393) 1.171727* (0.492373) 0.99526* (0.32607)

(*) indicates statistical significance

The best algorithm is highlighted in bold type

Table 2 A comparison of the IGDx values obtained by different algorithms

Problems Inter-front operations Intra-front operations

NxEMMO ES-EMMO NSGA-II-CDws DN-NSGA-II Omni-optimizer

MMF1 0.06826 (0.011957) 0.069926 (0.004074) 0.073512* (0.005277) 0.14906* (0.037849) 0.13652* (0.023222)

MMF1z 0.054599 (0.013128) 0.060952* (0.008315) 0.060436* (0.012492) 0.12516* (0.041036) 0.10905* (0.037024)

MMF2 0.086632* (0.060714) 0.099559* (0.099973) 0.068848 (0.041494) 0.15677* (0.096484) 0.12076* (0.09012)

MMF3 0.072191 (0.042195) 0.060297(0.044795) 0.071141 (0.056237) 0.11243* (0.055217) 0.10998* (0.04382)

MMF4 0.034715 (0.003061) 0.1522* (0.041193) 0.053797* (0.010829) 0.13763* (0.049653) 0.1392* (0.046631)

MMF5 0.56786 (0.013278) 0.57518* (0.026768) 0.59996* (0.011188) 0.6072* (0.040392) 0.5984* (0.039829)

MMF6 0.09557 (0.011502 0.13045* (0.016892) 0.11779* (0.010055) 0.19174* (0.027151) 0.20344* (0.028455)

MMF7 0.036965 (0.003481 0.042214* (0.009148) 0.040405* (0.006513) 0.075119* (0.015421) 0.060416* (0.012387)

MMF8 0.26061* (0.11824) 0.96612* (0.086946) 0.20274(0.10151) 0.50743* (0.37566) 0.48434* (0.37711)

MMF9 0.007537 (0.000432) 0.019128* (0.010262) 0.024772* (0.038961) 0.035751* (0.019869) 0.030939* (01914)

MMF14 0.007748 (0.000466) 0.010298* (0.001504) 0.036652* (0.050487) 0.03771* (0.021226) 0.032523* (0.022532)

SYM-PARTsimple 0.064747 (0.006078) 3.3772* (1.1078) 2.2426* (2.299) 7.0069* (2.2805) 7.0481* (1.9072)

SYM-PARTrotated 2.2081 (1.4778) 3.2888* (1.8333) 3.004((1.0614) 6.1886* (2.4087) 6.7457* (2.5533)

Omni-test 0.035064(1.4778) 0.434055* (0.343155) 0.06756* (0.025421) 0.848054* (0.310415) 0.99567* (0.285056)

(*) indicates statistical significance

The best algorithm is highlighted in bold type
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Table 4 A comparison of the IGDþ values obtained by different algorithms

Problems Inter-front operatons Intra-front operations

NxEMMO ES-EMMO NSGA-II-CDws DN-NSGA-II Omni-optimizer

MMF1 0.004407* (0.000192) 0.005249* (0.000587) 0.003693 (0.000266) 0.00784* (0.001516) 0.006685* (0.000785)

MMF1z 0.004409* (0.000496) 0.005658* (0.000776) 0.003767 (0.000206) 0.005977* (0.000577) 0.005862* (0.000747)

MMF2 0.013729 (0.00909) 0.015001 (0.016694) 0.014602 0.007049) 0.03004* (0.02578) 0.017521 (0.032371)

MMF3 0.011404 (0.005682) 0.009107 (0.003964) 0.009442 (0.005035) 0.028659* (0.042753) 0.017437* (0.014954)

MMF4 0.004546* (0.000452) 0.023406* (0.014644) 0.003513 (0.000244) 0.006562* (0.000507) 0.005681* (0.000313)

MMF5 0.009195 (0.000985) 0.01069* (0.001862) 0.007854* (0.001077) 0.007269* (0.000708) 0.006231* (0.0006)

MMF6 0.004868* (0.000527) 0.011286* (0.00568) 0.003773 (0.000434) 0.007297* (0.000238) 0.005859* (0.000394)

MMF7 0.004802* (0.000363) 0.006479* (0.001644) 0.003844 (0.000252) 0.007803* (0.001193) 0.006035* (0.000333)

MMF8 0.071495* (0.000205) 0.075707* (0.004669) 0.070937* (9e-05) 0.007657* (0.001142) 0.006211 (0.000697)

MMF9 0.005995 (0.000403) 0.019234* (0.011778) 0.006378* (0.000423) 0.028828* (0.003106) 0.024781* (0.00241)

MMF14 0.005411* (0.000423) 0.008862* (0.001648) 0.004695 (0.000283) 0.010856* (0.000713) 0.010588* (0.000575)

SYM-PARTsimple 0.013407* (0.001858) 0.01664* (0.003915) 0.008747 (0.000575) 0.026648* (0.003773) 0.025388* (0.002811)

SYM-PARTrotated 0.01465* (0.001282) 0.019777 (0.006809) 0.011473 (0.00067) 0.030941* (0.004027) 0.026036* (0.001754)

Omni-test 1.00167* (0.000348) 1.001883 (0.000994) 1.000869 (0.000139) 1.000955* (0.000187) 1.000915 (0.000203)

(*) indicates statistical significance

The best algorithm is highlighted in bold type

Fig. 7 Obtained solutions in both decision and objective spaces for MMF6 test problem
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Based on the results in terms of intra-front selection

operations, ES-EMMO outperforms the NSGA-II-CDws

algorithm in five cases. In addition, in most of the test

cases, it also outperforms the Omni-optimizer and DN-

NSGA-II algorithms, which use crowding distance metrics

on the decision space. These results confirm that using

other distance metric than the crowding distance metric can

help to overcome the above-mentioned problem and boost

the diversification over the PSs.

However, in Omni-test problem ES-EMMO, Omni-op-

timizer and DN-NSGA-II algorithms fail to deliver good

performance; this could be attributed to a poor distribution

of solutions within the search space, as they were unable to

find all 27 PS. On the other hand, NxEMMO algorithm

shows good results regarding preservation of a large

number of PSs.

We additionally observe that NSGA-II-CDws shows

superiority to all the other algorithms when it comes to

IGD? values (i.e. Table 4). We expect this algorithm to

have a better approximation of PF in the objective space,

since it considers the diversity of the solutions in the

objective space in its density calculations. According to the

analysis, NxEMMO is the second-best algorithm in the

objective space, after NSGA-II-CDws. Both Omni-opti-

mizer and DN-NSGA-II algorithms perform not so well

when compared to other algorithms in the category of intra-

front selection. All in all, as we expected, considering the

effects of neighboring solutions further improves the den-

sity estimation of the solutions within the search space.

Therefore, inter-front selection operations generally out-

perform intra-front selection operations.

In order to provide better visualization of the result

population and demonstrate the similarity between the

obtained final solutions in both decision and objective

spaces, Figs. 7, 8, and 9 show the results of the run with

median IGDx performance indicator for the MMF6,

MMF9, and SYM-PARTsimple test cases. A solid blue line

corresponds to the actual PF and PS of the test problems,

while the red marker represents the solutions obtained

using competitive algorithms. We compare the results for

the NxEMMO algorithm, a representation of an inter-front

selection operation, as well as ES-EMMO and

NSGA-II-CDws, a representation of an intra-front selection

operation. On closer inspection of Figs. 7, 8, and 9 on the

search space, the obtained results for the algorithm

NxEMMO on the MMF6, MMF14 and SYM-PARTsimple

test cases, this algorithm has a better coverage area over the

PS than the other two, and the results are distributed more

evenly over the PS for those test problems. We can see, for

Fig. 8 Obtained solutions in both decision and objective spaces for MMF9 test problem
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instance, that in the SYM-PARTsimple test case, the

NxEMMO algorithm succeeds in finding and preserving all

PSs, whereas other state-of-the-art algorithms are able to

locate only some PSs. Furthermore, we can see that the

NxEMMO algorithm is capable of providing reasonable

coverage of the PF.

5 Conclusion and future works

This paper deals with multi-modal multi-objective opti-

mization problems. It highlights some problems associated

with crowding distance methods, and suggests two differ-

ent methods to deal with these difficulties. Additionally, we

classified the selection operations of Pareto-based

MMOEAs into inter- and intra-front selection operations.

In our comparisons, we include the proposed algorithms

and other state-of-the-art algorithms, which also fall into

the categories we introduced. the experiments demonstrate

that the proposed inter-front selection method performs the

best when compared to algorithms that use other selection

methods. In the future, research will need to focus on

developing algorithms to handle multiple PSs and PFs, and

proposing performance indicators for measuring the den-

sity of solutions properly in their local area.
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