
Computational graph pangenomics: a tutorial on data structures
and their applications

Jasmijn A. Baaijens1,2 • Paola Bonizzoni3 • Christina Boucher4 • Gianluca Della Vedova3 • Yuri Pirola3 •

Raffaella Rizzi3 • Jouni Sirén5

Accepted: 14 February 2022 / Published online: 4 March 2022
� The Author(s) 2022, corrected publication 2022

Abstract
Computational pangenomics is an emerging research field that is changing the way computer scientists are facing chal-

lenges in biological sequence analysis. In past decades, contributions from combinatorics, stringology, graph theory and

data structures were essential in the development of a plethora of software tools for the analysis of the human genome.

These tools allowed computational biologists to approach ambitious projects at population scale, such as the 1000

Genomes Project. A major contribution of the 1000 Genomes Project is the characterization of a broad spectrum of genetic

variations in the human genome, including the discovery of novel variations in the South Asian, African and European

populations—thus enhancing the catalogue of variability within the reference genome. Currently, the need to take into

account the high variability in population genomes as well as the specificity of an individual genome in a personalized

approach to medicine is rapidly pushing the abandonment of the traditional paradigm of using a single reference genome. A

graph-based representation of multiple genomes, or a graph pangenome, is replacing the linear reference genome. This

means completely rethinking well-established procedures to analyze, store, and access information from genome repre-

sentations. Properly addressing these challenges is crucial to face the computational tasks of ambitious healthcare projects

aiming to characterize human diversity by sequencing 1M individuals (Stark et al. 2019). This tutorial aims to introduce

readers to the most recent advances in the theory of data structures for the representation of graph pangenomes. We discuss

efficient representations of haplotypes and the variability of genotypes in graph pangenomes, and highlight applications in

solving computational problems in human and microbial (viral) pangenomes.

& Paola Bonizzoni

paola.bonizzoni@unimib.it

Jasmijn A. Baaijens

j.a.baaijens@tudelft.nl

Christina Boucher

christinaboucher@ufl.edu

Gianluca Della Vedova

gianluca.dellavedova@unimib.it

Yuri Pirola

yuri.pirola@unimib.it

Raffaella Rizzi

raffaella.rizzi@unimib.it

Jouni Sirén

jlsiren@ucsc.edu

1 Department of Intelligent Systems, Delft University of

Technology, Van Mourik Broekmanweg 6, 2628XE Delft,

The Netherlands

2 Department of Biomedical Informatics, Harvard University,

10 Shattuck St, Boston, MA 02115, USA

3 Department of Informatics, Systems and Communication

(DISCo), University of Milano-Bicocca, V.le Sarca, 336,

20126 Milan, Italy

4 Department of Computer and Information Science and

Engineering, University of Florida, 432 Newell Dr,

Gainesville, FL 32603, USA

5 Genomics Institute, University of California, 1156 High St.,

Santa Cruz, CA 95064, USA

123

Natural Computing (2022) 21:81–108
https://doi.org/10.1007/s11047-022-09882-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-022-09882-6&domain=pdf
https://doi.org/10.1007/s11047-022-09882-6

1 Introduction

The 1000 Genomes Project (The 1000 Genomes Project

Consortium 2015) marks the beginning of new computa-

tional approaches to genomic studies. The high variation

rate among individuals, and the availability of thousands of

human genomes have accelerated computational efforts

towards graph models as a new paradigm for representing a

reference genome. The question ‘‘what is an ideal reference

genome?’’ is becoming the focus of investigations that also

involve theoreticians in the computer science community.

In this direction, algorithmic approaches have been pro-

posed to implement pangenome graphs. Moreover, the

literature presents experimental evidence of the advantages

of those approaches (Rakocevic et al. 2019; Sibbesen et al.

2018; Dilthey et al. 2015; Garrison et al. 2018). Various

reviews have presented this new research field (Paten et al.

2017; Eizenga et al. 2020b), while challenges from dif-

ferent domains are outlined by Computational Pan-Geno-

mics Consortium (2018).

The aim of this tutorial is to discuss the main algorith-

mic approaches and issues that will represent the focus of

computer science research in the next years. After illus-

trating the motivation for computational pangenomics, the

tutorial discusses recent succinct data structures that are

highly promising in main applications of pangenomics. The

tutorial is organized as follows. First, the basics of com-

putational pangenomics are presented, including construc-

tion of a pangenome graph, possible graph representations,

operations over a pangenome, and data structures that

index a pangenome. Second, related to this last concept, we

present recent data structures in pangenomics, the posi-

tional Burrows–Wheeler Transform and its generalization

to manage graphs, called graph BWT. Third, issues related

to time and space complexity are addressed by illustrating

the essentials of the r-index based data structure that allows

efficient implementation of well known queries, such as

finding maximum exact matches (MEMs). Lastly, we

conclude with exemplifications of the uses of the above

mentioned methods to application scenarios aimed at

detecting and representing pangenome variation such as in

haplotyping and genotyping computational problems. A

final section is devoted to the discussion of open problems.

2 From a linear sequence to a graph
reference of a genome

The term pangenome goes back more than fifteen years ago

to the framework of microbial analysis of the entire

genomic repertoire of a given phylogenetic clade (Tettelin

et al. 2005). A pangenome describes the union of sequence

entities, such as genes or open reading frames, shared by

genomes of a clade. Its main purpose is to represent

commonly present and frequently absent sequences (e.g.,

genes) of interest. While the word ‘‘pangenome’’ in the

microbiology literature is often used to describe core genes

and strain specific genes, pangenomics is becoming the

conceptual framework to deal with the trends in genomics

of the last decade: the extraordinary growth of information

on human genomes, and the discovery of significant levels

of large-scale genomic variation in many eukaryotic

species.

In contrast to a linear-genome reference, a pangenome is

a reference system for representing sequence variations of

the genomic sequence of a species. In particular, a pan-

genome graph is conceived to be the ideal representation

for a variety of bioinformatics tasks, which were originally

performed on a linear reference genome. This graph

encodes the commonalities and differences among a col-

lection of genomes of the same species at the sequence

level. The interest in replacing linear reference genomes

with pangenome graph models has largely increased with

the discovery of limitations in performing various tasks,

such as read mapping and variant calling.

2.1 Limitations of a linear reference genome

Conventionally, a structural variant (SV) is a genomic

mutation involving 50 or more base pairs. SVs can take

several forms such as deletions, insertions, inversions,

translocations, or more complex events. The study of the

1000 Genomes Project with short reads technologies has

enabled the discovery of more than 88 million variants of

variable length—84.7 million single nucleotide polymor-

phisms (SNPs) and 3.6 million short insertions/deletions

(indels)—and 60,000 structural variants. On the other hand,

it is estimated that the typical genome contains about 2500

large SVs in total, and one SNP every 1200 to 1450

bases (The 1000 Genomes Project Consortium 2015). The

introduction of accurate long read sequencing technology

to the detection of SVs revealed an even larger number of

candidate variations in an individual genome w.r.t. the

reference genome (Khorsand et al. 2021). The discovery of

so many variants has shed light on major limitation of

linear references: reads sampled from an individual carry-

ing certain SVs may not align to the reference—in which

case, the read is frequently considered an artifact and dis-

carded. Moreover, the presence of rare alleles in the ref-

erence introduces a bias when mapping reads (see Fig. 1).

Since mapping reads is still a crucial step in most analyses

for the identification of genetic variants that are linked to

disease, clinical applications need to go beyond the linear

reference genome.

82 J. A. Baaijens et al.

123

Ballouz et al. (2019) identified other limitations of a

linear reference, such as the difficulties in introducing

changes in the current reference, and the fact that it does

not sufficiently capture population diversity. A reference

genome is often thought of as a healthy baseline, while it is

not a healthy genome, nor the most common, nor the

longest, nor an ancestral haplotype. Moreover, there are

some clear advantages in using a pangenome refer-

ence (Ballouz et al. 2019): reducing reference bias,

increasing mapping accuracy when sequencing a new

individual (Rakocevic et al. 2019), increasing rare variant

identification accuracy, and improving de novo assembly

of a new individual. At the same time, representing pop-

ulation diversity is essential in genome-wide association

studies for precision medicine (Popejoy and Fullerton

2016). Approaches based on linear reference genomes

underlie a particular consensus model of the genome which

is convenient but not fully realistic. When using such a

model, reconstructed genomes are often more similar to the

reference than they actually are (Rakocevic et al. 2019).

A reference genome stored as a linear sequence would

fail in representing the diversity in the human population—

ignoring the need to represent the diversity, for example, in

the African population, which has been traditionally under-

represented in biomedical research. In 2016, Popejoy and

Fullerton (2016) state that 81% of the genome-wide asso-

ciation study data were from European ancestry, with the

other percentage mainly given by Asian populations.

Moreover, African populations, which show high vari-

ability, are not captured in association studies (Choudhury

et al. 2020a). The fact that a single donor of admixed

African and European ancestry has contributed the major-

ity (more than 70%) of the current human reference

genome (Schneider et al. 2017; Green et al. 2010), the

known GRCh38, is a clear limitation since a single indi-

vidual cannot be representative of the variability in a large

population. The above observation that the majority of

DNA in the reference from the human genome project is

likely to come from African-American ancestry is also

confirmed by the evaluation study of rare reference alleles

(RRA) by Magi et al. (2015), where it is shown that more

than 25% of GRCh38 RRAs are only found in African

populations of the 1000 Genomes Project, while 4% are

European, 2.1% are Asian, and 1.1% are American. Con-

sequently, more variation will be missing from the refer-

ence genome in cohorts with higher diversity (African

populations) and drift from donors (East Asian) who pro-

vided material for it and with lower diversity. It is expected

that even a larger number of variations will be incorporated

into the reference genome with the expansion of several

ongoing sequencing projects.

At the same time, the development of approaches rely-

ing on linear genomes is well consolidated. For instance,

the Variant Call Format (VCF) (Danecek et al. 2011) has

been widely adopted by the scientific community as the

core file format to represent the information of a collection

of multiple genomes. This format allows for the repre-

sentation of relatively simple variations that can be easily

reconciled with a linear reference: insertions, deletions, and

nucleotide mutations called single nucleotide polymor-

phisms (SNPs).

Ref. ACGGTTAAGGGCGATCG--CTCGTTTT
ACGGTTAAG--CGATCG--CTCGTTTT
ACCGTTAA----GATCGAACTCG----
ACCGTTAAGGGCGATCGAA----TTTT

(a)

G CTCG

AC GTTAA G GG C GATCG TTTT

C AA

(b)

Reads:
ACCGTTAAGCGA
TCGAATTTT

ACCGTTAAGCGA
ACGGTTAAGGGCGATCGCTCGTTTT

TCGAA--TTTT

(c)

G CTCG

AC

AC

GTTAA

GTTAA

G

G

GG C

C

GATCG

GA

TCG

TTTT

TTTT

C

C

AA

AA

(d)

Fig. 1 A toy example of how a pangenome graph improves the

quality of mapping reads to a reference genome. a A multiple

sequence alignment of a linear reference genome and other three

genomes that contain variations w.r.t. the reference. b A variation

graph built from the matrix of the multiple alignment of the genomes;

in red the edges that represent variations in the graph and form the

typical ‘‘bubbles’’ in the graph. Observe that the graph may contain a

path that does not represent any input genome (for example,

ACCGTTAAGGGCGATCGAACTCGTTTT). c Mapping of two reads

(ACCGTTAAGCGA and ACCGTTAAGCGA) to the linear reference

genome. Observe that the alignments induces mismatches and indels.

d Mapping of the same reads to the variation graph. Observe that, in

this case, the mapping is possible without any mismatch

Computational graph pangenomics: a tutorial on... 83

123

2.2 Graph representations for multiple genomes

Graphs have been extensively used in the literature to

model genome sequences. Assembly graphs (i.e., de Bruijn

graphs (Compeau et al. 2011) and string graphs (Myers

2005)) are the most well-known type of graph used to store

and represent biological data. These graphs are built from

fragments of a genome which are commonly referred to as

sequence reads, and represent the common regions

between reads (fixed or of variable length) as edges in the

graph. These graphs will be discussed in detail in Sect. 6.2.

Sequence reads are produced by sequencing technologies

and have different characteristics in terms of length, errors

and throughput, meaning the amount of data that can be

produced in a single run of the machine.

Overlap graphs form a specific type of string graphs,

where vertices represent sequence reads and arcs indicate

non-empty overlap (either exact or inexact) between the

reads reads (Rizzi et al. 2019). In particular, string

graphs (Myers 2005), introduced to assemble genomes

from sequence reads, provide a graph representation of

genome sequences with some features that are especially

useful: (1) each vertex is labeled by a sequence and its

reverse-complement, (2) arcs connect two sequences that

appear consecutively in the genome (possibly with an

overlap), and (3) walks correspond to portions of the

genome.

Assembly graphs introduce another complication, since

we cannot know the strand from which the read has been

extracted. In this case, each vertex has two labels, where

one is the reverse complement of the other. As customary

for assembly graphs, we represent only the canonical

label—the label that is lexicographically smaller – but each

walk must distinguish between the two labels. Partially

ordered graphs (Lee et al. 2002) have also been used to

represent the sequence alignment of multiple genomes.

This is one of the first approaches used for representing

shared sequences among multiple genomes. Partially

ordered graphs have been investigated in the literature and

at the same time some graph representations have been

proposed to store multiple sequences or assembly graph-

s (Li et al. 2017).

2.3 Pangenome graphs and their main
applications

Pangenome graphs have been proposed as a new paradigm

for representing reference genomes. This is a natural rep-

resentation since graphs provide a compact and concise

data structure for performing several tasks, including

classical search operations. Graph-based representations of

the human genome may encode a large number of variants,

such as those reported by The 1000 Genomes Project

Consortium (2015). However, the size and number of such

graphs is likely to further increase with the completion of

ongoing sequencing projects. The adoption of pangenome

graphs in performing tasks for the analysis and comparison

of genomes in presence of variations is only at the begin-

ning, but such pangenomics approaches have shown to

outperform single reference genome approaches.

• Structural variant graph representation is a computa-

tional problem that is relevant for many tasks. It is not

possible to represent complex structural variants with

use of a single reference genome. Structural variants

may change a genome into a similar but functionally

different genome, and are the result of rearrangements

of sequence segments in the genome, such as for

example the duplication, inversions and translocation of

segments of the genome. A graph is a more appropriate

structure to represent rearrangements among multiple

genomes, since orientation of edges, cycles and com-

plex structures in a graph, such as bubbles, represent

structural variants in a way that they can be managed by

algorithms and suitable data structures to index and

query graphs. A bubble is a directed acyclic subgraph

determined by a pair of vertices, a source vertex s and a

terminal vertex t such that all paths from s to t are

vertex disjoint.

• Highly accurate read alignment to regions of high

variability. Read alignment to a sequence is the

operation of establishing the location in the sequence

where the read originated as a fragment. There are

regions in the human genome that are important for

immunology studies but very challenging for read

alignment due to the large number of variations. An

example is given by the � 5 million base region in the

human genome called the Major Histocompatibility

Complex (MHC). Providing a suitable pangenomic

representation for read alignment—especially within

these regions of the human genome—is an important

computational challenge.

• Genotyping variants is the problem of reconstructing

the allele variants that characterize an individual. Due

to the diploid nature of the human genome, chromo-

somes come in pairs that are highly similar but present

differences at the nucleotide level. For example,

nucleotide differences can occur, and determine the

homozygous or heterozygous state of positions or loci

of the chromosomes: homozygous loci bear the same

value on both chromosome copies, while heterozygous

loci bear different values on the two copies. Genotyping

an individual is a computational task that is performed

by having as input a sample of reads from the

individual (Denti et al. 2019). Typical genotyping

84 J. A. Baaijens et al.

123

approaches make use of read alignment to a linear

reference, in which case SVs or any main difference at

the sequence level between the reference and the

individual sample may potentially lead to bias and

erroneous and incomplete genotyping.

• Haplotype resolved pangenome analysis is a computa-

tional task aiming to specify haplotype information in a

graph representation. While genotyping an individual

means to specify the fact that a site is homozygous or

heterozygous, haplotyping (or phasing) of the genome

consists in determining on which chromosomal copy,

i.e., paternal or maternal, the different alleles are

located (Bonizzoni et al. 2016).

It is interesting to note that solving the problem of geno-

typing variants means combining some of the above listed

tasks, starting from a suitable representation of highly

polymorphic regions and finally considering the alignment

of reads to that representation. Giraffe (Sirén et al. 2021) is

a recent approach based on short read alignment for

genotyping of SNPs, indels, and SVs genome-wide. Highly

polymorphic or repetitive regions represent a challenge for

SV prediction tools due to the fact that a linear reference

model is unable to capture the complexity of such infor-

mation. Genotyping tasks are usually performed by map-

ping of reads: this is a task which is very fast in BWA-

MEM (Li 2013) on a single linear reference, but it may be

slower on a graph. Giraffe is a fast mapper of short reads to

a pangenome graph consisting of aligned haplotypes

indexed by the graph BWT described in one of the next

sections. An important ingredient for read alignment to a

pangenome in Giraffe is the ability to efficiently match

queries over the graph by the graph BWT.

In Sect. 6 we will detail two main application scenarios

of the concepts presented in the following sections.

2.4 On the structure of the paper

First, we will focus on formally introducing the definition

of sequence graphs and variation graphs. Indeed, to the best

of our knowledge, the literature does not present a widely

accepted formal definition of variation (or sequence)

graphs: most of the papers either have a focus on graphs,

where the labels of the vertices are almost neglected (for

example, Paten et al. 2017), or the focus is on strings and

the graph is implicit (see Ukkonen 2002; Huang et al.

2013). One of the few papers that considers a notion of

variation graph similar to the one we propose in the tutorial

is presented by Sirén (2017), but the focus of that paper is

on indexing graphs. For this reason, we focus on defining

variation graphs. Secondly, we discuss relevant computa-

tional problems, such as:

• How to define a pangenome graph and inspect its

properties,

• How to build a pangenome graph from a collection of

genomes,

• How to store a pangenome graph and index the

information contained therein, so that reads can be

efficiently mapped to the pangenome.

Despite the fact that computational pangenomics is in its

early stages, several competing and/or complementary

approaches have been proposed, such as VG (Garrison

et al. 2018), SevenBridges (Rakocevic et al. 2019), PaS-

GAL (Jain et al. 2019), GraphAligner (Rautiainen et al.

2019), and odgi (Guarracino et al. 2021). Next, we

describe some data structures and algorithms that can index

pangenomes techniques. In particular, we present the

positional BWT, the graph positional BWT, and the r-in-

dex. We show how the positional BWT allows to store and

query in compact space a collection of haplotype sequen-

ces. The graph BWT is a generalization of the positional

BWT that allows to store the structure of a pangenome

graph, the r-index leverages the high similarity of multiple

genomes to generate in a scalable way to index collections

of genomes. These aspects require us to also give a brief

introduction of the BWT and the FM-index.

We proceed with an important application of the notions

discussed in this tutorial: viral haplotype reconstruction,

where we want to build the pangenome of different viral

strains.

Finally, we conclude the paper with a discussion of the

limitations of the current state of research in computational

pangenomics and we provide some open problems.

To simplify the presentation, we assume that the reader

is familiar with the basic terminology on graphs (Diestel

2005).

3 Pangenome graphs: basic definitions

Given a collection of genome sequences, a fundamental

computational problem in pangenomics is how to construct

a graph that summarizes the genomes. In this tutorial, a

variation graph is vertex-labeled, and some of its paths

correspond to the sequences that we want to

encode (Garrison et al. 2018). The next two definitions

synthesize those that have appeared in literature.

Definition 1 (variation graph) A variation graph G ¼
hV;A;Wi is a directed graph whose vertices are labeled by

nonempty strings, with k : V 7!Rþ being the labeling

function, and where A denotes the set of arcs and W de-

notes a nonempty set of distinguished walks.

Computational graph pangenomics: a tutorial on... 85

123

In Definition 1 walks correspond to variants (i.e.,

sequences) that we want to retain in our representation. We

note that the set of variants is not explicitly known in some

applications, and we want to represent the variants that are

compatible with a set of sequence variations. This leads to

the definition of sequence graphs (Rakocevic et al. 2019).

Sequence graphs represent the set of walks of a variation

graph but since these walks are not explicitly labeled, i.e.,

distinguished, also variants not in the input set which are

induced by the arcs of the variation graph are represented

(see Fig. 1 for an example of a variant represented in the

graph but not in the input genomes).

Definition 2 (sequence graph) A sequence graph G ¼
hV;Ai is a directed graph whose vertices are labeled by

nonempty strings, with k : V 7!Rþ being the labeling

function, and where A denotes the set of arcs.

We note that a sequence graph G ¼ hV;Ai is a variation

graph G ¼ hV;A;Wi with the same set of vertices with

W consisting of all possible walks in the graph. For this

reason, the properties of variation graphs also hold for

sequence graphs. To follow the usual nomenclature that is

based on the notion of a path, we will mostly use the term

‘‘path’’ even when we refer to a walk. To simplify the

exposition, we assume that have a source and a sink of the

graph, which are unlabeled (see Fig. 2). Moreover, we

make the assumption that a variation graph models a single

chromosome. A distinct variation graph for each chromo-

some for modeling genomes with multiple chromosomes.

Next, we note that we can extend the definition of label of a

vertex to define also the label of a path. This essentially

requires that an arc connects two non-overlapping strings;

in this case the graph is blunt (Eizenga et al. 2021).

Definition 3 (path label) Let G be a variation graph, and

let w ¼ \v1; e1; . . .; vl [be a walk of G. Then the label of

the walk w is the concatenation kðwÞ ¼ kðv1Þ � � � kðvlÞ of

the labels of the vertices of the walk.

Definition 4 (expresses) Let g be a string, and let G be a

variation graph. Then G expresses g if there is a source-

sink walk w of G such that the label of the walk w is

exactly g, that is kðwÞ ¼ g.

The definition of a variation graph that we have pro-

vided is simple and can be adapted to different contexts. In

the case where we want to represent a set of genomes, the

variation graph is called a genome graph (Eizenga et al.

2020b). A variation graph can be used also to represent an

assembly graph – albeit for assembly graphs built from

sequencing reads, more specialized and efficient repre-

sentations are used.

We can consider a variation graph as an abstract data

structure for which some concrete implementations have

been proposed (Eizenga et al. 2020a). Those implementa-

tions present different trade-offs. For example, not all of

them easily allow updates in the variation graph, i,e., use

dynamic data structures. Moreover, they use different

compression strategies and also store strands, to allow a

vertex to represent two reverse-complemented strings. We

describe a slightly simplified model, where two reverse-

complemented strings are represented with two vertices

that are linked together, e.g., by sharing an identifier for the

pair. The first implementation, VG (Garrison et al.

2018), uses a hash table to represent arcs, but this requires

too much memory. A second implementation, XG (Gar-

rison 2019), instead is static, meaning the vertices and arcs

cannot be updated. It uses bitvectors to encode the vertices

and the adjacency lists, resulting in a fast and memory

efficient structure. The third implementation, odgi (Guar-

racino et al. 2021), represents arcs and walks via delta

encoding, where only the difference between the identifiers

of two consecutive vertices are stored. Observe that when

the graph is similar to a single walk (which is true in almost

all practical cases), this encoding couples a great runtime

performance with a small memory usage.

A more practical problem is how to store a pangenome

graph in a file. The most widely used format for this pur-

pose is GFA, which was initially proposed for representing

assembly graphs (Li et al. 2017). It is a textual format to

represent labeled graphs. The main limitation of GFA

stems from its original purpose. Since an assembly graph

has no direct connection with the linear reference genome,

a GFA file is not guaranteed to provide a coordinate system

that is valid for the entire graph. To overcome this problem,

an extension, called rGFA (Li et al. 2020), has been pro-

posed, where a reference walk is selected and determines a

coordinate system for the walk. Then each vertex of the

graph is associated with a vertex of the reference walk to

obtain a coordinate system for the entire graph. In other

words, rGFA only considers walks corresponding to simple

variants of the reference walk, i.e., cycles in the graph are

not allowed. We note that other approaches that provide a

coordinate system based on the set of paths exist, for

example odgi (Guarracino et al. 2021). While being a clear

improvement on the previous methods, odgi has two lim-

itations: the coordinate of a vertex belonging to two

TAC C

AT CA

ATC A

AC GCA

ATG A

Fig. 2 Example of a variation graph with two dummy vertices: a

source and a sink

86 J. A. Baaijens et al.

123

different walks is not intuitive, and a vertex that does not

belong to any of the walks in W has no coordinate. Over-

coming these two limitations is a theoretical challenge and

the overall notion of coordinate system is still worthy

of further investigation.

3.1 The construction of a pangenome graph
from multiple genomes

A basic problem in computational pangenomics is to build

a variation graph. This problem comes in two flavours,

depending on whether the input is a set of sequences

(corresponding to walks of the graph), or a multiple

alignment of the sequences. The latter problem is easier

but the quality of the graph is highly dependent on the

method used to build the alignment. Since we want to find

a variation graph that is able to represent one or more

genomes, we need to formally define this notion of repre-

sentation. Notice that, constructing such a variation graph

can be seen as a two-step process: first, we compute a

sequence graph representing the genomes, and then we

extract the set of walks expressing the genomes.

It is immediate to note that there can exist more than one

variation graph expressing a given set of genomes, and

some of these graphs do not resemble an alignment, e.g.,

they might contain a cycle. While we refer the reader

to Gusfield (1997) for a more detailed exposition of mul-

tiple sequence alignments, in our context, given a sequence

s ¼ s1s2 � � � sl an aligned sequence t is obtained from

s by inserting gaps, where a gap is a string made of the

character -. An alignment of a set of sequences consists of

a set of equal-length aligned sequences, one for each input

sequence. Moreover, given two strings s1 and s2 we write

s1 b¼s2 if removing all gaps from s1 and s2 results in the

same string.

Definition 5 (compatible with an alignment) Let G ¼
fg1; . . .; gmg be a set of m aligned genomes, all of length n.

Let G ¼ hV ;A;Wi be a variation graph that expresses all

genomes in G. Then G is compatible with the alignment G

if there exists:

1. a set I of disjoint intervals covering [1, n], that is (a)

given two intervals ½b1; e1� and ½b2; e2� of I, either

b1 [e2 or b2 [e1, and (b) for each integer i between 1

and n there exists an interval ½b; e� 2 I such that

b� i� e.

2. a surjective function / : B 7!V where B is the set of

blocks, that is the set of pairs (g, [b, e]) with g 2 G,

½b; e� 2 I and the string g[b : e] does not consists of

only a gap, such that:

(a) kð/ðg; ½b; e�ÞÞ b¼g½b : e�,

(b) given the sequence hc1; . . .; cki of blocks corre-

sponding to the aligned genome g, the sequence

h/ðc1Þ; . . .;/ðckÞi of the vertices associated to

such blocks is a walk of G;

(c) for each arc ðv;wÞ 2 A, there exist two blocks

ðg; ½b1; e1�Þ, ðg; ½b2; e2�Þ 2 B with e1\b2,

/ððg; ½b1; e1�ÞÞ ¼ v, /ððg; ½b2; e2�ÞÞ ¼ w and such

that there does not exist another block

ðg; ½b3; e3�Þ 2 B with e1\b3\e3\b2.

The intuitive idea behind Definition 5 is that we can

split the alignment into aligned blocks, where each block

that does not consist only of a gap is mapped to a vertex of

the variation graph whose label is identical to the block,

once all gaps are removed (condition 2a). Moreover, each

genome in the alignment corresponds to a walk in the graph

(condition 2b), and each arc of the graph corresponds to

two consecutive aligned blocks once we discard all aligned

blocks consisting only of a gap (condition 2c) in some

input aligned sequence. The natural computational problem

is then to compute a variation graph compatible with a

given alignment (Fig. 3).

Problem 1 (graph construction from alignment) Let G ¼
fg1; . . .; gmg be a set of m aligned genomes, all of length n.

Then the graph construction from alignment problem asks

to find a variation graph G that is compatible with G.

The formulation of compatibility in Definition 5 is

similar to the formulation of block graphs (Ukkonen 2002;

Mäkinen et al. 2020), albeit the latter is quite restrictive,

e.g., it does not allow cycles.

We note that Problem 1 does not have an objective

function that allows to discriminate among all possible

graphs that express the genomes in G. Consequently the

problem is ill-posed. Moreover, some simple objective

functions do not lead to desirable graphs. Given a variation

graph G ¼ hV ;A;Wi, we let W(G) be the set of maximal

walks of G (i.e., walks starting at a source and ending at a

sink of G), and note that a walk in W(G) is not necessarily

in W. Then a desirable property of a variation graph

expressing all genomes in G is that the set of labels of all

walks in W(G) is equal to G. Hence, the objective function

that we want to minimize is equal to j fkðpÞ : p 2 WðGÞg j,
however, this is trivially minimized by a graph with ver-

tices (and labels) gi and no arcs. Unfortunately, such a

solution means that shared portions among input genomes

label different vertices of the graph, while a fundamental

motivation of introducing variation graphs is that shared

portions should belong to the same vertex. Two possible

objective functions that address this shortcoming are to

minimize (1) the number of vertices of the graph G, or (2)

the sum of the length of the labels of G. The same trivial

graph with vertices (and labels) gi and no arcs is also the

Computational graph pangenomics: a tutorial on... 87

123

optimum for almost all instances of the first formulation.

The second objective function does not discriminate

between compacted graphs (whose vertices are labeled by

strings) and non-compacted graphs (where all vertices are

labeled by a single character), provided that the total length

of the labels is the same—instead we would favor a com-

pacted graph, since it is more informative.

The fact that it is hard to find a simple objective function

means that, if we desire to find a formal definition of the

underlying computational problem, we should explore

different directions, such as minimum description

length (Grunwald 2004) or multicriteria optimiza-

tion (Ehrgott 2005) to incorporate different aspects of the

desired graph. On the other hand, the literature largely

avoids providing a complete formulation of the problem

and focuses on the method. For example, consider

seqwish (Garrison et al. 2019), which is one of the most

widely tools for building a variation graph from an align-

ment. While the paper contains a very detailed description

of the data structures used to represent the resulting graph,

almost no mention of the combinatorial properties is pre-

sent. Clearly, the lack of a formulation of the objective

function does not decrease the usefulness of the tool, but it

makes harder to benchmark and compare different

approach.

Moreover, a multiple alignment is not able to explicitly

represent certain structural variations, such as inversions or

transpositions. For this reason, sometimes we do not have a

reliable alignment that can be the building block for con-

structing a variation graph. In this case, we only start from

a set of strings, each representing a genome, and the cor-

responding computational problem becomes the following

to reconstruct the variation graph from the strings.

Problem 2 (graph construction from genomes) Let G ¼
fg1; . . .; gmg be a set of m genomes. Then the graph con-

struction from genomes problem asks to find a variation

graph G that expresses all genomes in G.

This new problem is more general than Problem 1, since

there is no division into blocks to be respected for all

genomes (see Fig. 4 for an example). Moreover, the same

argument on the lack of a widely accepted objective

function that we have made for constructing the variation

graph from an alignment holds also in this case.

For this problem, a simple incremental approach, like

the one employed by Minigraph (Li et al. 2020) can be

surprisingly effective. In this case, each sequence is aligned

against the variation graph (the first sequence is also the

initial graph); each portion of the sequence that corre-

sponds to a low quality alignment is a variant that needs to

be added to the variation graph. We note that this approach

relies heavily on a string-to-graph mapper. The mini-

graph method incorporates a tailored alignment procedure,

inspired by minimap2 (Li 2018), and based on the idea of

building (sub)graph chains.

Observe that in minigraph the mapping between gen-

omes and the graph is lost during the construction process.

A base-level alignment of the genomes relative to the

resulting graph can be obtained by an extension of the

AT -C TAC C A
AC GC TAC C A
AT GC ATC - A
AC GC ATG A A

[1, 2] [3, 4] [5, 7] [8, 8] [9, 9]

TAC C

AT C

ATC A

AC GC

ATG A

Fig. 3 Example of an alignment (left) of four genomes and a

corresponding variation graph (right). The set I of disjoint intervals is

in the lower left part of the figures, and each interval is connected

with the corresponding set of columns of the alignment. The variation

graph has two dummy vertices: a source and a sink, so that each

genome corresponds to source-sink walk in the graph. The alignment

of the third genome has a block consisting of only a gap; hence, it

does not correspond to any vertex of the graph. The red and the green

paths identify a variant, also called bubble, in the graph, since they

have the same source and sink, while all other vertices are disjoint

ATCTACCA

ACGCTACCA

ATGCATCGA

ACGCATGAA

AC GC ATCG

AT C TAC C A

GA

Fig. 4 Example of a variation

graph constructed from four

sequences, each represented by

a different colored symbol. We

color only vertices to simplify

the figure

88 J. A. Baaijens et al.

123

Cactus whole genome alignment toolkit (Paten et al.

2011).

4 Indexing pangenome graphs

Graphs as large as genome graphs need to be indexed to

achieve adequate efficiency for basic operations such as

pattern matching or read mapping. Since variation graphs

represent walk labels, a simple strategy is to index all

relevant walk labels, therefore, mostly reusing the tools

that have been developed in text indexing. Most notably, an

index can be built to store either k-mers, signatures or

suffixes of the walk labels. A k-mer or q-gram of a

sequence T is a substring of length k (q, respectively) of a

sequence T and is the building block of de Brujin graphs

and of some methods for mapping reads to a genome. In

particular, k-mer indexing is becoming a popular way of

storing huge collections of genomic data (Karasikov et al.

2020). Alternatively, a signature or sketch of a sequence

T is a short summary of the sequence given by a vector of

numbers that, with high probability, summarizes some k-

mers of the sequence – see for example MinHash (Berlin

et al. 2015). Finally, a suffix sort-based representation of a

sequence T is given by the self-index structures built upon

the notion of Burrows–Wheeler Transform and the FM-

index. Generalizing these notions to graphs is a first pos-

sible approach to designing pangenome graph representa-

tions. The most common approach has been to extend the

notion of XBWT (Ferragina et al. 2009) to graphs, first

with the GCSA (Sirén et al. 2014; Sirén 2017), which is an

index of the prefixes of the strings that can be traversed

from each vertex of a directed graph. It has a vertex for

each symbol of the sequence, and edges connect symbols

that are consecutive in at least one genome sequence (or

walk) of the pangenome graph. An alternative approach to

indexing is given in (Rakocevic et al. 2019), where pan-

genome graphs are indexed by using a hash table for k-

mers extracted from the sequence paths of the graph.

4.1 Preliminaries on the BWT

To make this tutorial self-contained, we briefly introduce

here the main notions related to the Burrows–Wheeler

Transform (BWT). Let S be a string that is terminated by a

special symbol $ (called sentinel). A sentinel appears only

at the end of a string and it is smaller than any other symbol

of the alphabet R. Given a string S, its i-th character is

denoted by S[i], its substring S½i�S½iþ 1� � � � S½t� is denoted

by S[i : t], and its suffix starting at position i is denoted by

S[i :]. Sometimes, instead of the [i : t] notation, we might

use the right-open notation S[i : t) for a substring: in this

case the t-th character of S is not included in the substring,

that is S½i : tÞ ¼ S½i� � � � S½t � 1�.
The Suffix Array of S (Manber and Myers 1993; Shi

1996) is the array SA s.t. SA½i� is equal to p if p is the

starting position in S of the suffix of S that is the i-th suffix

of S in the lexicographic order of the set of suffixes. The

Longest Common Prefix (LCP) array of S is the array LCP

s.t. LCP½i� is the length of the longest prefix between the

ði� 1Þ-th suffix and the i-th suffix of S in their lexico-

graphic order. Conventionally, LCP½1� ¼ �1.

Given a n-long string S and the SA of S, we denote the

inverse suffix array as ISA, and define it as ISA½SA½i�� ¼ i

for all i ¼ 1; . . .; n. The permutation / (Kärkkäinen et al.

2009) is defined as follows: /ðiÞ ¼ SA½ISA½i� � 1� if

ISA½i�[1; and /ðiÞ ¼ SA½n� otherwise. In other words,

/ðSA½j�Þ ¼ SA½j� 1�, for all j[1.

The Burrows–Wheeler Transform (Burrows and

Wheeler 1994) of the string S, denoted by BWT, is a

reversible permutation of the characters of S. It is the last

column of the matrix of the sorted rotations of the text S,

and can be computed from the suffix array of S as

BWT½i� ¼ S½SA½i� � 1�, where S is considered to be cyclic,

i.e., S½0� ¼ S½n�. Informally, BWT½i� is just the symbol of S

in position p� 1 preceding the ith-suffix of S. The lexico-

graphic ordering of the suffix starting in position p� 1 of S

is then given by the LF-mapping: it is a permutation on

[1, n] such that SA½LFðiÞ� ¼ ðSA½i� � 1Þ mod n. More

precisely, the LF-mapping LFðiÞ allows to compute the

lexicographic ordering of the suffix of position SA½i� � 1 in

S. Then the LF-mapping allows to virtually traverse the

string S backwards as explained below using only BWTðSÞ.
The backward search is an operation introduced

by Ferragina and Manzini (2005) in order to compute left

extension of a given string as follows: given a string S, if

we know the range BWT½i : j� occupied by characters

immediately preceding occurrences of a pattern P in S, then

we can compute the range BWT½i0 : j0� occupied by char-

acters immediately preceding occurrences of cP in S, for

any character c. This operation is implemented using: (1)

an array C½r� that stores the number of symbols in S that

are smaller than r for each character r and, (2) a (rank)

data structure for BWTðSÞ that returns how many times a

given character occurs up to a specific position of BWTðSÞ.
Based on the above data structures, a LF-mapping is a

last-to-first mapping that associates to a position in the

BWT a position in the suffix-array and is used by iterations

to reconstruct the text from right to left since we are able to

compute the preceding symbol of each symbol BWT½i�.
In particular, we can relate function LFðiÞ also to

character c that occurs in BWT½i� and thus, LFði; cÞ is given

as the sum C½c� þ BWT:rankði; cÞ, being BWT:rankði; cÞ
the number of c symbols occurring in the range BWT½1; i�.

Computational graph pangenomics: a tutorial on... 89

123

In other words, LFði; cÞ gives the position of the specific

occurrence of the c symbol in the text S. Indeed BWTðSÞ
has the property of preserving the ranking of symbols in

S. Observe that BWT½LFði; cÞ� is just the symbol c0 pre-

ceding c in the text S, where c is in position SA½i�. Those

functions allow us to quickly solve the pattern matching

problem, using only a small space, since the BWT itself

can be easily compressed via a run-length encoding and the

BWT:rankðÞ shows increasing values, so we can encode

only the difference with the previous value (i.e., a delta

encoding). In fact, the backward search strategy leads to an

OðjPjÞ time complexity for counting the number of

occurrences of a pattern P in a text S, given its FM-index.

Computing the location of those occurrences is slightly

more complex, since it requires a sample of the suffix array

of the text, with a time complexity that is very close to that

of using a suffix array, that is OðjPj þ k log1þ� jSjÞ where

k is the number of occurrences of the pattern P.

The definition of suffix array has been extended to a set

X ¼ fS1; . . .; Smg of strings by considering the set of the

lexicographically sorted suffixes of X and by replacing

each entry of SA with a pair (p, j) indicating the length of

the suffix (p) and the index of the string (j) which the suffix

belongs to. The multi-string Burrows Wheeler Trans-

form (Mantaci et al. 2007) of X is the array BWT s.t. if

SA½i� ¼ ðp; jÞ, then BWT½i� is the first symbol of the suffix

of Sj starting in position p. In other words BWT is the

concatenation of the symbols preceding the ordered suf-

fixes of S.

4.2 The positional BWT

The positional BWT (PBWT) is a data structure (Durbin

2014) aiming at representing efficiently a set X, or panel, of

m haplotypes with n bi-allelic sites. The notion of PBWT

has been generalized to the multi-allelic case (Naseri et al.

2019). From a string-theoretic point of view, the panel X is

a set of m n-long strings over alphabet f0; 1g (for the bi-

allelic case) or a generic finite alphabet R (for the multi-

allelic case). In the following, we introduce the data

structure for the multi-allelic case, since it is a straight-

forward extension of the bi-allelic case. All the results that

we discuss have been presented by Durbin (2014) and

Naseri et al. (2019). We note that the PBWT has many

resemblances with the wavelet matrix proposed by Claude

et al. (2015).

The goal of the PBWT is basically to find matches

among the haplotypes of X, or with respect to an external

haplotype and the panel X, where a match must involve

substrings in the same positions, i.e., two substrings s½i :
iþ l� and t½j : jþ l� with i 6¼ j are not considered a match

even in the case they are equal. To underline this differ-

ence, we use the term haplotype for an n-long string over

the (ordered) alphabet R with t symbols. Let X be a set of

m haplotypes x1; x2; . . .; xm; the positions on each haplotype

are indexed from 1 to n. Given the haplotype x, its prefix at

position k is its k-long prefix x½1 : k� ¼ x½1 : k þ 1Þ, deno-

ted prefðx; kÞ. The reversed prefix at position k is the

reverse of prefðx; kÞ, that is the string x½k� � � � x½1�, and is

denoted by revprefðx; kÞ. With a slight abuse of notation,

we assume that x[i : j] with i[j is the empty string.

Hence, prefðx; 0Þ ¼ revprefðx; 0Þ is the empty string.

Given two haplotypes, we can define an order for each

position.

Definition 6 (Position order) Let xi, xj be two haplotypes

of X, and let k be an integer not greater than n. Then xi is

smaller than xj at position k if and only if:

1. revprefðxi; kÞ is lexicographically smaller than

revprefðxj; kÞ, or

2. revprefðxi; kÞ ¼ revprefðxj; kÞ and i\j.

Observe that the ordering at position 0 produces the

same ordering as the set X, that is x1; . . .; xm. A match

between two haplotypes xi and xj are two identical sub-

strings xi½k1 : k2� and xj½k1 : k2� spanning the same position

interval ½k1 : k2�. The match xi½k1 : k2� ¼ xj½k1 : k2� is left-

maximal (right-maximal, resp.) if it cannot be extended on

the left (right, resp.), that is either k1 ¼ 1 or xi½k1 � 1� 6¼
xj½k1 � 1� (either k2 ¼ n or xi½k2 þ 1� 6¼ xj½k2 þ 1�, resp.).

We can now define formally the positional BWT.

ATCTACCA

ACGCTACCA

ATGCATCGA

ACGCATGAA

AC GC ATCG

AT C TAC C A

GA

Fig. 5 A toy example of how a pattern matches on a variation graph.

The pattern is the string TGCAT and the variation graph is the one of

Fig. 4. The walk with red vertices and arcs contains the match, but the

actual match consists of the underlined portions of the vertex labels.

More precisely, the match takes a suffix of the first vertex and a prefix

of the last vertex

90 J. A. Baaijens et al.

123

Definition 7 (Positional BWT (Durbin 2014)) Let X ¼
fx1; � � � ; xmg be a set of m haplotypes. The positional BWT

of X is a collection of nþ 1 pairs of arrays, ðak; dkÞ for

0� k� n, where each ak is called a prefix array and each dk
is called a divergence array, defined as follows:

• the prefix array ak is a permutation of the indexes

1; 2; � � � ;m such that ak½i� ¼ j iff xj is the i-th haplotype

of X in the ordering at position k, i.e., considering the k-

long reverse prefixes,

• the divergence array dk is such that dk½i� is the starting

position of the left-maximal match ending at position

k between the i-th and ði� 1Þ-th haplotypes in the

ordering at position k.

Definition 7 is a departure from the original definition

of Durbin (2014) in that the original definition describes

the positional BWT as the concatenation of the columns of

X reordered according to revprefs. We argue that the latter

is essentially a compact representation of the former, just

as the FM-index (Ferragina and Manzini 2005) compactly

represents the enhanced suffix array of the text (Abouel-

hoda et al. 2004). We will conclude this section with an

explanation of this fact.

For ease of notation, let yki be xak ½i�. Figure 6 presents an

example of the prefix array a14 and of the divergence array

d14 of a panel X of seven haplotypes.

Notice that the Definition 7 means that, for each posi-

tion k and each i[1, there is a left-maximal match

between xak ½i�1�½dk½i� : k� and xak ½i�½dk½i� : k�. Also notice that

the prefix array a0 is the sequence 1; . . .;m since all such

prefixes are empty, and d0 contains only zeroes for the

same reason.

If we consider the set of reversed haplotypes, the prefix

array ak is the usual generalized suffix array, restricted to k-

long suffixes, while the divergence array dk can be trivially

obtained from the LCP array between two consecutive k-

long suffixes.

Observe that dk½i� ¼ k þ 1 means that no match ending

at position k exists between haplotypes yki and yki�1. The

following proposition, which is a direct consequence of its

definition, is used to compute the divergence array.

Proposition 1 Let X be a set of haplotypes and let ak, dk be

the associated prefix and divergence arrays at position k.

Let i and j be two integers with 1� i\j�m. Then the

starting position of the left-maximal match ending at

position k of yki ¼ xak ½i� and ykj ¼ xak ½j� is equal to

maxi\h� jfdk½h�g.

4.2.1 Computing the prefix and the divergence arrays

The array ak can be computed from ak�1 with a single scan

of all characters at position k, with a procedure that is

essentially a pass of radix sort.

Let yk be the m haplotype characters at position k in the

order specified by ak�1, that is

yk ¼ hyk�1
1 ½k�; yk�1

2 ½k�; � � � ; yk�1
m ½k�i. Array ak is computed

by sweeping yk for reordering appropriately the indexes in

Fig. 6 Example of a panel X of haplotypes with the original order

(left) and with the order induced by a14 (right). The arrow highlights

that x1 is the 6th haplotype in the order induced by the lexicographic

order of the 14-long reverse prefixes (hence, it is denoted with y14
6).

On the right, we reported also the divergence array d14 and we

underlined the left-maximal matches ending at position 14 between

each xa14 ½i�1� and xa14 ½i�. Position 15 is highlighted and the permutation

of the symbols (alleles) at that position induced by a14 is denoted by

y15. That permutation of symbols will be used to compute a15

Fig. 7 Computing array a15

from a14. All the elements of a14

whose corresponding character

in y15 (i.e.,, xak ½��½k�) is 0 are

placed in a15 before the

elements of a14 whose

corresponding character in y15 is

1

Computational graph pangenomics: a tutorial on... 91

123

ak�1. Two observations allow to compute ak from ak�1: (1)

haplotype yki comes before ykj in the ordering at k if

yki ½k�\ykj ½k� and (2) yki comes before ykj in the ordering at

k if yki ½k� ¼ ykj ½k� and i\j. As a consequence, intuitively, in

the bi-allelic case we can compute ak by first placing all the

elements of ak�1½i� such that yki ½k� ¼ 0 and then all the

elements of ak�1½i� such that yki ½k� ¼ 1 while keeping the

relative order of the elements in each part. Figure 7 rep-

resents this intuition. Clearly, such an idea can be easily

extended to the multi-allelic case by considering all the

possible symbols.

Also the divergence array dk can be computed from dk�1

with a single scan of the characters at position k.

Let xp be a haplotype of X and let i be the index such

that ak½i� ¼ p (hence, xp ¼ yki). Two cases may arise: either

(1) yki ½k� 6¼ yki�1½k� or (2) yki ½k� ¼ yki�1½k�. In the first case, as

the two characters differ, we do not have a non-empty left-

maximal match ending at position k between yki ½k� and

yki�1½k�, thus, dk½i� can be conventionally set to k þ 1. In the

second case, there exists a non-empty match ending at

position k between yki ½k� and yki�1½k�. Let j and j0 be the

indexes such that ak�1½j� ¼ ak½i� and ak�1½j0� ¼ ak½i� 1�.
Since yki ½k� ¼ yki�1½k� ¼ c, we have that j0\j. Then, the

starting position of the left-maximal match between yki�1

and yki ending at position k (i.e., dk½i�) is equal to the

starting position of the left-maximal match between yk�1
j0

and yk�1
j ending at position k � 1 which, by Proposition 1,

is equal to maxj0\h� jfdk�1½h�g.

The key observation for obtaining an efficient algorithm

is that yk�1
j0 is the most recently seen haplotype with

character c at position k. Hence, while sweeping the

characters at position k, it suffices to keep, for each allele

r 2 R, the running maximum of dk�1 between the current

haplotype and the most recently seen haplotype (according

to the order induced by ak�1) having r at position k. If, at

some haplotype yki we have that yki ½k� is an allele not seen

yet, then we must be in case (1) and we set dk½i� to k þ 1.

Otherwise we will be in case (2) and we can set dk½i� to the

running maximum kept for the allele yki ½k�.

Algorithm 1 The algorithm to compute the PBWT.
Require: A set X = {x1, . . . , xm} of n-long sequences on the ordered

alphabet Σ = 〈σ1, . . . , σt〉.
Ensure: The arrays ai and di representing the PBWT of X.
1: a0 ← the array [1, . . . , m]
2: d0 ← the array with m elements, all equal to 1
3: for k ← 1 to n do
4: for σ ∈ Σ do
5: a[σ] ← an empty list
6: d[σ] ← an empty list
7: seen[σ] ← false
8: end for
9: for i ← 1 to m do

10: c ← xak−1[i][k]
11: Append ak−1[i] to the list a[c]
12: for σ ∈ Σ do
13: if seen[σ] and dk−1[i] > max[σ] then
14: max[σ] ← dk−1[i]
15: end if
16: end for
17: if seen[c] then
18: Append max[c] to the list d[c]
19: else
20: Append k + 1 to the list d[c]
21: seen[c] ← true
22: end if
23: max[c] ← 0
24: end for
25: ak ← the concatenation of the lists a[σ1] · · · a[σt]
26: dk ← the concatenation of the lists d[σ1] · · · d[σt]
27: end for

Algorithm 1 formalizes the procedure for computing the

entire series of prefix and divergence arrays in a single pass

over the panel X of t-allelic haplotypes. Each iteration k of

the outer for-loop computes ak and dk from ak�1 and dk�1

in O(mt) time. Hence the total running time is O(nmt).

As an example, we will describe how to compute the

arrays a15 and d15, given the arrays a14 and d14 for the set

of haplotypes of Fig. 6. We will use Fig. 8 for illustrative

purposes. At the beginning of the scan (lines 9–23), all

characters are unseen and the lists a½�� and d½�� are both

empty. The first time we see character 0 (at iteration i ¼ 3,

corresponding to haplotype x6) and 1 (at iteration i ¼ 1,

corresponding to haplotype x5), the corresponding value of

d½�� is 15, since the reverse prefix at position 15 and the one

that is immediately smaller do not share the character at

position 15. For any other haplotype, we check the interval

between the most recently seen haplotype that has at

position 15 the same character as the current haplotype,

and we compute the left-maximal match between those two

Fig. 8 Computing the arrays a15 and d15. On the left there are the

arrays a14 and d14 and the set X sorted by the revpref at position 14.

On the right there are the set X sorted by the revpref at position 15

and the arrays a15 and d15. Notice that the set X is not sorted explicitly

by the algorithm, and is reported here to make easier to understand the

algorithm. The interval that is analyzed to compute the value of the

divergence array at position 15 associated with x2 is represented with

a square bracket

92 J. A. Baaijens et al.

123

haplotypes. Consider for example when the current hap-

lotype is x2 that has the character 1 at position 15. The most

recently seen haplotype with the character 1 at position 15

is x7, and their left-maximal match at position 15 starts at

position 15, which is stored in the corresponding entry of

d15. Such position is stored in max[1]; the effect of the if at

lines 17–23 is that max[1] contains the maximum value

among all entries of d14 corresponding to the interval of

haplotypes from x7 (excluded) to x2 (included) which, by

construction of d14, is exactly the desired starting point.

4.2.2 Maximal matches with at least L characters

Using the PBWT we can compute the pairs of haplotypes

having a maximal match ending at position k with at least

L characters. Haplotypes between positions i and j of ak�1,

such that all values dk�1½iþ 1�; dk�1½iþ 2�; � � � ; dk�1½j� are

at most k � L, share a common (left-maximal) match

ending at position k � 1 whose length is at least L. Such an

interval is called an L-block at position k. Observe that only

for ykp and ykq (p; q 2 ½i; j�), such that ykp½k� 6¼ ykq½k�, the match

ending at k � 1 is right-maximal and its starting position

can be obtained by performing a range maximum query

over the divergence array dk. The algorithm basically

separates dk�1 in L-blocks and, for each L-block the related

haplotypes are divided in t lists c½r� accordingly to their

character r at position k (i.e., similar to the algorithm for

computing the prefix and the divergence arrays). While

scanning dk�1, each time a position i delimiting the end of a

L-block is encountered, all the elements of the Cartesian

products between all the pairs of lists c½r1� and c½r2� (with

r1 6¼ r2) are produced in output. This computation could

be performed even in conjunction with the construction of

the prefix array ak and the divergence array dk – thus

avoiding keeping in memory the previously computed

arrays ak�1 and dk�1 – using O(m) in space instead of

O(nm). The running time is bounded by

Oðmaxðnmt; no. of matchesÞÞ.

4.2.3 Set-maximal matches

A left and right-maximal match xi½h : k� ¼ xj½h : k� between

haplotypes xi and xj such that there is no other haplotype

with a match with xi that properly includes the interval

[h, k], is called a set-maximal match of xi with xj. We note

that xi may have a set-maximal match from h to k with

more than a haplotype in X. Observe that haplotype yki may

have a set-maximal match ending at k only with the pre-

ceding or the following haplotypes in the ordering at k. We

discuss three cases. The first one is when dk½i�\dk½iþ 1�,
that is, the left-maximal match between yki and yki�1 is

longer than the left-maximal match between yki and ykiþ1.

Observe that yki has a left-maximal match starting at dk½i�
with all the haplotypes between positions p and i� 1,

where p is the smallest position before i, such that

dk½j� � dk½i� for p\j\i. In conclusion, yki may have a set-

maximal match ending at k with each haplotype between

positions p and i� 1. Haplotype yki has actually a set-

maximal match with all of these haplotypes if each one of

their characters at position k þ 1 is different from the

character at position k þ 1 of haplotype yki . On the contrary,

if even one of those characters is equal to yki ½k þ 1�, then it

will be possible to extend the match to the right. Hence, yki
does not have a set-maximal match ending at k with such

haplotypes. The second case is when dk½iþ 1�\dk½i�, that

is, the left-maximal match between yki and ykiþ1 is longer

than the left-maximal match between yki and yki�1. Again,

observe that yki has a left-maximal match starting at dk½iþ
1� with all the haplotypes between positions iþ 1 and q,

where q is the largest position after i, such that

dk½j� � dk½iþ 1� for each i\j� q. In conclusion, yki may

have a set-maximal match ending at k with all the haplo-

types from position iþ 1 to position q. Haplotype yki has an

actual set-maximal match with all of these haplotypes if

each one of their characters at position k þ 1 is different

from the character at position k þ 1 of haplotype yki . On the

contrary, if even one of those characters is equal to

yki ½k þ 1�, then it will be possible to extend the match to the

right, hence, yki does not have a set-maximal match ending

at k with the considered haplotypes. The third case is when

dk½i� ¼ dk½iþ 1�. It is easy to see that this case is the

Fig. 9 A panel of ten tri-allelic haplotypes in their ordering at 20.

Haplotype y20
2 (which is haplotype x7 in the original panel X) has a

candidate set-maximal match from position 16 to position 20 with

haplotypes y20
1 (x5) and y20

3 (x1) since d20½2� ¼ d20½3� while d20½1� and

d20½4� are both greater that d20½2�. However, since y20
1 ½21� and y20

3 ½21�
are both equal to y20

2 ½21�, then the match is not right-maximal and,

hence, is not set-maximal. It will be found while scanning column 21

or later. Similarly, y20
6 has a candidate set-maximal match from 17 to

20 with y20
7 and y20

8 . It is an actual set-maximal match because y20
6 ½21�

is different from both y20
7 ½21� and y20

8 ½21�. Observe that y20
7 has not a

set-maximal match ending at position 20 because the candidate match

from 17 to 20 is with y20
6 and y20

8 but y20
7 ½21� ¼ y20

8 ½21� (hence, it will

be found while scanning column 21 or later)

Computational graph pangenomics: a tutorial on... 93

123

combination of the other two cases, and hence, the set-

maximal matches of haplotype yki ending at position k can

be found by scanning upwards and downwards in order to

find the two position p and q as described above. Figure 9

represents a panel of haplotypes on which two candidates

set-matches have been depicted.

Computing the set-maximal matches is performed while

scanning (or computing) the arrays ak and dk and checking

the characters at position k þ 1 in the interval ½p; i� 1� or

in the interval ½iþ 1; q�, depending on the values dk½i� and

dk½iþ 1�. Since we can stop the upward or downward scan

as soon as the check of the following characters fails, the

procedure requires O(nmt) time.

4.2.4 Set-maximal matches between an external haplotype
and X

The PBWT allows to compute the set-maximal matches of

an external haplotype z with respect to the panel X. Let ek
be the starting position of the longest (left-maximal) match

ending at k between z and some haplotypes of X and let

ak½fk : gkÞ be the portion of ak related to such haplotypes.

While sweeping z from left to right, the algorithm com-

putes the values ek, fk and gk from the values obtained for

k � 1. More precisely, it scans the column yk ¼
hyk�1

1 ½k�; � � � ; yk�1
m ½k�i of the k-th symbols in the ordering at

k � 1 and at the same time maintains ck½r�, the total

number of r 2 R in yk, and wkði; rÞ, the number of char-

acters in the prefix yk½1 : i� not greater than r 2 R. Those

values allow to compute the interval ½fk; gkÞ of ak (if it

exists) related to the subset of haplotypes in ak�1½fk�1 :
gk�1Þ whose match with z starting at ek can be extended by

one position to the right (with character z[k]). For those

familiar with the FM-index, the procedure is similar to the

backward search operation. If fk\gk, then there exists

some haplotypes (namely, those indicated by ak½fk : gkÞ)
such that the match can be extended to position k while

keeping the starting position at ek�1, hence, we can set

ek ¼ ek�1. Otherwise, if fk ¼ gk, then no match with hap-

lotypes in ak�1½fk�1 : gk�1Þ can be further extended. Hence,

the haplotypes ak�1½fk�1 : gk�1Þ have a set-maximal match

with z from ek�1 to k � 1 and such matches are reported. In

this case, the algorithm must find the new values ek, fk, and

gk and go on through sweeping z. Let q be the current value

of fk. Since it is possible to prove that z is between hap-

lotypes ykq�1 and ykq in the ordering at k, the algorithm scans

the divergence array dk between those two haplotypes in

order to find the left-maximal match with z and, in that

way, computing the new values ek, fk, and gk.

The running time is O(n) if we assume that ck½�� and

wkð�; �Þ have been pre-computed (since they can be used to

find the set-maximal matches with different haplotypes

external to the panel X), while it is O(nmt) if those values

must be computed.

4.2.5 Compact representation of the positional BWT

The first observation that allows to store the panel of

haplotypes in a compressed form is that the query algo-

rithms do not directly use the ak½i� indexes (that are

expensive to store since they are permutations of the range

1. . .m). Indeed, they use the permutation of the symbols in

column k based on the order of the revpref at that position.

Similar to the case of BWT (Burrows and Wheeler 1994),

such a permutation tends to form long runs of symbols (as

those symbols are preceded by similar revprefs) that are

highly compressible. The information needed to compute

the extension of matches (i.e., the rank of the symbols) is

similar to those used by the FM-index (Ferragina and

Manzini 2005) and thus, can be stored using similar tech-

niques. Using the rank information is also possible to

recover the ak arrays (for reporting purposes) from their

sampled representation with negligible impact on perfor-

mances. Finally, the divergence arrays can be represented

as differences between adjacent values. Indeed, adjacent

values are similar with high probability, hence, most of the

differences should be close to zero and can be represented

with fewer bits. In his experiments, Durbin (2014) reports

that the GZip-ed storage of the panel requires from � 6 to

� 133 times the space required by the PBWT, with the

ratio be more favorable as the number of haplotypes

increases.

4.3 The graph BWT

Observe that the PBWT stores haplotype sequences by

encoding which allele each haplotype contains at each

position. We can interpret it as a pangenome graph repre-

sentation restricted to graph topologies where each vertex

at position i is connected (only) to each vertex at position

iþ 1. The approach was later generalized to arbitrary

topologies in the graph extension of the PBWT (Novak

et al. 2017). The Graph BWT (GBWT) (Sirén et al. 2020)

discussed in this section simplifies the graph extension and

makes it more efficient by reducing the problem to

indexing strings.

One of the main goals of the GBWT is storing and

indexing a variation graph compactly, so that a good

locality of reference of the data is maintained. Global

information regarding the graph is kept to a minimum, and

is usually inferred from local, i.e., vertex-based, informa-

tion. To achieve this goal, the GBWT stores set of paths,

while the variation graph is only inferred from those paths.

While the vertices of a genome graph are labeled with a

string, the GBWT does not store the labels but only the

94 J. A. Baaijens et al.

123

topology of the graph, where each path is encoded as a

sequence of vertex identifiers (Fig. 12).

In other words, each path is a string over the alphabet of

vertices, and the graph is a collection of such strings. The

GBWT is essentially a multi-string BWT of the collection

of strings encoding the paths of the graph. To improve

locality of reference, we do not store the BWT as a single

string, but as a set of strings BWTv, each corresponding to

vertex v. The concatenation of all strings BWTv is the

entire BWT. The GBWT inherits the properties of the

multi-string BWT. Most notably, given a pattern (i.e., a

sequence of vertices) Q and the GBWT of a variation graph

G ¼ ðV;E;WÞ, we can answer the following queries:

1. Determine if Q is a subpath of at least one path in W.

2. Count how many paths in W contain Q and determine

the identifiers of the matching paths.

3. Find the extensions of Q that are subpaths of a path in

W. We may be interested in all maximal extensions in a

subgraph, or we may want extend the most promising

matches iteratively as long as certain conditions hold.

For each vertex v, the GBWT stores the string BWTv and

some additional information to enable fast queries (see

Fig. 11).

While the BWT is usually based on sorting the suffixes

of the strings and listing the character preceding each suffix

in the sorted order, the GBWT works on the reverse strings.

It sorts the reverse prefixes of the strings and lists the

character following each prefix. Since the strings are the

paths of the graph, this allows us to extend a path in the

forward direction (that is, according to the path). Conse-

quently, for each vertex v, the substring BWTv corresponds

to the prefixes ending with v, that is the initial portions

terminating in v of all paths. Notice the analogy with the

fact that each symbol in a regular BWT corresponds to a

suffix of the string.

Definition 8 (Graph BWT) Let G ¼ ðV ;E;WÞ be a vari-

ation graph where each walk (path) Wi 2 W is a sequence

of vertices hvi;1; vi;2; . . .i. Then, the graph BWT of G is the

multi-string BWT of the collection of strings

hwi ¼ vi;1vi;2 � � � vi;jWij : Wi ¼ hvi;1; vi;2; . . .vi;jWiji 2 Wi

(under the reverse prefix lexicographic ordering).

Moreover, each string BWTv is the interval of BWT cor-

responding to prefixes of some wi that end with the vertex

v.

In the following, we describe the GBWT data structure.

Recall that we need to have a compact data structure with a

strong locality of reference, which is able to represent a

graph version of the LF-mapping of the usual string-based

BWT, since the LF-mapping is the main ingredient that is

used to answer the queries.

Given a graph G ¼ ðV ;E;WÞ, we store the ordered

sequence v1; . . .; vn of vertices. We write v\w if vertex

v 2 V is before vertex w 2 V in the ordering, and use v� 1

and vþ 1 to refer to the predecessor and the successor of v

in that order. As pangenome graphs typically have an

almost linear structure, with jEj ¼ OðjV jÞ, we can use the

adjacency list representation for the graph and still obtain,

on average, Oð1Þ-time access to each outgoing arc. For

each vertex v 2 V , we store the string BWTv ¼
BWT½C½v� þ 1 : C½vþ 1�� that consists of the vertices fol-

lowing v in a path of W (see Fig. 10). This is based on the

same array C as used with the string BWT. For a vertex

v 2 V , the array stores the overall number of occurrences

of all vertices w such that w\v on all paths in W as C½v�.
The actual data stored for each vertex v 2 V is the

following:

• The list N of vertices w such that (v, w) is an arc of G.

Notice that this list can be shorter than BWTv if there

are several paths traversing the same arc. For each

destination vertex w, we also store the number

BWT:rankðC½v�;wÞ that is equal to the number of times

a path traverses an arc ðv0;wÞ from a vertex v0\v

(Fig. 11). In the BWT parliance, BWT:rankði; cÞ for an

integer 1� i� jBWTj and a character c denotes the

number of occurrences of c in the prefix BWT½1 : i�.Fig. 10 Partitioning the BWT into substrings BWTv corresponding to

vertices v 2 V and the representation of BWT offsets i as pairs ðv; i0Þ

Fig. 11 The record for vertex v3 with outgoing paths to v4, v5, and v6.

The top part of the record is the vertex identifier. The middle part

stores a pair ðw;BWT:rankðC½v�;wÞÞ for each outgoing edge (v, w).

The bottom part is BWTv encoded using edge ranks. Observe that

there are two paths visiting vertex v4 from vertices smaller than v3.

Hence, record for vertex v3 stores the pair ðv4; 2Þ

Computational graph pangenomics: a tutorial on... 95

123

• String BWTv encoding all visits to vertex v. For each

visit, the string stores the next vertex w on the path.

The destination vertex is encoded as an arc rank i

such that N½i� ¼ w. This reduces the space for

representing the visits from jBWTvj log jV j bits to

jBWTvj log d bits, where d is the outdegree of v.

Since d is constant on the average, a constant number

of bits per visit suffices. Additionally, we run-length

encode the string BWTv, which can further reduce the

space usage if the paths are similar enough (see

Sect. 5.2 for a discussion and the definition of run-

length encoded BWT).

To avoid storing the array C explicitly, we use ðv; i0Þ to refer

to the BWT offset BWT½i�. Here v is a vertex such that

C½v�\i�C½vþ 1� and i0 ¼ i� C½v� is the relative offset in

BWTv (see Fig. 10). This simplifies the computation of the

values BWT:rankði;wÞ that are needed for answering quer-

ies. Since i ¼ C½v� þ i0, we compute BWT:rankði;wÞ as

BWT:rankðC½v�;wÞ þ BWTv:rankði0;wÞ, where the first

term is stored in the record for vertex v. The second term,

BWTv:rankði0;wÞ, is the number of occurrences of w in the

substring BWTv until relative offset i0. If the assumptions

about the structure of the graph hold, we can compute it

efficiently with a linear scan of the compressed BWTv.

The key function for answering queries in a BWT is the

LF-mapping LFði;wÞ ¼ C½w� þ BWT:rankði;wÞ—see

Sect. 4.1. Following our discussion on the substrings

BWTv, BWT offsets, and rank queries in the GBWT, we

can replace the first term C½w� with a reference to vertex

w. The second term BWT:rankði;wÞ is the relative offset in

BWTw. It can be computed as BWT:rankðC½v�;wÞþ
BWTv:rankði0;wÞ, where i0 is the relative offset in BWTv.

Because all information needed for computing LF-mapping

is stored locally in vertex v, the memory locality of GBWT

queries is better than in ordinary FM-indexes. This is

especially true if we store adjacent vertices near each other

in memory.

Example 1 Consider the record for vertex v3 in Fig. 11.

Let us compute the LF-mapping value LFððv3; 4Þ; v4Þ.
Recall that LFði; cÞ is the the number of suffixes smaller

than or equal to a hypothetical suffix that starts with c and

continues with the suffix corresponding to offset i. In the

GBWT, LFððv; i0Þ;wÞ ¼ ðw; jÞ, where j is the number path

prefixes ending with w that are (in reverse lexicographic

order) smaller than or equal to a hypothetical prefix that

starts with the prefix corresponding to ðv; i0Þ and ends with

w. We compute j as the sum of visits to vertex w from

vertices smaller than v and the number of times a path

visiting v at offset k� i0 continues to w. The former is

stored in the record for vertex v and the latter can be

computed from BWTv. Since v4 has 2 visits from vertices

with indexes less than v3 and there are 3 occurrences of v4

(edge rank 1) in BWTv3
½1 : 4�, we get

LFððv3; 4Þ; v4Þ ¼ ðv4; 5Þ.

Example 2 Figure 12 illustrates the GBWT of the graph

induced by three paths S1; S2; S3, one colored purple and

consisting of vertices v1; v2; v4; v6; v7, one green and con-

sisting of vertices v1; v2; v5; v7 and finally the orange one

consisting of vertices v1; v3; v4; v5; v7. The encoded BWT

substrings BWTv for each vertex v are:

• v1 : 112 corresponding to order ðS1; S2; S3Þ of the paths,

with the edge of rank 1 to v2 and edge 2 to v3;

• v2 : 12 corresponding to paths ðS1; S2Þ, with edge 1 to v4

and 2 to v5;

• v3 : 1 corresponding to paths ðS3Þ, with edge 1 to v4;

• v4 : 21 corresponding to paths ðS1; S3Þ, with edge 1 to v5

and 2 to v6;

• v5 : 11 corresponding to paths ðS2; S3Þ, with edge 1 to

v7;

• v6 : 1 corresponding to paths ðS1Þ, with edge 1 to v7;

and

• v7 : 111 corresponding to paths ðS2; S3; S1Þ, with edge 1

to nowhere.

Example 3 Let us examine another example consisting of

paths S1; S2; S3; S4 where S1 ¼ v1; v2; v4, S2 ¼ v1; v2; v4,

S3 ¼ v1; v2; v3, and S4 ¼ v1; v3; v4. The substrings BWTv

for each vertex are:

• v1 : 1112 corresponding to paths ðS1; S2; S3; S4Þ, with

edge 1 to v2 and 2 to v3;

• v2 : 221 corresponding to paths ðS1; S2; S3Þ, with edge 1

to v3 and 2 to v4;
Fig. 12 The GBWT in Example 2. As in Fig. 11, the top part of each

record is the vertex identifier v. The middle part stores a pair

ðw;BWT:rankðC½v�;wÞÞ for each outgoing edge (v, w). The bottom

part is BWTv encoded using edge ranks

96 J. A. Baaijens et al.

123

• v3 : 21 corresponding to paths ðS4; S3Þ, with edge 1 to

nowhere and 2 to v4; and

• v4 : 111 corresponding to paths ðS1; S2; S4Þ, with edge 1

to nowhere.

Another version of the GBWT (Gagie et al. 2017) is a

more direct generalization of the positional BWT (Durbin

2014) to graphs. Conceptually, we have a pangenome

graph representing some variation using graph topology,

with an option to represent rare or less important variants

as alternate alleles using another alphabet R. The strings

are now over alphabet V � R. Each character (v, c) rep-

resents a visit to vertex v 2 V with allele c 2 R. Again, we

can encode successor vertices with ranks. If N½i� ¼ w,

character (w, c) becomes (i, c) in the BWT.

Example 4 Let us consider now the version that includes

the alphabet symbols along the path. We have four paths:

S1 ¼ ðv1; tÞðv2; cÞðv4; gÞ, S2 ¼ ðv1; cÞðv2; tÞðv4; cÞ,
S3 ¼ ðv1; gÞðv2; cÞðv3; gÞ, and S4 ¼ ðv1; cÞðv3; tÞðv4; cÞ. In

order to use allele symbols in the first real vertex v1, we

start all paths from a special vertex v0. The BWT is:

• v0 : ð1; tÞð1; cÞð1; gÞð1; cÞ corresponding to paths

ðS1; S2; S3; S4Þ, with edge 1 to v1;

• v1 : ð1; tÞð2; tÞð1; cÞð1; cÞ corresponding to paths

ðS2; S4; S3; S1Þ, with edge 1 to v2 and edge 2 to v3;

• v2 : ð1; gÞð2; gÞð2; cÞ corresponding to paths ðS3; S1; S2Þ,
with edge 1 to v3 and edge 2 to v4;

• v3 : ð2; cÞð1; $Þ corresponding to paths ðS4; S3Þ, with

edge 1 to nowhere and edge 2 to v4; and

• v4 : ð1; $Þð1; $Þð1; $Þ corresponding to paths ðS2; S1; S4Þ,
with edge 1 to nowhere.

See Fig. 13. Note that in this version of the GBWT, the

order of path visits in each BWTw is affected by both the

predecessor vertex v and the allele symbol c.

5 Indexing in sub-linear space

Differently from the previous section, we will now discuss

a pangenome representation that is not based on graphs, but

it relies on the fact that the concatenation G1 � � �Gg of a set

of g genomes can be viewed as a highly-repetitive string

S[1 : n]—each Gi is a substring of S and terminates with a

deliminator. The data structure we present, the r-index,

allows to answer two fundamental queries: counting the

number of occurrences in a pattern in S (count), and

locating those occurrences in S (locate). More complicated

queries, such as aligning a sequence read to collection of

genomes, can be broken down into count and locate

queries. While linear-space indexes—such as the FM-index

(see Sect. 4.1)—are well known, they do not fully exploit

the repetitive nature of large pangenomes. For example,

two terabytes of data would roughly require two terabytes

of memory to construct the FM-index. Hence, there has

been significant effort in reducing the space requirement of

the FM-index while still maintaining the efficiency of

performing count and locate queries. In this section, we

Fig. 13 The GBWT from

Example 4

Table 1 Sequence length and n/r statistic with respect to number of

whole genomes for six collections in the 1,000 Genomes Project

(1KG) and long-read assembly (LRA) datasets. The table originates

from Kuhnle et al. (2020) and is recreated here with permission from

the authors

No. of Genomes Sequence Length (MB) n/r

1KG LRA 1KG LRA

1 6072 6072 1.86 1.86

2 12,144 12,484 3.70 3.58

3 18,217 17,006 5.38 4.83

4 24,408 22,739 7.13 6.25

5 30,480 28,732 8.87 7.80

6 36,671 34,420 10.63 9.28

Computational graph pangenomics: a tutorial on... 97

123

denote with P the query string or pattern to be P, and the

number of occurrences of P in S as occ.

The main observation is that on large and repetitive data

the BWT frequently has long equal-character runs that

could be exploited in order to reduce the size of the con-

struction. We denote r as the number of equal-character

runs in the BWT. Typically, the measure of n/r describes

the extent of repetition in the data and thus, the amount of

compression any representation that is dependent only on

r will obtain—the larger the value, the more compression

will likely be obtained. Table 1 illustrates how n/r varies as

the size and number of genomes varies. In a step toward

achieving a more efficient construction of the BWT,

Mäkinen and Navarro (2005) defined the Run-Length

Burrows–Wheeler Transform (RLBWT).

Definition 9 Given an input string S[1 : n], the run-length

encoded BWT of S is the representation RLBWT½1 : r� of

the BWT where each run is represented as the character of

the run and its length and where r is the number of max-

imal equal-character runs in the BWT, e.g., runs of A’s, C’s

and so forth.

The RLBWT can be constructed in a manner that it does

not become much slower or larger even for thousands of

genomes, which is demonstrated in the following result.

Theorem 1 (Mäkinen and Navarro 2005) Given an input

string S[1 : n], we can construct its RLBWT in OðrÞ-space
such that we can count the number of occurrences of any

pattern P[1 : m] in Oðm log nÞ-time.

A compact representation of the RLBWT of the BWT of

a string S consists of a string containing a single character

for each run in the RLBWT and a bit vector that marks the

beginning of the runs with a 1 (Mäkinen et al. 2010). For

example, given the BWT ¼ TGCATTAA of the string

GATTACAT the RLBWT can be represented with the

character string TGCATA and bit vector 11111010. To

complete the construction of an FM-index we need also the

construction of the suffix array samples in OðrÞ space while

allowing for efficient queries; this step has remained more

elusive. The index of Mäkinen and Navarro can support

count queries in OðrÞ-space, in order to support locate

queries in time proportional to s, where s is the distance

between two samples, they require Oðn=sÞ-space for the

SA samples. In practice, these SA samples are orders of

magnitude larger in size than the RLBWT. Hence, it was

unclear how to sample the SA in a manner that the locate

queries were efficient but the sampling of the SA was

efficient in practice. More than a decade later, Policriti and

Prezza (2017) showed that for a given string S[1 : n] and a

query string P[1 : m], how to find the interval in the BWT

containing the occ characters preceding occurrences of P in

S in Oðm log log nÞ-time and OðrÞ-space. This result,

referred to as the Toehold Lemma, demonstrates how to

find one SA sample in the interval containing a query string

P. However, it does not fully support locate queries, i.e.,

locate all occ SA samples within that interval. This was

solved two years later by Gagie et al. (2020) when they

combined the Toehold Lemma, RLBWT of Mäkinen and

Navarro (2005), and the definition of / to show how to

support locate queries in OðrÞ-space. In summary, they

give the following result.

Theorem 2 (Gagie et al. 2020) Given an input string

S[1 : n], it is possible to store S in OðrÞ space so that we

can find all the occ occurrences of any pattern P[1 : m] in

S in O
�

ðmþ occÞ log log n
�

-time.

The authors refer to the data structure behind this result

as the r-index. More precisely, the r-index is an evolution

of the FM-index and it consists of the RLBWT and a SA

sampling that stores the SA values in the positions corre-

sponding to the beginning and the end of every equal-

character run in the RLBWT (Gagie et al. 2020). The

elucidation of the r-index was deemed to be a significant

breakthrough as it indicates how the SA can be sampled in

space proportional to r while allowing for efficient locate

queries. However, in some sense it lacked practicality

because it was unclear how to efficiently construct it for

large genomic databases. Lastly, it it worth nothing that

since the introduction of the r-index, other sub sampling

approaches have been described and shown to gain

improvements in practice (Cobas et al. 2021).

5.1 How to construct the r-index

As previously mentioned, Gagie et al. (2020) did not

describe how to build the r-index – this was shown in a

series of papers (Kuhnle et al. 2020; Mun et al. 2020;

Boucher et al. 2019). In particular, Boucher et al. (2019)

introduced Prefix Free Parsing (PFP), which takes as input

a string S, window size w, and a prime p and produces a

dictionary of substrings of S and a parse of S, that is a

sequence of substrings in the alphabet (Kreft and Navarro

2013) – and showed how to build RLBWT from the dic-

tionary and parse. Throughout this section, we denote the

dictionary as D and the parse as P. It was later shown how

to build the SA samples in addition to the RLBWT by

Kuhnle et al. (2020).

We first describe how to construct the dictionary and

parse using PFP. The first step of PFP, is to append and

prepend w copies of # to S, where # is a special symbol

that is lexicographically smaller than any element in the

alphabet. Hence, given a string S, we augment it to contain

#wS#w. We note that this definition is equivalent to the

98 J. A. Baaijens et al.

123

original that considers the circular string S#w. Next, we

define the set of trigger strings T to consist of the string #w

and all w-length substrings of S whose hash is congruent to

0ðmod pÞ — any hash function can be used. The dictionary

D ¼ fd1; . . .; djDjg is the largest set of all substrings of

#wS#w such that the following holds for each di in D:

exactly one proper prefix and exactly one proper suffix of

di are trigger strings, and no other substring of di is a

trigger string, where a proper prefix or suffix is one that is

non-empty. Notice that D can be obtained by traversing

S from right to left, and extracting the list of substrings

(called covering substrings) that begin and end with a

trigger string and contain no other trigger string. Then, the

dictionary D is computed by removing duplicated covering

substrings and sorting them lexicograpically. Finally, given

our dictionary, we determine the parse P by replacing each

covering string with its rank in the dictionary D.

From the dictionary and parse, we can construct some

auxiliary data structures in time and space that are linear in

the size of D and P, including the BWT of P and the SA of

D. Next, we lexicographically sort the proper suffixes of

the substrings in D that have length at least w, and store

their frequency in S. For each such suffix a, all the char-

acters preceding occurrences of a in S occur together in

BWT, and the starting position of the interval containing

them is the total frequency in S of all such suffixes lexi-

cographically smaller than a. It may be that a is preceded

by different characters in S, because a is a suffix of more

than one substring in D but then those characters’ order in

BWT is the same as the order of the phrases containing

them in the BWT of P. These observations lead to the

following result.

Theorem 3 (Kuhnle et al. 2020) Given an input string S,

we can compute RLBWT and SA samples in space and

time linear in the size of the dictionary and parse con-

structed from PFP.

Next, we use the example in Fig. 14 to give some

intuition as to how to build the suffix array and BWT from

the dictionary and parse. We remind the reader that suffix

array considers all possible rotations of S in lexicographical

order. These rotations can be obtained using D and P. To

see this, let us consider an expanded form of D where we

consider all suffixes of D that have length greater than w,

D0 ¼ f##GATTAC; #GATTAC; . . .; TAGg. We can now restate

the goal as to how put all sequences of D0 in lexico-

graphical order. To see how to accomplish this, we con-

sider all sequences in D0 from the first sequences in D,

##GATTAC, #GATTAC, GATTAC, ATTAC, TTAC, and TAC, and

how to place the second sequence #GATTAC in lexico-

graphical order. To accomplish this we need to consider

three cases: (1) if #GATTAC is a prefix of another sequence

in D0, (2) #GATTAC is a suffix of another sequence in D0, or

(3) neither is true. Because #GATTAC ends with a trigger

strings, it follows that the first case cannot occur. Hence,

we only need to consider (2) and (3). If #GATTAC is unique

to the first sequence in D then it follows that we can place it

in lexicographical order without considering P. However,

if #GATTAC is a suffix of another sequence then P can be

used to identify the correct lexicographical order. Hence, as

the name suggests, that the parse produced by PFP has the

property that no suffix of length greater than w of any string

in D is a proper prefix of any other suffix in D, which is

useful for avoiding the difficult cases in producing the

suffix array and BWT.

Lastly, we mention that PFP only requires one sequen-

tial pass through S and thus, can be easily parallelized and

performed in external memory. Moreover, it has been

recently shown by Boucher et al. (2021) that the products

Fig. 14 Dictionary and parse of

the set GATTACAT,

GATACAT, and

GATTAGATA of genomes for

w ¼ 2

Computational graph pangenomics: a tutorial on... 99

123

of PFP can be viewed as data structures and be extended to

support the following still in OðjPj þ jDjÞ-space: longest

common extension (LCE), SA, longest common prefix

(LCP) and BWT.

5.2 How to query the r-index

As previously mentioned, the basic r-index can support

both count and locate queries but it does not immediately

enable finding alignments between query sequences (e.g.,

new sequence reads) and reference genomes efficiently. To

support these queries, we need to revisit how traditional

read aligners use the FM-index (or another index that can

perform efficient count and locate queries); after building

an index from a small number of reference genomes,

majority of them find short exact matches between each

read and the reference genome(s), and then extend these to

find approximate matches for each entire read. Maximal

exact matches (MEMs), which are exact matches between a

read R and genome G that cannot be extended to the left or

right, have been shown to be effective seeds for finding full

alignments (Li 2013; Miclotte et al. 2016; Vyverman et al.

2015).

Definition 10 Given a genome G[1 : n] and a sequence

read R[1 : m], a substring R½i : iþ ‘� 1� of length ‘ is a

Maximal Exact Match (MEM) of R in G if R½i : iþ ‘� 1�
is also a substring of G, but R½i� 1 : iþ ‘� 1� and R½i :
iþ ‘� are not substrings of G.

Computing MEMs is equivalent to computing matching

statistics for R (Bannai et al. 2020) which gives, for each

position i of R, the length of the longest substring of

R starting at position i that is also a substring of G, and the

initial position in G of such a substring. We now define

formally this notion as follows:

Definition 11 The matching statistics of R with respect to

S is an array M½1 : jRj� of ðpos; lenÞ pairs such that: (1)

S½M½i�:pos : M½i�:pos þM½i�:len � 1� ¼ R½i : iþM½i�:len � 1�

; and (2) R½i : iþM½i�:len� does not occur in S.

We can compute the matching statistics using a simple

two-pass algorithm: first, working right to left, for each

suffix of R we find the position in S of an occurrence of the

longest prefix of that suffix that occurs in S; then, working

left to right, we use random access to S to determine the

length of those matches. After computing the positions and

lengths, you can find the MEMs in a left to right pass of the

matching statistics. We note that it is not difficult to see

that left to right pass to calculate the lengths and the left to

right pass to calculate the MEMs can be done simultane-

ously. In Fig. 15 we have a query string R ¼ TATACAT and

S ¼ GATTACAT$GATTTACAT#. The position (POS) in the

suffix array are determined from a right to left pass (which

we describe later). For example, we consider the longest

common prefix of the suffixes in the following order: T,

AT, CAT, ..., TATACAT. Considering, ATACAT, which is

the second to last suffix considered, we see the longest

common prefix of ATACAT that occurs in S is AT and one

Fig. 15 An illustration of the

thresholds and matching

statistics for identifying pattern

R (left) in the string S (right).

We give the longest prefix of the

suffix of R that occurs in S, its

length (len), and its position

S (pos). We give the SA, LCP,

the thresholds (THR) and BWT
for S. The longest common

prefix between each consecutive

rotations of S is highlighted in

red

100 J. A. Baaijens et al.

123

of the occurrences is at position 7 in the suffix array. Next,

we can go from left to right to find the lengths and thus, the

length of longest match. For example, if we consider

ATACAT, we go to S[7] and extract all characters until we

have a mismatch. On first consideration this may appear to

be slow in practice but as Bannai et al. (2020) pointed out,

using a compact data structure that supports random access

to S in Oðlog log nÞ-time, this can be accomplished in

Oðm log log nÞ-time and small space. We should note that

after finding the position, say p, of a single MEM / can be

used to access the SA from p and find all MEMs.

Given the definition of matching statistics, the next

question arises as to how to compute them efficiently. A

small auxiliary data structure that gives random access to

S is needed for computing the lengths of the matches. Thus,

we need an auxiliary data structure to compute positions—

we will clarify why this is needed using our previous

example. Given our string R ¼ TATACAT, we assume that

we have found the position in S of the longest prefix of the

suffix of ACAT, which is the string itself and occurs in S at

position 14. We next move to right by one position and

attempt at finding the longest match for TACAT, this can be

accomplished using the backward search algorithm. This

allows us to obtain the position 13 for TACAT. Next, we

attempt to extend this match by the rightmost character (A)

using backward search and we see that we have a mismatch

as ATACAT does not occur in S so we are stuck and it is not

obvious how to continue computing the matching statistics

at the position. Bannai et al. (2020) devised the ingenious

concept of thresholds that guides the computation of the

matching statistics at such points. Collectively, the

thresholds is a small data structure that stores a position for

each pair of consecutive runs of the same character in the

BWT, where the position corresponds to the minimum LCP

value in the interval between them. For example, in

Fig. 15, we see that there exists a threshold at position 16

because it has the smallest LCP value between the run of

T’s ending at 17 and the run of T’s starting at 14. If R½i�
1 : j� matches to some position within the range of 17 to 14

but there does not exist a match to TR½i� 1 : j�, then we

know the longest common prefix with TR½i� 1 : j� is either

at the position of the last T of the preceding run of T’s or

the first position of the succeeding run of T’s. The

thresholds act as a guide to which of these positions it is. If

the previous match is a position prior to the threshold then

you jump up to the previous run and if it is below the

threshold then you jump down to the previous run (Bannai

et al. 2020). How to construct efficiently the thresholds

with the r-index has been later accomplished (Rossi et al.

2021), thanks to an equivalent definition of thresholds

(Definition 12), as an addition to PFP.

Definition 12 Given a text S, let BWT½j0 : j� and BWT½k :
k0� be two consecutive runs of the same character in BWT.

We define a position j\i� k to be a threshold if it corre-

sponds to the minimum value in LCP½jþ 1 : k�.

In Fig. 15, we illustrate the thresholds and matching

statistics. Revisiting our previous example, we see that the

current match of TACAT will occur at position 13 and

ATACAT does not occur within S. 13 is below the threshold

for A (14) so jump down to position 3 and then continue

with backward search. Together these concepts summarize

how MEM queries can be supported using the r-index:

• Construct the r-index with thresholds using the version

of PFP of Rossi et al. (2021)

• Given a sequence read R calculate the matching

statistics of R using the thresholds.

• Find the MEMs for R using the two-pass algorithm

defined above.

Lastly, we note that other exact matches—such as match-

ing k-mers—can be used as seeds for alignment and be

found nearly identically to that of MEMs in the r-index.

6 Application scenarios in pangenome
graphs

In the following we discuss specific application

frameworks.

6.1 Haplotype and genotyping in pangenomics
and pantrascriptomics

The data structures presented in the tutorial have various

application in the analysis of haplotypes and in genotyping

variants at population scale level. The Graph Burrows–

Wheeler Transform has been recently used by Sirén et al.

(2020) to efficiently build a whole-genome index of 5,008

haplotypes of 1KGP (The 1000 Genomes Project Consor-

tium 2015). It is important to note that the GBWT pre-

sented by Sirén et al. (2020) is different from the original

graph positional BWT proposed by Novak et al. (2017)

and leads to a more practical and efficient representation of

haplotype-aware indexes, i.e., indexes of pangenome

graphs where paths represent the distinct haplotypes in the

individuals. These indexes are becoming extremely useful

in many applications, since haplotypes are able to distin-

guish specific SNPs that are relevant in personalized

medicine. Sibbesen et al. (2021) used the GBWT to rep-

resent a pangenome graph for haplotypes that is annotated

with the additional information of a splicing graph. Then

quantification of transcripts from RNA-seq data is obtained

by taking into account the haplotype information and then

Computational graph pangenomics: a tutorial on... 101

123

by implementing an RNA-seq aligner to the pangenome

graph. The alignment of RNA-seq data to splicing graphs is

a problem originally considered by Denti et al. (2018). A

splicing graph is a graph representing a collection of

transcripts and their relation in terms of shared exons.

Vertices in the splicing graph are usually exons and edges

connect exons that are consecutive in some tran-

script (Beretta et al. 2014).

The main idea of Sibbesen et al. (2021) is to represent

the exons of a splicing graph directly in a pangenome graph

by mapping exons to haplotype sequences of the pangen-

ome graph. In this way, they propose a tool for mapping

RNA-seq data that is able to take into account haplotype

variations in the analysis of transcripts.

6.2 Viral haplotype reconstruction

Another application of computational pangenomics arises

in viral genome assembly. During infection, viruses repli-

cate their genome billions of times using error-prone

replication machinery, hence many of the resulting gen-

omes are inexact copies. These are also referred to as viral

haplotypes, which together form a viral pangenome. In

order to study characteristics such as virulence or drug

resistance and to design effective treatments, it is important

to identify the different haplotypes present during infec-

tion. This can be done through genome sequencing, which

produces a collection of short genomic fragments (reads)

from all haplotypes, combined in a single data set; the goal

of viral haplotype reconstruction is to identify all haplo-

types present and to estimate the corresponding relative

abundances.

One of the main challenges in viral haplotype recon-

struction is the large amount of reads and the high degree

of similarity between those reads. This requires highly

efficient graph construction algorithms. Another challenge

is to capture the variation within a sample while carefully

filtering out any sequencing errors. These challenges are

addressed using different types of graphs and benefit

greatly from advances in pangenome representations.

Below, we describe how different data structures have been

used for viral haplotype reconstruction and the advantages

and disadvantages of each approach. Figure 16 then pre-

sents an instance of a viral sequence data set to illustrate

the data structures presented.

6.2.1 Overlap graphs in viral haplotyping

Viral haplotype reconstruction makes use of overlap

graphs. Observe that the precise definition of the arcs in an

Fig. 16 A toy example to illustrate the process of viral haplotype

assembly. In this example, the task is to obtain the genome variation

graph (a viral pangenome) by reconstructing the viral haplotypes from

sequencing data, with haplotypes present at different abundances

(here 30 vs. 70%). Stars below the original sequences indicate the

three positions where the two haplotypes differ. The three data

structures involved in the assembly process are (1) an overlap graph,

where vertices represent sequencing reads and arcs indicate suffix-

prefix overlaps; (2) a de Bruijn graph, where vertexs represent k-mers

and arcs indicate overlaps of length k � 1; (3) a variation graph, first

constructed from the extended sequences (contigs) obtained through

genome assembly, which can be transformed into a genome variation

graph that represents the full-length haplotypes. Note that this
example is a simplistic representation of reality: sequencing errors
are not shown, hence all overlaps between reads are exact

102 J. A. Baaijens et al.

123

overlap graph can be adjusted to the application: for

example, a minimal overlap length threshold d and maxi-

mal mismatch rate e can be imposed, meaning that only

overlaps of length L� d with less than eL mismatches give

an arc in the overlap graph. In general, complex assembly

tasks such as viral haplotype reconstruction require strict

arc criteria.

The main idea of approaches that make use of overlap

graphs (e.g., Baaijens et al. 2017; Chen et al. 2018; Töpfer

et al. 2014) is that arcs in the graph connect reads origi-

nating from the same haplotype. Overlaps between reads

are often inexact (i.e., Hamming distance [0) due to

sequencing errors. To accommodate such overlaps in the

overlap graph, the maximal mismatch rate e should reflect

expected sequencing error rates. Furthermore, by choosing

a relatively large d one can avoid short overlaps that occur

by chance. Finally, base calling quality scores can be used

to compute the probability that a pair of overlapping reads

originate from the same haplotype; after removing any

edges where this probability is below a certain threshold,

viral haplotypes can be identified through clique enumer-

ation on the overlap graph (Baaijens et al. 2017; Chen

et al. 2018; Töpfer et al. 2014).

The biggest challenge in working with overlap graphs is

the graph construction step since the number of potential

overlaps is quadratic in the number of input sequences.

Naively checking whether a given pair of sequences have

any overlap takes Oðl2Þ time, where l is the sequence

length. Therefore, checking all possible overlaps this way

would take Oðl2n2Þ time, with n the number of input

sequences. Luckily, there are more efficient algorithms to

do this computation. Exact overlaps can be computed

efficiently using an FM-index, but this does not work for

inexact overlaps. Instead, one can use suffix filters in

combination with an FM-index to find approximate over-

laps; theoretical runtime remains Oðl2n2Þ but is much faster

in practice (Kucherov and Tsur 2014; Välimälki et al.

2010). This is an exact solution to the approximate suffix

prefix overlap problem: it guarantees finding all overlaps

within specified Hamming distance. Alternatively, heuristic

approaches like minimap2 (Li 2018) enable a more effi-

cient, yet approximate, solution to overlap graph

construction.

6.2.2 De Bruijn graphs in viral haplotyping

A de Bruijn graph stores the information from the

sequencing reads in the form of k-mers: each vertex rep-

resents a k-mer occurring in the reads, and arcs indicate

exact suffix-prefix overlaps of length k � 1. Such a graph

captures shared sequence between haplotypes by collapsing

identical k-mers and genome assembly is performed by

merging simple paths into so-called unitigs. De Bruijn

graphs are constructed by enumerating and counting all k-

mers present in the sequencing reads; most algorithms

make use of either sorting (e.g., Kaplinski et al. 2015;

Kokot et al. 2017) or hashing (e.g., Chikhi et al. 2016;

Mohamadi et al. 2016) to solve this task efficiently.

In the application of viral haplotype reconstruction,

building a de Bruijn graph is very fast because the number

of input reads is small compared to mammalian genomes.

The main challenge in working with de Bruijn graphs in

this setting, is distinguishing sequencing errors from

genomic mutations. Standard de Bruijn graph-based

assembly algorithms eliminate sequencing errors from the

graph by removing low-frequency k-mers. This approach is

not suitable for viral haplotype reconstruction, because

low-frequency k-mers can also correspond to low-fre-

quency haplotypes. To avoid this issue, some methods

attempt to remove sequencing errors before de Bruijn

graph construction by applying error correction software

tailored to viral sequencing data (Freire et al. 2020; Mal-

hotra et al. 2016). Alternatively, information on differential

coverage (i.e., differences in relative abundance between

haplotypes) has been used to deconvolute the de Bruijn

graph into haplotype assemblies (Fritz et al. 2021).

6.2.3 Variation graphs

Finally, variation graphs are very suitable representations

of the genomic diversity found in a viral infection. Given a

collection of viral haplotypes, a variation graph can be

obtained using the construction techniques discussed ear-

lier. Each viral haplotype can be stored as a path through

the graph and relative abundances per haplotype can be

added as an additional feature.

In addition to being a suitable representation, variation

graphs can also be used as a data structure for haplotype

reconstruction. Although algorithms making use of overlap

graphs and de Bruijn graphs can assemble haplotype-

specific sequences (contigs), these are often unable to build

complete (i.e., full-length) haplotypes: contigs remain

shorter than the viral genome. In other words, the assembly

techniques described above provide only a partial solution,

which can be extended into a full solution using variation

graphs (Baaijens et al. 2019, 2020). These algorithms

construct a contig variation graph from a collection of

haplotype-specific contigs, such that the graph organizes

the genetic variation that is present in the input contigs.

The challenge of constructing this graph is that contigs can

have little or no overlap, as they may represent different

parts of the genome. Methods that have proven to be useful

in this context are VG-msga (Garrison et al. 2018) and

poa (Lee et al. 2002), both of which are based on multiple

sequence alignment. An alternative approach is to use an

Computational graph pangenomics: a tutorial on... 103

123

all-versus-all aligner like minimap2 (Li 2018) to find all

contig overlaps, followed by seqwish (Garrison et al. 2019)

for graph construction, but this requires careful filtering of

overlaps to obtain a clean graph.

The goal of viral haplotype reconstruction is to find the

genome variation graph which stores the haplotypes within

a viral population, along with an abundance function that

gives haplotype abundances. Existing approaches use

sequence-to-graph alignment to obtain vertex abundances,

from which the haplotypes and their relative abundances

are estimated by solving a combinatorial optimization

problem on the contig variation graph (Baaijens et al.

2019, 2020). Efficient and reliable variation graph con-

struction is key to algorithms like this.

7 Conclusions and open problems

This tutorial on computational pangenomics mainly focu-

ses on presenting the most relevant data structures that are

currently used to represent and index pangenomes to

facilitate several operations, such as the basic pattern

matching and computing matching statistics. After pre-

senting the computational problem of constructing a pan-

genome graph, we discussed how to face genotyping and

haplotyping inference and analysis within a pangenomics

framework. The most advanced techniques, namely the

positional BWT, the graph BWT, and the r-index have

been introduced in the literature recently, and therefore,

lead to some important research challenges, while their

application to computational pangenomics has been only

partially explored. We conclude this tutorial with a dis-

cussion on some open problems.

7.1 Computing a pangenome graph
from overlapping variation graphs

We described the problem of constructing a variation graph

in Sect. 3, and most notably as Problem 2, where the

instance is a multiple sequence alignment, and we have

noticed that the objective function is not always explicit.

Devising useful objective functions, adapting the formu-

lation to other instances or desired outcomes are all rele-

vant aspects whose study has already started, for example

by considering how to obtain a variation graph from an

overlap graph (Eizenga et al. 2021), which is usually

considered when assembling a linear genome. This prob-

lem is worthy of a deeper investigation, given its relation

with the genome assembly problem, as discussed in

Sect. 6.2.

An important limitation of current approaches is to

avoid complex graph configurations in the output, since

those are usually artifacts of the construction procedure,

which are removed by manually tweaking some of the

parameters of the tool used for building the graph.

A limitation of the formulation that starts from a mul-

tiple sequence alignment is that all those sequences have a

symmetric role. Instead, it is interesting to exploit the

evolutionary history, usually represented by a phylogenetic

tree. In this case, we need to refine the objective function to

also consider the evolutionary aspects. A possible

metaproblem becomes the following.

Problem 3 (graph construction from evolutionary related

genomes) Let C a be collection of genome sequences and a

scenario of evolutionary events for the genomes. Then the

graph construction from evolutionary related genomes asks

to find a variation graph G that better explains the scenario.

A slightly different approach is based on considering

recombination events, which is especially relevant when

dealing with a pangenome of haplotypes. In this case,

instead of a phylogenetic tree we need to consider a sce-

nario of recombination events, as described by ancestral

recombination graphs (Shchur et al. 2019) or by founder

graphs (Ukkonen 2002; Mäkinen et al. 2020).

In the following, we give three additional generic open

problems, where the specific objective function is not

specified, since it depends on the property of the data

involved.

Problem 4 (graph construction from contigs) Let C a be

collection of partially overlapping sequences (contigs).

Then the graph construction from contigs problem asks to

find a variation graph G that expresses all contigs in C.

We note that this problem is more general than Prob-

lem 2 since that problem requires the input sequences

appear as source-sink paths in the graph, while they appear

as any path in Problem 2. The reason is that we expect the

genomes to be highly similar, while contigs can have a

small overlap or no overlap at all since they can corre-

spond to different regions in the genome. This means that

methods that are based on computing a multiple sequence

alignment of contigs are not ideal, since the problem is too

hard. In fact, most of the available tools apply a progressive

alignment approach. Therefore, the results depend heavily

on the order in which the contigs are provided. If the initial

alignments regards non-overlapping sequences, then the

alignment is not very informative. Moreover, the number

of contigs is likely much larger than the number of gen-

omes, making the problem even harder to solve.

Problem 5 (graph construction from long reads) Let R a

be collection of long reads. Then, the graph construction

from long reads problem asks to find a variation graph

G that expresses all long reads in R.

104 J. A. Baaijens et al.

123

This problem is a variant of the problems on contigs or

on genomes. Recent sequencing technologies produce

reads of 10 to 50 thousand base pairs (Logsdon et al. 2020)

but are more error prone compared to short reads or to

assembled genomes (or contigs).

Related to these practical problems is the more theo-

retical problem of building a pangenome graph in sub-

linear space. For example, if we consider building and

storing a graph using the BWT, the question can be

sharpened: can we build and store a pangenome graph in

OðrÞ space and time, where r is the number of runs in the

BWT.

Problem 6 (graph construction in sub-linear space) Let S

a be collection of partially overlapping sequences (contigs,

genomes or read). Then the sub-linear graph construction

problem asks whether you can build a graph G that

expresses all sequences in S in sub-linear space and time.

7.2 Extending the PBWT and the GBWT
to missing and erroneous data

The genomes and haplotypes that are indexed by a PBWT

or a GBWT are assumed to be complete and error-free, but

this is not the case in practice, for multiple reasons

including that the raw data contain errors, the tools that

manage them are mostly heuristics, and some regions

might be absent in the reads. All these prospective issues

result in errors or missing data.

In the best case, errors in a genome or in a haplotype are

discovered and corrected; this means that we have to

update the PBWT or the GBWT, ideally without comput-

ing it from scratch and with a reduced the running time.

While there have been some efforts in that direction for the

GBWT (Sirén et al. 2020; Eizenga et al. 2020a) that make

feasible to update individual genomes in the GBWT, the

current state of the art on the PBWT is still lacking.

Moreover, it is still unclear what the effect is of a large

sequences of operations on the GBWT and on the repre-

sentations it uses. For example, some problems are (1) to

determine if we can build a sequence of operations such

that the numbers in the delta encoding explode, (2) if such

a sequence can appear in real cases, and (3) to develop a

self-balancing procedure that gives some guaranteed sub-

linear time complexity for each operation.

Since missing data are fairly common in haplotype

panels, it is not surprising that they have already been

studied in the context of the positional BWT, where they

are represented by a wildcard (Williams and Mumey

2020). A useful notion is that of a haplotype block, that is a

maximal interval of columns such that (1) a subset of rows

of the panel are identical, and (2) it is not possible to extend

the interval in any direction. When there are no missing

data, blocks can be easily computed using the PBWT.

Therefore, an interesting open problem is extending the

notion of PBWT to compute matches with missing data.

Currently, the complexity of computing blocks with wild-

cards has asymptotic runtime of O(nm) for each computed

block (Williams and Mumey 2020), with m the number of

rows and n the number of SNP columns of the haplotype

panel. An open problem is to compute blocks in a more

efficient way, i.e improving the O(nmT) time complexity,

where T is the total number of found blocks (Williams and

Mumey 2020). Another problem is how to compute

approximate blocks (i.e., with a small number of mis-

matches) using the PBWT.

A related problem is to extend the notion of haplotype

block to pangenome graphs. In this case, one of the main

difficulties is due to the fact that a block consists of por-

tions with the same coordinates, but the notion of coordi-

nates on graphs is not completely established. Moreover, it

is interesting to generalize some of the notions discussed in

Sect. 5.2 to problems taking as input a graph and a text. For

example, defining a proper notion of maximal exact match

(MEM) between a sequence read and a graph encoded in

the GBWT.

Finally, another problem is the design of a hierarchical

GBWT that takes the presence of nested structural variants

in the pangenome graph into account. Indeed, different

genomes may arise from the accumulation of variations. A

data structure that allows querying the graph structure at

different levels of detail could be useful to represent

complex structural variants.

7.3 Limitations of pangenome graphs

To provide a balanced point of view on pangenome graphs,

we point out some of its current limitations. One type of

limitations stems from the fact that stringology has been a

wildly successful research field – in particular providing

some text indexing techniques (e.g., suffix arrays and the

FM-index) that are efficient both in theory and in practice.

On the other hand, graph genomes are a recent idea,

spurning a research field that is still young. This means that

analysis on pangenome graphs becomes orders of magni-

tude slower than on linear references, and the impact of

such analysis needs to be assessed (Chen et al. 2021).

Recent research tries to ameliorate this shortcoming by

focusing on variant selection approaches that aim to reduce

the size of the pangenome graph and speed up map-

ping (Jain et al. 2021). With the maturation of the field of

computational pangenomics, it is expected that tools with

better performance will be developed.

Another issue, that is also present in genomics and

transcriptomics but is exacerbated in pangenomics, is that a

compact representation of several variants can easily result

Computational graph pangenomics: a tutorial on... 105

123

in including spurious variants. In the case of graph gen-

omes, this happens if we naı̈vely consider all possible paths

in a graph. For this reason, variation graphs also store the

set of paths corresponding to true variants. Still, the con-

struction of such true paths is not trivial, since it requires

the use of long reads (Logsdon et al. 2020)—in fact, short

reads usually are 100 to 300 base pairs long and only rarely

span more than one variant site, while long reads can be 10

to 50 thousand base pairs long. On the other hand, long

reads may have a higher rate of sequencing errors than

short reads; this may negatively affect the accuracy of read

mapping.

A final problem that we want to point out is the exten-

sion of pangenomic approaches to more diverse organisms

than humans, e.g., a pangenomic approach is also amenable

for plants. However, plant genomes present a variability

that is much higher than in humans. A recent study on

maize sequences showed that 40–50% of genomes is

unalignable between pairs of inbred lines (Sun et al. 2018),

while a much smaller percentage of human genome cannot

be aligned between individuals of different des-

cent (Choudhury et al. 2020b; Sherman et al. 2019). For

example, a recent study of African population revealed

about 3 million previously undescribed variants (Choud-

hury et al. 2020b) and Sherman et al. (2019) demonstrated

that approximately 10% DNA of an African pangenome

built on 910 individuals is not in the current human ref-

erence genome.

Acknowledgements We thank the anonymous referees for specific

comments that helped to improve the presentation of the tutorial. This

project has received funding from the European Union’s Horizon

2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement No 872539 and No 956229.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Funding Open access funding provided by Università degli Studi di

Milano - Bicocca within the CRUI-CARE Agreement.

References

Abouelhoda M, Kurtz S, Ohlebusch E (2004) Replacing suffix trees

with enhanced suffix arrays. J Discret Algorithms 2(1):53–86.

https://doi.org/10.1016/S1570-8667(03)00065-0

Baaijens JA, Zine El Aabidine A, Rivals E et al (2017) De novo

assembly of viral quasispecies using overlap graphs. Genome

Res 27(5):835–848. https://doi.org/10.1101/gr.215038.116

Baaijens JA, Van der Roest B, Köster J et al (2019) Full-length de

novo viral quasispecies assembly through variation graph

construction. Bioinformatics 35(24):5086–5094. https://doi.org/

10.1093/bioinformatics/btz443

Baaijens JA, Stougie L, Schönhuth A (2020) Strain-aware assembly

of genomes from mixed samples using flow variation graphs.

bioRxiv:645721. https://doi.org/10.1101/645721

Ballouz S, Dobin A, Gillis JA (2019) Is it time to change the reference

genome? Genome Biol. https://doi.org/10.1186/s13059-019-

1774-4

Bannai H, Gagie T et al (2020) Refining the r-index. Theor Comput

Sci 812:96–108. https://doi.org/10.1016/j.tcs.2019.08.005

Beretta S, Bonizzoni P, Della Vedova G et al (2014) Modeling

alternative splicing variants from RNA-seq data with isoform

graphs. J Comput Biol 21(1):16–40. https://doi.org/10.1089/cmb.

2013.0112

Berlin K, Koren S, Chin CS et al (2015) Assembling large genomes

with single-molecule sequencing and locality-sensitive hashing.

Nat Biotechnol 33(6):623. https://doi.org/10.1038/nbt.3238

Bonizzoni P, Dondi R, Klau GW et al (2016) On the minimum error

correction problem for haplotype assembly in diploid and

polyploid genomes. J Comput Biol 23(9):718–736. https://doi.

org/10.1089/cmb.2015.0220

Boucher C, Gagie T, Kuhnle A et al (2019) Prefix-free parsing for

building big BWTs. Algorithms Mol Biol 14(1):13:1-13:15

Boucher C, Cvacho O, Gagie T, et al (2021) PFP compressed suffix

trees. In: 2021 Proceedings of the Workshop on Algorithm

Engineering and Experiments (ALENEX). Society for Industrial

and Applied Mathematics, pp 60–72. https://doi.org/10.1137/1.

9781611976472.5

Burrows M, Wheeler DJ (1994) A block-sorting lossless data

compression algorithm. Tech. rep., Digital Systems Research

Center

Chen J, Zhao Y, Sun Y (2018) De novo haplotype reconstruction in

viral quasispecies using paired-end read guided path finding.

Bioinformatics 34(17):2927–2935. https://doi.org/10.1093/bioin

formatics/bty202

Chen NC, Solomon B, Mun T et al (2021) Reference flow: reducing

reference bias using multiple population genomes. Genome Biol

22(1):1–17

Chikhi R, Limasset A, Medvedev P (2016) Compacting de Bruijn

graphs from sequencing data quickly and in low memory.

Bioinformatics 32(12):i201–i208. https://doi.org/10.1093/bioin

formatics/btw279

Choudhury A, Aron S, Botigué LR et al (2020) High-depth African

genomes inform human migration and health. Nature

586(7831):741–748. https://doi.org/10.1038/s41586-020-2859-7

Choudhury A, Aron S, Botigué LR et al (2020) High-depth African

genomes inform human migration and health. Nature

586(7831):741–748

Claude F, Navarro G, Ordóñez A (2015) The wavelet matrix: an

efficient wavelet tree for large alphabets. Inf Syst 47:15–32.

https://doi.org/10.1016/j.is.2014.06.002

Cobas D, Gagie T, Navarro G (2021) A Fast and Small Subsampled

R-Index. In: Proc. of the 32nd Annual Symposium on Combi-

natorial Pattern Matching, CPM 2021, pp 13:1–13:16

106 J. A. Baaijens et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1101/gr.215038.116
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1101/645721
https://doi.org/10.1186/s13059-019-1774-4
https://doi.org/10.1186/s13059-019-1774-4
https://doi.org/10.1016/j.tcs.2019.08.005
https://doi.org/10.1089/cmb.2013.0112
https://doi.org/10.1089/cmb.2013.0112
https://doi.org/10.1038/nbt.3238
https://doi.org/10.1089/cmb.2015.0220
https://doi.org/10.1089/cmb.2015.0220
https://doi.org/10.1137/1.9781611976472.5
https://doi.org/10.1137/1.9781611976472.5
https://doi.org/10.1093/bioinformatics/bty202
https://doi.org/10.1093/bioinformatics/bty202
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1038/s41586-020-2859-7
https://doi.org/10.1016/j.is.2014.06.002

Compeau PE, Pevzner PA, Tesler G (2011) How to apply de bruijn

graphs to genome assembly. Nat Biotechnol 29(11):987–991

Computational Pan-Genomics Consortium (2018) Computational

pan-genomics: status, promises and challenges. Brief Bioinform

19(1):118–135. https://doi.org/10.1093/bib/bbw089

Danecek P, Auton A, Abecasis G et al (2011) The variant call format

and VCFtools. Bioinformatics 27(15):2156–2158. https://doi.

org/10.1093/bioinformatics/btr330

Denti L, Rizzi R, Beretta S et al (2018) ASGAL: aligning RNA-Seq

data to a splicing graph to detect novel alternative splicing

events. BMC Bioinform. https://doi.org/10.1186/s12859-018-

2436-3

Denti L, Previtali M, Bernardini G et al (2019) MALVA: genotyping

by mapping-free ALlele detection of known VAriants. iScience

18:20–27. https://doi.org/10.1016/j.isci.2019.07.011

Diestel R (2005) Graph theory. Graduate texts in mathematics, 3rd

edn. Springer-Verlag, Heidelberg

Dilthey A, Cox C, Iqbal Z et al (2015) Improved genome inference in

the MHC using a population reference graph. Nat Genet

47:682–688. https://doi.org/10.1038/ng.3257

Durbin R (2014) Efficient haplotype matching and storage using the

Positional Burrows-Wheeler transform (PBWT). Bioinformatics

30(9):1266–1272. https://doi.org/10.1093/bioinformatics/btu014

Ehrgott M (2005) Multicriteria optimization, vol 491. Springer,

Berlin. https://doi.org/10.1007/3-540-27659-9

Eizenga JM, Novak AM, Kobayashi E et al (2020) Efficient dynamic

variation graphs. Bioinformatics 36(21):5139–5144. https://doi.

org/10.1093/bioinformatics/btaa640

Eizenga JM, Novak AM, Sibbesen JA et al (2020) Pangenome graphs.

Annu Rev Genomics Hum Genet 21(1):139–162. https://doi.org/

10.1146/annurev-genom-120219-080406

Eizenga JM, Lorig-Roach R, Meredith MM, et al (2021) Walk-

preserving transformation of overlapped sequence graphs into

blunt sequence graphs with GetBlunted. In: Connecting with

Computability - 17th Conference on Computability in Europe,

CiE 2021, Proceedings. Springer, LNCS, pp 169–177. https://

doi.org/10.1007/978-3-030-80049-9_15

Ferragina P, Manzini G (2005) Indexing compressed text. J ACM

52(4):552–581. https://doi.org/10.1145/1082036.1082039

Ferragina P, Luccio F, Manzini G et al (2009) Compressing and

indexing labeled trees, with applications. J ACM 57(1):4:1-4:33.

https://doi.org/10.1145/1613676.1613680

Freire B, Ladra S, Paramá JR et al (2020) Inference of viral

quasispecies with a paired de Bruijn graph. Bioinformatics

37(4):473–481. https://doi.org/10.1093/bioinformatics/btaa782

Fritz A, Bremges A, Deng ZL et al (2021) Haploflow: strain-resolved

de novo assembly of viral genomes. Genome Biol. https://doi.

org/10.1186/s13059-021-02426-8

Gagie T, Manzini G, Sirén J (2017) Wheeler graphs: a framework for

BWT-based data structures. Theoret Comput Sci 698:67–78.

https://doi.org/10.1016/j.tcs.2017.06.016

Gagie T, Navarro G, Prezza N (2020) Fully functional suffix trees and

optimal text searching in BWT-runs bounded space. J ACM

JACM. https://doi.org/10.1145/3375890

Garrison E (2019) Graphical pangenomics. Thesis, University of

Cambridge. https://doi.org/10.17863/CAM.41621, https://www.

repository.cam.ac.uk/handle/1810/294516

Garrison E, Sirén J, Novak A et al (2018) Variation graph toolkit

improves read mapping by representing genetic variation in the

reference. Nat Biotechnol 36:875–879. https://doi.org/10.1038/

nbt.4227

Garrison E, et al (2019) seqwish: A variation graph inducer. https://

github.com/ekg/seqwish

Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the

Neandertal Genome. Science 328(5979):710–722. https://doi.

org/10.1126/science.1188021

Grunwald P (2004) A tutorial introduction to the minimum descrip-

tion length principle. arXiv:math/0406077http://arxiv.org/abs/

math/0406077

Guarracino A, Heumos S, Nahnsen S, et al (2021) ODGI: under-

standing pangenome graphs. bioRxiv:2021.11.10.467921.

https://doi.org/10.1101/2021.11.10.467921

Gusfield D (1997) Algorithms on strings, trees and sequences:

computer science and computational biology. Cambridge

University Press, Cambridge

Huang L, Popic V, Batzoglou S (2013) Short read alignment with

populations of genomes. Bioinformatics 29(13):i361–i370.

https://doi.org/10.1093/bioinformatics/btt215

Jain C, Dilthey A, Misra S, et al (2019) Accelerating sequence

alignment to graphs. bioRxiv:2019.05.27.651638. https://doi.org/

10.1101/651638

Jain C, Tavakoli N, Aluru S (2021) A variant selection framework for

genome graphs. Bioinformatics 37(Supplement-1):i460–i467.

https://doi.org/10.1093/bioinformatics/btab302

Kaplinski L, Lepamets M, Remm M (2015) GenomeTester4: a toolkit

for performing basic set operations - union, intersection and

complement on k-mer lists. GigaScience. https://doi.org/10.

1186/s13742-015-0097-y

Karasikov M, Mustafa H, Danciu D, et al (2020) Metagraph: Indexing

and analysing nucleotide archives at petabase-scale. bioR-

xiv:2020.10.01.322164. https://doi.org/10.1101/2020.10.01.

322164

Kärkkäinen J, Manzini G, Puglisi S (2009) Permuted longest-

common-prefix array. In: Proc. of the 20th Annual Symposium

on Combinatorial Pattern Matching CPM 2009, pp 181–192

Khorsand P, Denti L et al (2021) Comparative genome analysis using

sample-specific string detection in accurate long reads. Bioinf

Adv. https://doi.org/10.1093/bioadv/vbab005

Kokot M, Długosz M, Deorowicz S (2017) KMC 3: counting and

manipulating k-mer statistics. Bioinformatics 33(17):2759–2761.

https://doi.org/10.1093/bioinformatics/btx304

Kreft S, Navarro G (2013) On compressing and indexing repetitive

sequences. Theoret Comput Sci 483:115–133. https://doi.org/10.

1016/j.tcs.2012.02.006

Kucherov G, Tsur D (2014) Improved filters for the approximate

suffix-prefix overlap problem. In: Moura E, Crochemore M (eds)

String processing and information retrieval. Springer Interna-

tional Publishing, Cham, pp 139–148

Kuhnle A, Mun T, Boucher C et al (2020) Efficient construction of a

complete index for pan-genomics read alignment. J Comput Biol

27(4):500–513. https://doi.org/10.1089/cmb.2019.0309

Lee C, Grasso C, Sharlow MF (2002) Multiple sequence alignment

using partial order graphs. Bioinformatics 18(3):452–464.

https://doi.org/10.1093/bioinformatics/18.3.452

Li H (2013) Aligning sequence reads, clone sequences and assembly

contigs with BWA-MEM. arXiv:1303.3997

Li H (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics 34(18):3094–3100. https://doi.org/10.1093/bioin

formatics/bty191

Li H, Chin J, Durbin R, et al (2017) GFA: Graphical Fragment

Assembly (GFA) Format Specification. http://gfa-spec.github.io/

GFA-spec/

Li H, Feng X, Chu C (2020) The design and construction of reference

pangenome graphs with minigraph. Genome Biol. https://doi.

org/10.1186/s13059-020-02168-z

Logsdon GA, Vollger MR, Eichler EE (2020) Long-read human

genome sequencing and its applications. Nature Reviews

Genetics 1–18

Magi A, D’Aurizio R, Palombo F et al (2015) Characterization and

identification of hidden rare variants in the human genome. BMC

Genomics. https://doi.org/10.1186/s12864-015-1481-9

Computational graph pangenomics: a tutorial on... 107

123

https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1186/s12859-018-2436-3
https://doi.org/10.1186/s12859-018-2436-3
https://doi.org/10.1016/j.isci.2019.07.011
https://doi.org/10.1038/ng.3257
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1093/bioinformatics/btaa640
https://doi.org/10.1093/bioinformatics/btaa640
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1007/978-3-030-80049-9_15
https://doi.org/10.1007/978-3-030-80049-9_15
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1093/bioinformatics/btaa782
https://doi.org/10.1186/s13059-021-02426-8
https://doi.org/10.1186/s13059-021-02426-8
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1145/3375890
https://doi.org/10.17863/CAM.41621
https://www.repository.cam.ac.uk/handle/1810/294516
https://www.repository.cam.ac.uk/handle/1810/294516
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227
https://github.com/ekg/seqwish
https://github.com/ekg/seqwish
https://doi.org/10.1126/science.1188021
https://doi.org/10.1126/science.1188021
http://arxiv.org/abs/math/0406077
http://arxiv.org/abs/math/0406077
https://doi.org/10.1101/2021.11.10.467921
https://doi.org/10.1093/bioinformatics/btt215
https://doi.org/10.1101/651638
https://doi.org/10.1101/651638
https://doi.org/10.1093/bioinformatics/btab302
https://doi.org/10.1186/s13742-015-0097-y
https://doi.org/10.1186/s13742-015-0097-y
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1093/bioadv/vbab005
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1089/cmb.2019.0309
https://doi.org/10.1093/bioinformatics/18.3.452
http://arxiv.org/abs/1303.3997
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
http://gfa-spec.github.io/GFA-spec/
http://gfa-spec.github.io/GFA-spec/
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s12864-015-1481-9

Mäkinen V, Navarro G (2005) Succinct suffix arrays based on run-

length encoding. Nordic J Comput 12(1):40–66

Mäkinen V, Cazaux B, Equi M, et al (2020) Linear time construction

of indexable founder block graphs. arXiv:2005.09342

Malhotra R, Wu MMS, Rodrigo A, et al (2016) Maximum likelihood

de novo reconstruction of viral populations using paired end

sequencing data. arXiv:1502.04239

Manber U, Myers G (1993) Suffix arrays: a new method for on-line

string searches. SIAM J Comput 22(5):935–948

Mantaci S, Restivo A, Rosone G et al (2007) An extension of the

Burrows-Wheeler Transform. Theoret Comput Sci

387(3):298–312. https://doi.org/10.1016/j.tcs.2007.07.014

Miclotte G, Heydari M, Demeester P et al (2016) Jabba: hybrid error

correction for long sequencing reads. Algorithms Mol Biol

11:10. https://doi.org/10.1186/s13015-016-0075-7

Mohamadi H, Chu J, Vandervalk BP et al (2016) ntHash: recursive

nucleotide hashing. Bioinformatics 32(22):3492–3494. https://

doi.org/10.1093/bioinformatics/btw397

Mun T, Kuhnle A, Boucher C et al (2020) Matching reads to many

genomes with the r-index. J Comput Biol 27(4):514–518. https://

doi.org/10.1089/cmb.2019.0316

Myers E (2005) The fragment assembly string graph. Bioinformatics

21(Suppl. 2):ii79–ii85. https://doi.org/10.1093/bioinformatics/

bti1114

Mäkinen V, Navarro G, Sirén J et al (2010) Storage and retrieval of

highly repetitive sequence collections. J Comput Biol

17(3):281–308. https://doi.org/10.1089/cmb.2009.0169

Naseri A, Zhi D, Zhang S (2019) Multi-allelic positional Burrows-

Wheeler transform. BMC Bioinform. https://doi.org/10.1186/

s12859-019-2821-6

Novak A, Garrison E, Paten B (2017) A graph extension of the

positional Burrows-Wheeler transform and its applications.

Algorithms Mol Biol 12:18. https://doi.org/10.1186/s13015-

017-0109-9

Paten B, Earl D, Nguyen N et al (2011) Cactus: algorithms for

genome multiple sequence alignment. Genome Res

21(9):1512–1528. https://doi.org/10.1101/gr.123356.111

Paten B, Novak A, Eizenga J et al (2017) Genome graphs and the

evolution of genome inference. Genome Res 27(5):665–676.

https://doi.org/10.1101/gr.214155.116

Policriti A, Prezza N (2017) LZ77 computation based on the run-

length encoded BWT. Algorithmica 80(7):1986–2011. https://

doi.org/10.1007/s00453-017-0327-z

Popejoy AB, Fullerton SM (2016) Genomics is failing on diversity.

Nature 538(7624):161–164. https://doi.org/10.1038/538161a

Rakocevic G, Semenyuk V, Lee WP et al (2019) Fast and accurate

genomic analyses using genome graphs. Nat Genet

51(2):354–362. https://doi.org/10.1038/s41588-018-0316-4

Rautiainen M, Mäkinen V, Marschall T (2019) Bit-parallel sequence-

to-graph alignment. Bioinformatics 35(19):3599–3607. https://

doi.org/10.1093/bioinformatics/btz162

Rizzi R, Beretta S, Patterson M et al (2019) Overlap graphs and de

Bruijn graphs: data structures for de novo genome assembly in

the big data era. Quantit Biol 7:278–292. https://doi.org/10.1007/

s40484-019-0181-x

Rossi M, Oliva M, Langmead B, et al (2021) MONI: A pangenomics

index for finding MEMs. In: Proc. of the 25th Annual

International Conference on Research in Computational Molec-

ular Biology, RECOMB 2021

Schneider VA, Graves-Lindsay T, Howe K et al (2017) Evaluation of

grch38 and de novo haploid genome assemblies demonstrates the

enduring quality of the reference assembly. Genome Res

27(5):849–864

Shchur V, Ziganurova L, Durbin R (2019) Fast and scalable genome-

wide inference of local tree topologies from large number of

haplotypes based on tree consistent PBWT data structure.

bioRxiv:2019.02.06.542035. https://doi.org/10.1101/542035

Sherman RM, Forman J, Antonescu V et al (2019) Assembly of a pan-

genome from deep sequencing of 910 humans of african descent.

Nat Genet 51(1):30–35

Shi F (1996) Suffix arrays for multiple strings: a method for on-line

multiple string searches. In: Concurrency and Parallelism,

Programming, Networking, and Security, LNCS, vol 1179.

Springer, pp 11–22. https://doi.org/10.1007/BFb0027775

Sibbesen JA, Maretty L et al (2018) Accurate genotyping across

variant classes and lengths using variant graphs. Nat Genetic

50(7):1054–1059. https://doi.org/10.1038/s41588-018-0145-5

Sibbesen JA, Eizenga JM, Novak AM, et al (2021) Haplotype-aware

pantranscriptome analyses using spliced pangenome graphs.

bioRxiv:2021.03.26.437240. https://doi.org/10.1101/2021.03.26.

437240

Sirén J (2017) Indexing variation graphs. In: 2017 Proceedings of the

Meeting on Algorithm Engineering and Experiments (ALE-

NEX). Proceedings, SIAM, pp 13–27. https://doi.org/10.1137/1.

9781611974768.2

Sirén J, Monlong J, Chang X, et al (2021) Genotyping common, large

structural variations in 5,202 genomes using pangenomes, the

Giraffe mapper, and the vg toolkit. bioRxiv:2020.12.04.412486.

https://doi.org/10.1101/2020.12.04.412486

Sirén J, Välimäki N, Mäkinen V (2014) Indexing graphs for path

queries with applications in genome research. IEEE/ACM Trans

Comput Biol Bioinf 11(2):375–388. https://doi.org/10.1109/

TCBB.2013.2297101

Sirén J, Garrison E, Novak AM et al (2020) Haplotype-aware graph

indexes. Bioinformatics 36(2):400–407. https://doi.org/10.1093/

bioinformatics/btz575

Stark Z, Dolman L, Manolio TA et al (2019) Integrating genomics

into healthcare: a global responsibility. Am J Human Genetics

104(1):13–20

Sun S, Zhou Y, Chen J et al (2018) Extensive intraspecific gene order

and gene structural variations between Mo17 and other maize

genomes. Nat Genet 50(9):1289–1295. https://doi.org/10.1038/

s41588-018-0182-0

Tettelin H et al (2005) Genome analysis of multiple pathogenic

isolates of streptococcus agalactiae: implications for the micro-

bial ‘‘pan-genome’’. Proc Natl Acad Sci 102(39):13950–13955.

https://doi.org/10.1073/pnas.0506758102

The 1000 Genomes Project Consortium (2015) A global reference for

human genetic variation. Nature 526(7571):68–74. https://doi.

org/10.1038/nature15393

Töpfer A, Marschall T, Bull R et al (2014) Viral quasispecies

assembly via maximal clique enumeration. PLoS Comput Biol

10(3):e1003,515. https://doi.org/10.1371/journal.pcbi.1003515

Ukkonen E (2002) Finding founder sequences from a set of

recombinants. In: Algorithms in Bioinformatics, WABI 2002.

Springer, pp 277–286. https://doi.org/10.1007/3-540-45784-4_

21

Välimälki N, Ladra S, Mälkinen V (2010) Approximate all-pairs

suffix/prefix overlaps. In: Combinatorial Pattern Matching, CPM

2010, LNCS, vol 6129. Springer, pp 76–87. https://doi.org/10.

1007/978-3-642-13509-5_8

Vyverman M, De Baets B, Fack V et al (2015) A long fragment

aligner called ALFALFA. BMC Bioinform 16(1):159. https://

doi.org/10.1186/s12859-015-0533-0

Williams L, Mumey B (2020) Maximal perfect haplotype blocks with

wildcards. iScience 23(6):101149. https://doi.org/10.1016/j.isci.

2020.101149

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

108 J. A. Baaijens et al.

123

http://arxiv.org/abs/2005.09342
http://arxiv.org/abs/1502.04239
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1186/s13015-016-0075-7
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1089/cmb.2019.0316
https://doi.org/10.1089/cmb.2019.0316
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1089/cmb.2009.0169
https://doi.org/10.1186/s12859-019-2821-6
https://doi.org/10.1186/s12859-019-2821-6
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1101/gr.123356.111
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1007/s00453-017-0327-z
https://doi.org/10.1007/s00453-017-0327-z
https://doi.org/10.1038/538161a
https://doi.org/10.1038/s41588-018-0316-4
https://doi.org/10.1093/bioinformatics/btz162
https://doi.org/10.1093/bioinformatics/btz162
https://doi.org/10.1007/s40484-019-0181-x
https://doi.org/10.1007/s40484-019-0181-x
https://doi.org/10.1101/542035
https://doi.org/10.1007/BFb0027775
https://doi.org/10.1038/s41588-018-0145-5
https://doi.org/10.1101/2021.03.26.437240
https://doi.org/10.1101/2021.03.26.437240
https://doi.org/10.1137/1.9781611974768.2
https://doi.org/10.1137/1.9781611974768.2
https://doi.org/10.1101/2020.12.04.412486
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1093/bioinformatics/btz575
https://doi.org/10.1093/bioinformatics/btz575
https://doi.org/10.1038/s41588-018-0182-0
https://doi.org/10.1038/s41588-018-0182-0
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1371/journal.pcbi.1003515
https://doi.org/10.1007/3-540-45784-4_21
https://doi.org/10.1007/3-540-45784-4_21
https://doi.org/10.1007/978-3-642-13509-5_8
https://doi.org/10.1007/978-3-642-13509-5_8
https://doi.org/10.1186/s12859-015-0533-0
https://doi.org/10.1186/s12859-015-0533-0
https://doi.org/10.1016/j.isci.2020.101149
https://doi.org/10.1016/j.isci.2020.101149

	Computational graph pangenomics: a tutorial on data structures and their applications
	Abstract
	Introduction
	From a linear sequence to a graph reference of a genome
	Limitations of a linear reference genome
	Graph representations for multiple genomes
	Pangenome graphs and their main applications
	On the structure of the paper

	Pangenome graphs: basic definitions
	The construction of a pangenome graph from multiple genomes

	Indexing pangenome graphs
	Preliminaries on the BWT
	The positional BWT
	Computing the prefix and the divergence arrays
	Maximal matches with at least L characters
	Set-maximal matches
	Set-maximal matches between an external haplotype and X
	Compact representation of the positional BWT

	The graph BWT

	Indexing in sub-linear space
	How to construct the r-index
	How to query the r-index

	Application scenarios in pangenome graphs
	Haplotype and genotyping in pangenomics and pantrascriptomics
	Viral haplotype reconstruction
	Overlap graphs in viral haplotyping
	De Bruijn graphs in viral haplotyping
	Variation graphs

	Conclusions and open problems
	Computing a pangenome graph from overlapping variation graphs
	Extending the PBWT and the GBWT to missing and erroneous data
	Limitations of pangenome graphs

	Funding
	References

