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Abstract
In 1989, den Boer presented the first card-based protocol, called the “five-card trick,” that securely computes the AND
function using a deck of physical cards via a series of actions such as shuffling and turning over cards. This protocol enables
a couple to confirm their mutual love without revealing their individual feelings. During such a secure computation protocol,
it is important to keep any information about the inputs secret. Almost all existing card-based protocols are secure under the
assumption that all players participating in a protocol are semi-honest or covert, i.e., they do not deviate from the protocol
if there is a chance that they will be caught when cheating. In this paper, we consider a more malicious attack in which a
player as an active adversary can reveal cards illegally without any hesitation. Against such an actively revealing card attack,
we define the t-secureness, meaning that no information about the inputs leaks even if at most t cards are revealed illegally.
We then actually design t-secure AND protocols. Thus, our contribution is the construction of the first formal framework to
handle actively revealing card attacks as well as their countermeasures.

Keywords Cryptography · Card-based protocols · Active security · Secure multiparty computations

1 Introduction

In 1989, den Boer presented the first card-based protocol,
called the five-card trick, that securely computes the AND
function using a deck of physical cards (den Boer 1990).
Assuming that Alice has a private bit a ∈ {0, 1} and Bob has
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a private bit b ∈ {0, 1}, the five-card trick, which uses five
cards ♣ ♣ ♥ ♥ ♥ , proceeds as follows.

1. According to the encoding rule:

♣ ♥ = 0 and ♥ ♣ = 1, (1)

Alice commits her private bit a to two face-down cards
of different colors (♣,♥) without anyone else seeing the
order of the two cards:

? ?
︸ ︷︷ ︸

a

.

Such a pair of face-down cards is called a commitment to
a. Similarly, Bob places a commitment to b on the table.
Therefore, together with the remaining red card ♥ , the
initial sequence of the five cards is

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

♥ .

2. Move the rightmost red card to the center and turn it over:

? ?
︸ ︷︷ ︸

a

♥ ? ?
︸ ︷︷ ︸

b

→ ? ?
︸ ︷︷ ︸

a

? ? ?
︸ ︷︷ ︸

b

.
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3. Swap the first and second cards (from the left), namely
the two cards constituting the commitment to a; owing to
the encoding (1), this action performs the NOT operation
such that a commitment to the negation a of a is obtained:

? ?
︸ ︷︷ ︸

a

? ? ?
︸ ︷︷ ︸

b

.

It is noteworthy that only when a = b = 1, the three cards
in the middle will be ♥ ♥ ♥ .

4. Apply a random cut, denoted by 〈·〉; it is a shuffle action
to cyclically shift the sequence of cards at random:

〈

? ? ? ? ?

〉

→ ? ? ? ? ? .

Note that the shift offset is uniformly distributed on
{0, 1, 2, 3, 4} and nobody knows the offset1.

5. Open all the five cards.

– If three consecutive red cards ♥ ♥ ♥ (apart from
cyclic rotation) appear, we have a ∧ b = 1.

– If ♥ ♥ ♥ do not appear, we have a ∧ b = 0.

This is the five-card trick, which securely computes the
AND function, i.e., it reveals only the value of a ∧ b. As
an application, for instance, this card-based protocol enables
Alice and Bob to confirm their mutual love without revealing
their individual feelings.

During such a secure computation protocol, it is impor-
tant to keep any information about the inputs secret. As seen
above, the five-card trick preserves the secrecy of the inputs
a, b by virtue of the face-down cards, and the shuffle action
eliminates the individual values of the inputs aside from the
exact value of a ∧ b. In other words, the five-card trick is
secure provided that all players obey the protocol. Similar to
the five-card trick, almost all existing card-based protocols
(e.g., Mizuki and Sone 2009; Koch et al. 2015; Niemi and
Renvall 1998; Mizuki et al. 2012; Ishikawa et al. 2015) are
secure under the assumption that all players are semi-honest
or covert, i.e., they do not deviate from the protocol if there
is a chance that they will be caught when cheating. In most
cases, a card-based protocol is executed completely publicly
with all eyes fixed on how the cards are manipulated, and
hence, any illegal actions by the players (or others) will be
noticed (Mizuki and Shizuya 2014b); thus, any semi-honest
or covert player always follows the protocol.

By contrast, this paper considers a more malicious attack:
We assume that one player (e.g., Alice) is an active adversary
who may possibly reveal face-down cards illegally without
any hesitation. For example, if Alice suddenly reveals the

1 It is well known that humans can implement a random cut
securely (Ueda et al. 2020).

commitment to b at Step 3 during the execution of the five-
card trick, Bob’s private input will be leaked immediately.
We call such a malicious attack the actively revealing card
attack. (It should be noted that active attacks on card-based
protocols have been comprehensively discussed in Koch and
Walzer (2020).)

To the best of our knowledge, this actively revealing card
attack has not been studied so far except for using envelopes
consideredbyKochandWalzer (2020). In theirwork,wemay
place each card into an envelope to prevent face-down cards
from being revealed illegally. However, using envelopes is
not convenient; hence, we solicit another solution that does
not rely on any additional tools such as envelopes. Thus, we
have to devise a method to keep individual players’ inputs
secret even if some of the face-down cards are revealed mali-
ciously. To this end, we borrow an idea from secret sharing
schemes (Shamir 1979) such that each input commitment
will be split into several “share” commitments. Specifically,
as the “revealing-card tolerance,” we introduce the concept
of “t-secureness” in which any information regarding the
inputs will be preserved even if at most t cards are revealed
maliciously. Subsequently, we design a 1-secure AND pro-
tocol as well as a general t-secure AND protocol. Thus, our
main contribution is to construct the first formal framework
to handle actively revealing card attacks and their counter-
measures.

This paper focuses on non-committed format protocols
that specify the output value by revealing some face-down
cards, as shown in the five-card trick (or in others, e.g.,
Mizuki et al. 2012). By contrast, there are committed format
protocols that produce commitments (consisting of face-
down cards) as the output (e.g., Mizuki and Sone 2009;
Stiglic 2001; Niemi and Renvall 1998; Crépeau and Kilian
1994): Because the output is hidden owing to the face-down
cards, during such a committed format protocol, information
regarding the input aswell as outputwill not be leaked.Mean-
while, committed format protocols have been formalized
well; no formal treatment of non-committed format proto-
cols has been reported (note that because a committed format
protocol does not leak any information, it suffices to consider
perfect secrecy; meanwhile, a non-committed format proto-
col needs to leak some information regarding the input to
reveal the output value, and hence, a more careful treatment
is required). Herein, we first formalize a non-committed for-
mat protocol. This formalization is one of our major results.

It is noteworthy that Mizuki and Shizuya (2014b) previ-
ously adopted a similar idea to deal with the situation where
some of the cards may be flawed, i.e., the cards may have
scuff marks on their backs (undoubtedly, the problem of
flawed cards is different from that of the actively reveal-
ing card attack, but they may share some common features).
Because this previous work (Mizuki and Shizuya 2014b)
considered only committed format protocols, it is interest-
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ing future work to apply the technique proposed herein to
design “scuff-proof” non-committed format protocols.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly introduce a formal approach for describ-
ing a card-based protocol. In Sect. 3, we formally define a
non-committed format protocol. In Sect. 4, we define the t-
secureness against the actively revealing card attack. In Sect.
5, we construct a 1-secure AND protocol and confirm its
security. In Sect. 6, we construct a t-secure AND protocol
and confirm its security. Finally, the paper is concluded in
Sect. 7.

An earlier version of this paper was presented and
appeared as a conference paper (Takashima et al. 2019). The
main difference is twofold. First, we have expended Sect. 5 to
elaborate on our 1-secure ANDprotocol; especially, Figs 2, 3
and 4 are new materials. Second, we have added Sect. 6 to
extend our 1-secure AND protocol to a general t-secure one
so that t-secureness can be achieved. In addition, we have
enhanced the definitions of security in a more rigorous way
in Sect. 4.

2 Preliminaries

In this section, we present the way to formally describe a
card-based protocol.

The computational model of card-based protocols has
been formalized via abstract machine (Mizuki and Shizuya
2014a, 2017; Koch et al. 2015). Roughly speaking, a proto-
col consists of a series of three actions: turn, perm, and shuf
actions, along with a sequence of cards.

Consider a sequence of d cards. A turn action is spec-
ified by a set T ⊆ {1, 2, . . . , d} of positions of cards; the
action (turn, T ) turns over every card whose position is in
T . A perm action is specified by a permutation π ∈ Sd ,
where Sd denotes the symmetric group of degree d; the action
(perm, π) rearranges the positions of d cards according to
π . A shuf action is specified by a set � ⊆ Sd of permu-
tations; the action (shuf,�) probabilistically rearranges the
positions of d cards according to a permutation π uniformly
drawn from �. We call a protocol using exactly d cards a
d-card protocol.

To illustrate, recall the execution of the five-card trick (den
Boer 1990) presented in the previous section. It uses two
types of cards, ♣ and ♥ , whose backs are ? . All cards
of the same type are indistinguishable. The five-card trick,
which is a 5-card protocol, starts with a sequence of five
cards:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

♥ . (2)

Step 2 of the five-card trick is formally captured by
(perm, (3 4 5)) along with (turn, {3}). Step 3 is captured
by (perm, (1 2)). In Step 4, we apply a random cut that can
be written as (shuf, RC5), where RC5 = {(1 2 3 4 5)i | 1 ≤
i ≤ 5}. Step 5 is (turn, {1, 2, 3, 4, 5}).

To discuss the correctness and security of protocols, we
use the concept of statuses of a protocol. For example, the
initial status of the five-card trick (as in Eq. (2)) is described
as follows:

♣♥♣♥♥ (p00, 0, 0, 0)

♣♥♥♣♥ (0, p01, 0, 0)

♥♣♣♥♥ (0, 0, p10, 0)

♥♣♥♣♥ (0, 0, 0, p11),

where pi j denotes the probability that input (a, b) is
equal to (i, j) for every (i, j) ∈ {0, 1}2; in other words,
(p00, p01, p10, p11) denotes a probability distribution on the
input set {0, 1}2. The status above consists of four entries,
each of which is a pair of a symbol sequence (such as
♣♥♣♥♥) and a probability trace (such as (p00, 0, 0, 0);
the first entry means that the symbol sequence ♣♥♣♥♥ and
the event (a, b) = (0, 0) occur with a probability of p00
(and ♣♥♣♥♥ with (a, b) �= (0, 0) never occurs), the sec-
ond entry means that ♣♥♥♣♥ and (a, b) = (0, 1) occur
with a probability of p01, and so on. The initial status (and
succeeding statuses) are transformed into another status by
an action as shown in Fig. 1. In particular, the turn action
results in ten “leaf” statuses.

The expression of protocols illustrated in Fig. 1 was estab-
lished by Koch et al. (2015) where a tree structure specifies
a protocol. We modify it slightly using the probability traces
introduced by Mizuki and Komano (2018). We call such a
tree the (modified) KWH-tree of a protocol. Borrowing a ter-
minology in graph theory, we call the bottom statuses in a
KWH-tree the leaf statuses.

Note that in each of the first three statuses (namely, “non-
leaf” statuses) depicted in Fig. 1, the (coordinate-wise) sum
of all probability traces is equal to (p00, p01, p10, p11); this
guarantees that no information about the input (a, b) will be
leaked. Regarding the ten leaf statuses, each of them has only
one probability trace, which is either

(

p00
p00+p01+p10

,
p01

p00+p01+p10
,

p10
p00+p01+p10

, 0
)

or (0, 0, 0, 1);

this implies that any information other than the value of a∧b
will not be leaked.

During a protocol execution, the “status” captures the joint
distribution of (I , S) conditioned on P , where I is the input,
S is the current card sequence, and P is the publicly available
information. The two distribution above are the distribution
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Fig. 1 The (modified) KWH-tree of the five-card trick

of I conditioned on f (I ) = 0 and the distribution of I con-
ditioned on f (I ) = 1, respectively.

To the best of our knowledge, Fig. 1 is the first attempt to
depict the KWH-tree of the five-card trick. Because a formal
treatment for non-committed format protocols does not exist,
we will create such a formal framework, as will be explained
in the next section.

3 Formalizing non-committed format
protocols

In this section, we formally define a non-committed format
protocol for a Boolean function, based on the encoding (1).

First, we define an “n-input protocol,” where the first 2n
cards on the table are n input commitments.

Definition 1 Let d ≥ 2n for an integer n ≥ 2, and let P be
a d-card protocol. We say that P is an n-input protocol if its
initial status consists of the following 2n entries:

2n symbols
︷ ︸︸ ︷

♣♥♣♥♣♥ · · · ♣♥♣♥
︸ ︷︷ ︸

000 . . . 002

α (p0, 0, 0, . . . , 0, 0)

♣♥♣♥♣♥ · · · ♣♥♥♣
︸ ︷︷ ︸

000 . . . 012

α (0, p1, 0, . . . , 0, 0)

...

♥♣♥♣♥♣ · · · ♥♣♥♣
︸ ︷︷ ︸

111 . . . 112

α (0, 0, 0, . . . , 0, p2n−1),

whereα is a symbol sequence of length d−2n. Here, pi , 0 ≤
i ≤ 2n − 1, is the probability that the n-bit input is equal to
the binary expression of i . Furthermore, we call the tuple
(p0, . . . , p2n−1) an input distribution.

As shown in Definition 1, we implicitly assume a one-to-
one mapping between {0, 1}n and {0, 1, . . . , 2n − 1}. Thus,
throughout this paper, if we write qb for b ∈ {0, 1}n and a
tuple (q0, . . . , q2n−1), we regard the subscription b as the
corresponding decimal number.

Next, we define some properties regarding the statuses.

Definition 2 Let P be an n-input protocol with an input dis-
tribution (p0, . . . , p2n−1), and consider a Boolean function
f : {0, 1}n → {0, 1}.

– A status S of P is called an opaque status (in regard to
f ) if there exists two constants c0 and c1, 0 ≤ c0, c1 ≤
1, with c0

∑

i∈ f −1(0) pi + c1
∑

i∈ f −1(1) pi = 1 such
that the (coordinate-wise) sum of its probability traces
(q0, . . . , q2n−1) satisfies

{

qb = c0 · pb if f (b) = 0

qb = c1 · pb if f (b) = 1

for every b ∈ {0, 1}n , where f −1(0) and f −1(1) are the
preimages of 0 and 1 under f , respectively.

– We say that a status S is an output-0 status if the above
constants satisfy c0 = 1 and c1 = 0, i.e., the sum of its
probability traces (q0, . . . , q2n−1) satisfies

⎧

⎨

⎩

qb = pb
∑

i∈ f −1(0)
pi

if f (b) = 0

qb = 0 if f (b) = 1

for every b ∈ {0, 1}n .
– We say that a status S is an output-1 status if the above
constants satisfy c0 = 0 and c1 = 1, i.e., the sum of its
probability traces (q0, . . . , q2n−1) satisfies

⎧

⎨

⎩

qb = 0 if f (b) = 0

qb = pb
∑

i∈ f −1(1)
pi

if f (b) = 1

for every b ∈ {0, 1}n .

For example, see the leaf statuses in Fig. 1; the five left leaves
are output-0 statuses, and the five right leaves are output-
1 statuses. Note that f (a, b) = a ∧ b satisfies f −1(0) =
{0, 1, 2} and f −1(1) = {3}.

We are now ready to formally define a non-committed
format protocol.
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Definition 3 Let P be an n-input protocol, and let f :
{0, 1}n → {0, 1} be a Boolean function.We say thatP works
for f in a non-committed format if the following holds:

– every leaf status is either an output-0 status or an output-1
status, and all other statuses are opaque;

– P terminates almost surely in a number of actions that is
finite in expectation.

One can easily verify that the five-card trick satisfies the
conditions in Definition 3.

As seen in Definition 3, this paper focuses on one-bit out-
put functions.

4 Defining revealing-card tolerance

As mentioned before, this paper considers the active attack
where an adversary can reveal some cards without obeying
a protocol. Because the execution of a protocol is conducted
publicly, it is difficult for an adversary to illegally revealmany
cards simultaneously. Thus, we assume that, for a threshold
t ≥ 1, such a malicious adversary can reveal at most t cards
at most once during an execution of the protocol.

Note that any n-input protocol (defined in Definition 1)
cannot be “secure” against the actively revealing card attack
because the adversary is able to reveal some cards that con-
stitute the input commitments to obtain the secret values
immediately after the protocol starts. Therefore, the input
commitmentsmust bemasked. To achieve this, we borrow an
idea from secret sharing schemes. Hence, instead of directly
placing commitments to their private bits, Alice places two
commitments to a1, a2 ∈ {0, 1} where a = a1 ⊕ a2, i.e., her
private bit a is split into a1 and a2 randomly, and Bob places
two commitments similarly:

? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

. (3)

For such an input sequence, even if at most one card is
revealed illegally, the values of a and b will not be leaked.
The status of the above input sequence can be written as:

♣♥♣♥♣♥♣♥ ( p00
4 , 0, 0, 0

)

♣♥♣♥♥♣♥♣ ( p00
4 , 0, 0, 0

)

♥♣♥♣♣♥♣♥ ( p00
4 , 0, 0, 0

)

♥♣♥♣♥♣♥♣ ( p00
4 , 0, 0, 0

)

♣♥♣♥♣♥♥♣ (

0, p01
4 , 0, 0

)

♣♥♣♥♥♣♣♥ (

0, p01
4 , 0, 0

)

♥♣♥♣♣♥♥♣ (

0, p01
4 , 0, 0

)

♥♣♥♣♥♣♣♥ (

0, p01
4 , 0, 0

)

♣♥♥♣♣♥♣♥ (

0, 0, p10
4 , 0

)

♣♥♥♣♥♣♥♣ (

0, 0, p10
4 , 0

)

♥♣♣♥♣♥♣♥ (

0, 0, p10
4 , 0

)

♥♣♣♥♥♣♥♣ (

0, 0, p10
4 , 0

)

♣♥♥♣♣♥♥♣ (

0, 0, 0, p11
4

)

♣♥♥♣♥♣♣♥ (

0, 0, 0, p11
4

)

♥♣♣♥♣♥♥♣ (

0, 0, 0, p11
4

)

♥♣♣♥♥♣♣♥ (

0, 0, 0, p11
4

)

.

By further extending this, we have an (n, t + 1)-input pro-
tocol, as in the following Definition 4. Hereinafter, for b ∈
{0, 1}n , b[i] denotes the i-th bit (of the n-bit sequence b).
Definition 4 Let d ≥ 2n(t +1) for integers n ≥ 2 and t ≥ 1,
and letP be a d-card protocol. We say thatP is an (n, t+1)-
input protocol if its initial status consists of all entries in
⋃

b∈{0,1}n Eb such that

Eb =
{

(x11 . . . xt+1
1 x12 . . . xt+1

2 . . . x1n . . . xt+1
n α, (0, . . . , 0,

pb
2tn

, 0, . . . , 0))
∣

∣

∣

⊕t+1
j=1 x

j
i = b[i], 1 ≤ i ≤ n

}

for every b ∈ {0, 1}n , where x j
i ∈ {0, 1} is interpreted as a

pair of symbols based on the encoding: 0 = ♣♥ and1 = ♥♣,
and α is a symbol sequence of length d − 2n(t + 1).

When implementing an (n, t + 1)-input protocol, each
player Pi generates t random bits to prepare t + 1 commit-
ments to xi = (x1i , x

2
i , . . . , x

t+1
i ) ∈ {0, 1}t+1:

? ?
︸ ︷︷ ︸

x1i

? ?
︸ ︷︷ ︸

x2i

? ?
︸ ︷︷ ︸

x3i

· · · ? ?
︸ ︷︷ ︸

xt+1
i

.

In this case, player Pi knows the values of x1i through xt+1
i ;

for example, for the input (3) above, Alice knows the values
of a1 and a2 and Bob knows the value of b1 and b2. Taking
this into account, we consider KWH-trees “conditioned on
player’s view,” as follows. Let us start with a small example.
For the input (3) above, assume that Alice knows that a =
(a1, a2) = (0, 0), i.e., the first four cards are ♣♥♣♥; then,
the “conditioned” status becomes:

♣♥♣♥♣♥♣♥
(

p00
2(p00+p01)

, 0, 0, 0
)

♣♥♣♥♥♣♥♣
(

p00
2(p00+p01)

, 0, 0, 0
)

♣♥♣♥♣♥♥♣
(

0, p01
2(p00+p01)

, 0, 0
)

♣♥♣♥♥♣♣♥
(

0, p01
2(p00+p01)

, 0, 0
)

. (4)

Following this initial status, we can easily create its KWH-
tree; we call it the player-view KWH-tree|a
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= (0, 0). To extend this idea, generally, we can have the
player-view KWH-tree|xi=s for i , 1 ≤ i ≤ n, and s ∈
{0, 1}t+1. (Thus, this paper considers only the case where
each player has a one-bit input.)

We are now ready to define the “t-secureness” as in the
following Definition 7 along with Definitions 5 and 6.

First, Definition 5 is a natural extension of Definitions 2
and 3.

Definition 5 LetP be an (n, t+1)-input protocol, and let f :
{0, 1}n → {0, 1} be a Boolean function. We define opaque,
output-0, and output-1 statuses similarly as inDefinition 2. In
addition, we define “working for f ” similarly toDefinition 3.

Next, we have to consider “opaque” statuses in a player-
view KWH-tree. The reason is as follows. Assume that a =
a1 ⊕ a2 and b = b1 ⊕ b2, and that we happen to have a
commitment to (a1∧b1)⊕(a1∧b2). If Alice knows a1 = 1,
for instance, revealing this commitment immediately gives
Alice the value of b1 ⊕ b2 = b; by contract, just knowing
the value of (a1 ∧ b1) ⊕ (a1 ∧ b2) (without any knowledge
about a1, b1, and b2) does not provide the exact value of b.
Therefore, we need the following Definition 6.

Definition 6 Let P be an (n, t + 1)-input protocol. Consider
the player-view KWH-tree|xi=s for any i , 1 ≤ i ≤ n, and
s ∈ {0, 1}t+1. A status S is said to be opaque under player’s
view xi = s if the (coordinate-wise) sum of its probability
traces (q0, . . . , q2n−1) satisfies

{

qb = 0 ifb /∈ G,

qb = pb
∑

j∈G p j
ifb ∈ G,

for every b ∈ {0, 1}n , where

G =
{

u ∈ {0, 1}n
∣

∣

∣ u[i] = ⊕t+1
j=1 s[ j]

}

.

Finally, it suffices to consider any attacks of revealing at
most t cards and opaqueness against them under any player’s
view.

Definition 7 Let P be an (n, t + 1)-input protocol working
for a Boolean function f in a non-committed format. We say
that P is t-secure if any resulting status from applying any
action (turn, T ) with |T | ≤ t to every status of P satisfies
one of the followings:

– it is an opaque status under xi = s in any player-view
KWH-tree|xi=s for every i , 1 ≤ i ≤ n, and s ∈ {0, 1}t+1;

– it is an output-0 status;
– it is an output-1 status.

5 Our 1-secure AND protocol

In this section, we describe the construction of a 1-secure
AND protocol. In Sect. 5.1, we present its outline; our pro-
tocol consists of the setup, first, second, and third phases. In
Sects. 5.2, 5.3, and 5.4, we provide the details of the first,
second, and third phases, respectively.

5.1 Outline of our protocol

Because we wish to design a 1-secure AND computation
of two variables (namely, n = 2 and t = 1), we should
use a (2, 2)-input protocol. Therefore, Alice and Bob create
commitments to a1, a2 ∈ {0, 1} and b1, b2 ∈ {0, 1} such that
a = a1 ⊕ a2 and b = b1 ⊕ b2, respectively. Given such
input commitments, to obtain the AND value, it suffices to
compute (a1∧b1)⊕(a1∧b2)⊕(a2∧b1)⊕(a2∧b2) = a∧b.
To this end, our protocol proceeds as follows.

Setup phase. Satisfying Definition 4, Alice places two
commitments to a1 and a2, and Bob places
two commitments to b1 and b2:

? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

. (5)

First phase. Make two copied commitments to each of
b1 and b2 using the existing COPY proto-
col (Mizuki and Sone 2009):

? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

→ ? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

? ?
︸ ︷︷ ︸

b2

.

Second phase. From three commitments to a1, b1, and b2,
make two commitments to a1 ∧b1 and a1 ∧
b2 using the existing ANDprotocol (Mizuki
and Shizuya 2014b); similarly, from three
commitments to a2, b1, and b2, make two
commitments to a2 ∧ b1 and a2 ∧ b2:

? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

→ ? ?
︸ ︷︷ ︸

a1∧b1
? ?
︸ ︷︷ ︸

a1∧b2
? ?
︸ ︷︷ ︸

a2∧b1
? ?
︸ ︷︷ ︸

a2∧b2
.

Third phase. Compute (a1 ∧b1)⊕ (a1 ∧b2)⊕ (a2 ∧b1)⊕
(a2 ∧ b2).
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Actively revealing card attack on card-based protocols 621

Here, we analyze the security of the setup phase. There
are 16 possibilities for (a1, a2, b1, b2) ∈ {0, 1}4, and as seen
in Sect. 4, the initial status can be written as the first four
columns and the last column in Table 1. From this, one can
obtain any player-view KWH-tree|xi=s for every i , 1 ≤ i ≤
2, and s ∈ {0, 1}2, such as the status (4) above. For example,
if Alice knowing a1 = a2 = 0 is malicious and reveals the
fifth card illegally, the resulting status becomes either

♣♥♣♥♣♥♣♥
(

p00
(p00+p01)

, 0, 0, 0
)

♣♥♣♥♣♥♥♣
(

0, p01
(p00+p01)

, 0, 0
)

or

♣♥♣♥♥♣♥♣
(

p00
(p00+p01)

, 0, 0, 0
)

♣♥♣♥♥♣♣♥
(

0, p01
(p00+p01)

, 0, 0
)

,

and one can confirm that both of them are opaque under
x1 = (0, 0). In this way, one can easily confirm that an
action (turn, { j}) for any j results in an opaque status under
xi = s (in any player-view KWH-tree). Note that (turn, { j})
reveals (at most) one bit among a1, a2, b1, b2.

5.2 First phase

In this phase, we duplicate the commitments to b1 and b2.
To this end, we use the existing COPY protocol (Mizuki and
Sone 2009) whose KWH-tree is shown in Fig. 2; it performs
the following:

? ?
︸ ︷︷ ︸

x

♣ ♣ ♥ ♥ → ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

x

♣ ♥ .

By executing the COPY protocol twice, we have

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

♣ ♣ ♣ ♥ ♥ ♥

→ ? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

? ?
︸ ︷︷ ︸

b2

♣ ♥ .

During this first phase, an action (turn, { j}) for any j
reveals at most one bit among b1 and b2; hence, similar to the
setup phase, any resulting status from an illegal revealment
will be opaque under every player’s view.

Fig. 2 TheKWH-tree of the existing COPY protocol (Mizuki and Sone
2009)

5.3 Second phase

In this phase, we use the existing AND protocol (Mizuki and
Shizuya 2014b):

? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

y

? ?
︸ ︷︷ ︸

z

♣ ♥ ♣ ♥

→ ? ?
︸ ︷︷ ︸

x∧y

? ?
︸ ︷︷ ︸

x∧z

? ?
︸ ︷︷ ︸

x∧y

? ?
︸ ︷︷ ︸

x∧z

♣ ♥ .

Figure 3 is the KWH-tree of this AND protocol. We destroy
the commitments to x ∧ y and x ∧ z by shuffling each of
them.

By executing the AND protocol twice, we have

? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

b1

? ?
︸ ︷︷ ︸

b2

♣ ♣ ♥ ♥

→ ? ?
︸ ︷︷ ︸

a1∧b1
? ?
︸ ︷︷ ︸

a1∧b2
? ?
︸ ︷︷ ︸

a2∧b1
? ?
︸ ︷︷ ︸

a2∧b2
♣ ♣ ♣ ♥ ♥ ♥ .

During this second phase, an action (turn, { j}) for any j
reveals at most one bit among a1, a2, b1, b2, a1 ∧ b1, a1 ∧
b2, a2∧b1, a2∧b2, a1∧b1, a1∧b2, a2∧b1, a2∧b2; Table 1
implies that any illegal resulting status will be opaque under
every player’s view. For example, suppose that Alice knows
a1 = a2 = 1 and she reveals the value of a1 ∧ b1 = 0;
then, there are two entries for (a1, a2, a1 ∧ b1) = (1, 1, 0)
in Table 1 (namely, the fourth and eighth rows), from which
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622 K. Takashima et al.

Fig. 3 The KWH tree of the existing AND protocol (Mizuki and Shizuya 2014b)

Table 1 Essential truth table for deriving statuses of our protocol

a1 a2 b1 b2 a1 ∧ b1 a1 ∧ b2 a2 ∧ b1 a2 ∧ b2 a1 ∧ b1 a1 ∧ b2 a2 ∧ b1 a2 ∧ b2 Prob. trace

0 0 0 0 0 0 0 0 0 0 0 0 (p00/4, 0, 0, 0)

0 0 1 1 0 0 0 0 1 1 1 1 (p00/4, 0, 0, 0)

1 1 0 0 0 0 0 0 0 0 0 0 (p00/4, 0, 0, 0)

1 1 1 1 1 1 1 1 0 0 0 0 (p00/4, 0, 0, 0)

0 0 0 1 0 0 0 0 0 1 0 1 (0, p01/4, 0, 0)

0 0 1 0 0 0 0 0 1 0 1 0 (0, p01/4, 0, 0)

1 1 0 1 0 1 0 1 0 0 0 0 (0, p01/4, 0, 0)

1 1 1 0 1 0 1 0 0 0 0 0 (0, p01/4, 0, 0)

0 1 0 0 0 0 0 0 0 0 0 0 (0, 0, p10/4, 0)

0 1 1 1 0 0 1 1 1 1 0 0 (0, 0, p10/4, 0)

1 0 0 0 0 0 0 0 0 0 0 0 (0, 0, p10/4, 0)

1 0 1 1 1 1 0 0 0 0 1 1 (0, 0, p10/4, 0)

0 1 0 1 0 0 0 1 0 1 0 0 (0, 0, 0, p11/4)

0 1 1 0 0 0 1 0 1 0 0 0 (0, 0, 0, p11/4)

1 0 0 1 0 1 0 0 0 0 0 1 (0, 0, 0, p11/4)

1 0 1 0 1 0 0 0 0 0 1 0 (0, 0, 0, p11/4)
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Actively revealing card attack on card-based protocols 623

we can calculate that the sum of the probability traces of the
current status is (

p00
p00+p01

,
p01

p00+p01
, 0, 0).

5.4 Third phase

In this phase, we compute (a1 ∧ b1) ⊕ (a1 ∧ b2) ⊕ (a2 ∧
b1) ⊕ (a2 ∧ b2) from the commitments to a1 ∧ b1, a1 ∧ b2,
a2 ∧ b1, and a2 ∧ b2:

? ?
︸ ︷︷ ︸

a1∧b1
? ?
︸ ︷︷ ︸

a1∧b2
? ?
︸ ︷︷ ︸

a2∧b1
? ?
︸ ︷︷ ︸

a2∧b2
.

Note that the number of commitments to 1 among the four
commitments can be 0, 1, 2, or 4 (as known from Table 1)
and that the number is 1 if and only if a ∧ b = 1.

In the current status, for instance, (a1 ∧ b1, a1 ∧ b2, a2 ∧
b1, a2 ∧ b2) = (0, 0, 0, 0) occurs with a probability trace
( 34 p00,

1
2 p01,

1
2 p10, 0) as known from Table 1; thus, the cur-

rent status is the topmost box in Fig 4. Our “specialized 4-bit
XOR subprotocol” proceeds as follows.

1. Negate the commitment to a1 ∧ b1 by (perm, (1 2)):

1

?
2

?
︸ ︷︷ ︸

a1∧b1

3

?
4

?
︸ ︷︷ ︸

a1∧b2

5

?
6

?
︸ ︷︷ ︸

a2∧b1

7

?
8

?
︸ ︷︷ ︸

a2∧b2
→

2

?
1

?
︸ ︷︷ ︸

a1∧b1

3

?
4

?
︸ ︷︷ ︸

a1∧b2

5

?
6

?
︸ ︷︷ ︸

a2∧b1

7

?
8

?
︸ ︷︷ ︸

a2∧b2
.

Note that the number of commitments to 1 among the four
commitments can be 0, 1, 2, or 3 and that the number is 0
or 2 if and only if a ∧ b = 1.

2. By this step along with the next two steps, we add a com-
mon random bit to the four commitments. Rearrange the
sequence of the eight cards by (perm, (2 5 3)(4 6 7)):

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

? →
1

?
3

?
5

?
7

?
2

?
4

?
6

?
8

? .

3. Apply a random bisection cut (Mizuki and Sone 2009),
denoted by [ · | · ], which is the shuffle action
(shuf, {id, (1 5)(2 6)(3 7)(4 8)}):
[

? ? ? ?
∣

∣

∣ ? ? ? ?
]

→ ? ? ? ? ? ? ? ? .

4. Apply (perm, (2 3 5)(4 7 6)), which is the inverse permu-
tation of Step 2:

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

? →
1

?
5

?
2

?
6

?
3

?
7

?
4

?
8

? .

5. Apply (shuf, {(1 2 3 4 5 6 7 8)2i | 1 ≤ i ≤ 4}), which is a
pile-shifting scramble (Nishimura et al. 2018) denoted by:

〈

? ?
∣

∣

∣ ? ?
∣

∣

∣ ? ?
∣

∣

∣ ? ?

〉

→ ? ? ? ? ? ? ? ? .

6. Reveal all the cards by (turn, {1, 2, 3, 4, 5, 6, 7, 8}).
Then, count the commitments :

– If the number of commitments to 1 is odd, a ∧ b = 0.
– If the number of commitments to 1 is even, a∧b = 1.

The KWH-tree of our XOR subprotocol, which implies
the correctness and secrecy, is shown in Fig. 4.

During this third phase, an action (turn, { j}) for any j
reveals at most one bit among a1 ∧ b1, a1 ∧ b2, a2 ∧ b1, and
a2 ∧b2; Table 1 implies that any illegal resulting status from
the statuses except for the leaf statuses will be opaque (under
any player’s view) and any illegal resulting status from the
leaf statuses will be an output-0 status or an output-1 status.

To summarize, our 1-secure AND protocol satisfies Defi-
nition 7; hence, it is proved to be 1-secure.

6 Our t-secure AND protocol

We extend our 1-secure AND protocol presented in Sect. 5
to a general one so that we have a t-secure AND protocol in
this section.

6.1 Idea

To construct a t-secure AND protocol, let us first consider
how to construct a 2-secure AND protocol. As our 1-secure
AND protocol (shown in Sect. 5) does, we make Alice’s pri-
vate bit a be split into a1, a2, and a3 randomly, and make
Bob’s private bit b be split similarly. Then, one should con-
sider the following formula (by virtue of the distributivity in
the field {{0, 1},⊕,∧}):

a ∧ b = (a1 ⊕ a2 ⊕ a3) ∧ (b1 ⊕ b2 ⊕ b3),

= (a1 ∧ b1) ⊕ (a1 ∧ b2) ⊕ (a1 ∧ b3)

⊕ (a2 ∧ b1) ⊕ (a2 ∧ b2) ⊕ (a2 ∧ b3)

⊕ (a3 ∧ b1) ⊕ (a3 ∧ b2) ⊕ (a3 ∧ b3). (6)

Remember that in our 1-secure ANDprotocol, we directly
compute (a1 ∧ b1) ⊕ (a1 ∧ b2) ⊕ (a2 ∧ b1) ⊕ (a2 ∧ b2)
by using our specialized 4-bit XOR subprotocol. Because
it seems somewhat difficult to construct such a specialized
9-bit XOR subprotocol, we consider the use of the existing
XOR protocol (Mizuki and Sone 2009), by which we can
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624 K. Takashima et al.

Fig. 4 The KWH-tree of our specialized 4-bit XOR subprotocol

obtain a commitment to x ⊕ y from two given commitments
to x and y.

To compute a ∧ b according to Eq. (6), it is natural to
first make a commitment to (a1 ∧ b1)⊕ (a1 ∧ b2). However,
note that this commitment has information about b1 and b2;
if Alice knows a1 = 1 for example, the value of this com-
mitment implies b1 ⊕ b2 and the value of a commitment to
a1 ∧ b3 implies b3. Therefore, Alice can learn the value of
b1 ⊕ b2 ⊕ b3 = b by revealing the corresponding two cards
maliciously as soon as such commitments are produced. That
is, 2-secureness cannot be realized by just using the existing
XOR protocol, based on Eq. (6). To overcome this, it suffices
to add two random bits r1 and r2. That is, we can consider
the following formula:

a ∧ b = (r1 ⊕ r2) ⊕ (a1 ∧ b1) ⊕ (a1 ∧ b2) ⊕ (a1 ∧ b3)

⊕ (a2 ∧ b1) ⊕ (a2 ∧ b2) ⊕ (a2 ∧ b3)

⊕ (a3 ∧ b1) ⊕ (a3 ∧ b2) ⊕ (a3 ∧ b3) ⊕ r1 ⊕ r2.
(7)

Based on the above idea, the construction of our 2-secure
AND protocol is as follows.

1. Make two pairs of random commitments:

♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥
→

〈

? ? ? ?

〉〈

? ? ? ?

〉

→ ? ?
︸ ︷︷ ︸

r1

? ?
︸ ︷︷ ︸

r1

? ?
︸ ︷︷ ︸

r2

? ?
︸ ︷︷ ︸

r2

,
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where r1 and r2 are uniformly distributed random bits.
Make a single commitment to r1 ⊕ r2 using the existing
XOR protocol (Mizuki and Sone 2009):

? ?
︸ ︷︷ ︸

r1

? ?
︸ ︷︷ ︸

r2

→ ? ?
︸ ︷︷ ︸

r1⊕r2

.

We call this commitment the accumulator A, which will
be updated by adding ai ∧ b j as in Eq. (7).

2. Make two copied commitments to each of b1, b2, and
b3 using the existing COPY protocol (Mizuki and Sone
2009).

3. Make three commitments to (a1 ∧ b1), (a1 ∧ b2), and
(a1 ∧ b3) using the existing AND protocol (Mizuki and
Shizuya 2014b).

4. Make a commitment to A ⊕ (a1 ∧ b1) using the existing
XOR protocol (Mizuki and Sone 2009):

? ?
︸ ︷︷ ︸

A (=r1⊕r2)

? ?
︸ ︷︷ ︸

a1∧b1
→ ? ?

︸ ︷︷ ︸

A⊕(a1∧b1)

.

We regard the obtained commitment as the accumulator
A:=A⊕ (a1 ∧ b1). Similarly, we add a1 ∧ b2 and a1 ∧ b3

to A one by one.
5. In a similarmanner, add everything from a2∧b1 to a3∧b3

to the accumulator A.
6. Reveal the accumulator A and the commitments to r1 and

r2. The parity of all the revealed values is equal to a ∧ b.

Intuitively, this protocol is 2-secure because to learn the val-
ues added to the accumulator A, one has to reveal the values
of the three commitments, namely the accumulator A and
commitments to r1 and r2. We will show the t-secureness
in Sect. 6.4; roughly speaking, revealing two values among
available commitments does not recover the value of b.

Finally, let us extend the above idea to realize t-secureness.
First, we make an input private bit a be split into t + 1 bits
a1, a2, . . . , at+1. Similarly, wemake b be split into t+1 bits.
Then, to compute a ∧ b, we consider the following formula:

a ∧ b = (r1 ⊕ · · · ⊕ r t ) ⊕
⎛

⎝

t+1
⊕

i=1

t+1
⊕

j=1

(ai ∧ b j )

⎞

⎠ ⊕ r1 ⊕ · · · ⊕ r t .

To compute this, we make t + 1 commitments, namely the
accumulator A = r1 ⊕ · · · ⊕ r t and commitments to r i , 1 ≤
i ≤ t . Then, we add everything from a1 ∧ b1 to at+1 ∧ bt+1

to the accumulator A.

6.2 Procedure of our t-secure AND protocol

Based on the idea explained in Sect. 6.1, our t-secure AND
protocol proceeds as follows.

1. Satisfying Definition 4, Alice places t + 1 commitments
to a1, a2, . . . , at+1, and Bob places t + 1 commitments
to b1, b2, . . . , bt+1:

? ?
︸ ︷︷ ︸

a1

· · · ? ?
︸ ︷︷ ︸

at+1

? ?
︸ ︷︷ ︸

b1

· · · ? ?
︸ ︷︷ ︸

bt+1

.

2. Make t pairs of random commitments:

♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ · · · ♣ ♥ ♣ ♥
→

〈

? ? ? ?

〉〈

? ? ? ?

〉

· · ·
〈

? ? ? ?

〉

→ ? ?
︸ ︷︷ ︸

r1

? ?
︸ ︷︷ ︸

r1

? ?
︸ ︷︷ ︸

r2

? ?
︸ ︷︷ ︸

r2

· · · ? ?
︸ ︷︷ ︸

r t

? ?
︸ ︷︷ ︸

r t

,

where r i , 1 ≤ i ≤ t , is a uniformly distributed random
bit. Make a single commitment to the accumulator A =
r1 ⊕ · · · ⊕ r t using the existing XOR protocol (Mizuki
and Sone 2009) t − 1 times:

? ?
︸ ︷︷ ︸

r1

· · · ? ?
︸ ︷︷ ︸

r t

→ ? ?
︸ ︷︷ ︸

r1⊕···⊕r t

.

3. Make two copied commitments to each of b j , 1 ≤ j ≤
t+1, using the existing COPY protocol (Mizuki and Sone
2009).

4. Make commitments to a1 ∧ b j , 1 ≤ j ≤ t + 1, using the
existing AND protocol (Mizuki and Shizuya 2014b).

5. Make a commitment to A ⊕ (a1 ∧ b1) using the existing
XOR protocol (Mizuki and Sone 2009):

? ?
︸ ︷︷ ︸

A (=r1⊕···⊕r t )

? ?
︸ ︷︷ ︸

a1∧b1
→ ? ?

︸ ︷︷ ︸

A⊕(a1∧b1)

.

We regard the obtained commitment as the accumulator
A:=A⊕(a1∧b1). Similarly,we adda1∧bk , 2 ≤ k ≤ t+1,
to A one by one.

6. In a similar manner, add everything from a2∧b1 to at+1∧
bt+1 to the accumulator A. (For at+1, making two copied
commitments to each of b j is not needed.)

7. Reveal the accumulator A and the commitments to r i ,
1 ≤ i ≤ t . The parity of all the revealed values is equal
to a ∧ b.

6.3 Evaluation

Let us count the number of required cards for our t-secure
AND protocol presented in Sect. 6.2. In Step 1, 4(t + 1)
cards are needed. In Step 2, 4t cards are needed. Note that
2(t − 1) revealed cards which arise during the existing XOR
protocol (Mizuki and Sone 2009) can be reused for the next

123



626 K. Takashima et al.

step. In Step 3, we need four additional cards to make two
copied commitments to b1 by using the existing COPY pro-
tocol (Mizuki and Sone 2009). In this protocol, two cards
should be revealed, and we can reuse them to make two
copied commitments to b2 and so on. That is, 4+2t cards are
needed. Since 2(t − 1) cards are left in the previous step, we
need six more cards in this step. In Step 4, since the existing
AND protocol (Mizuki and Shizuya 2014b) requires four
additional cards, we need two more cards along with two
cards revealed in the previous step. In this step, six cards
are revealed and can be reused. In Step 5, since the existing
XOR protocol (Mizuki and Sone 2009) is used t + 1 times,
2(t + 1) cards (along with the six cards revealed in the pre-
vious step) can be reused for the next step. In Step 6, for ai ,
2 ≤ i ≤ t , to make two copied commitments to each of b j ,
1 ≤ j ≤ t + 1, we need 4 + 2t cards as mentioned before.
Since 2(t + 1) + 6 cards are left, no more card is needed. In
total, 4(t + 1) + 4t + 6 + 2 = 8t + 12 cards are needed.

Let us count the number of required shuffles. In our
protocol, we use the existing AND, XOR, and COPY pro-
tocols (Mizuki and Sone 2009; Mizuki and Shizuya 2014b).
Each of themneeds one shuffle to execute. In Step 2,we apply
a random cut t times and execute the existing XOR protocol
t−1 times. In Step 3, we execute the existing COPY protocol
t +1 times. In Step 4, we execute the existing AND protocol
and destroy the unnecessary two commitments by shuffling
all of them. In Step 5, we execute the existing XOR protocol
t + 1 times. In Step 6, for ai , 2 ≤ i ≤ t + 1, we execute the
existing COPY protocol t + 1 times (except for the case of
i = t+1), the existing AND protocol (along with destroying
commitments), and the existing XOR protocol t+1 times. In
total, t+ t−1+ t(t+1+2+ t+1)+2+ t+1 = 2t2+7t+2
shuffles are needed.

Our 1-secure AND protocol uses 16 cards and 8 shuf-
fles, and our t-secure AND protocol (when t = 1) uses 20
cards and 11 shuffles. The difference is that, while the former
(1-secure) one uses our specialized 4-bit XOR subprotocol
(where a shuffle is applied twice), the later (t-secure) one
creates two pairs of t random commitments (where a shuffle
is applied once) and adds the value of ai ∧ b j for all i and
j , 1 ≤ i, j ≤ t + 1, to the accumulator one by one (where a
shuffle is applied four times).

6.4 Security of our protocol

In this subsection, we show that our protocol presented in
Sect. 6.2 is t-secure (recall Definition 7).

Without loss of generality, suppose that Alice will reveal t
cards illegally. During our protocol, commitments to ai ∧b j ,
1 ≤ i, j ≤ t + 1, will appear; if ai = 0, those commit-
ments always have the value of 0. Therefore, we assume for
now that Alice knows ai = 1 for all i . That is, we consider
the KWH-tree|x1=(1,1,...,1). Then, during the protocol, pos-

sibly available commitments (to be revealed by Alice) are
“shares” b1, . . . , bt+1, the accumulator A, and random bits
r1, . . . , r t . If Alice reveals t values from b1, . . . , bt+1 and
r1, . . . , r t (without A), then the resulting status is still opaque
obviously. Therefore, we may assume that Alice reveals the
accumulator A.

Now, Alice can reveal t−1 more commitments. There are
two cases to consider.

Case 1: A contains all b1, . . . , bt+1.
Without loss of generality, assume that Alice reveals nei-
ther b1 nor r1. Aside from these two values b1 and r1,
let us reveal all values of b2, . . . , bt+1 and r2, . . . , r t

(this may be more than t cards revealed, but we can
still show that the status will be opaque). Without loss
of generality, all revealed values are assumed to be 0,
i.e., b2 = · · · = bt+1 = r2 = · · · = r t = 0 and
A = b1 ⊕ · · · ⊕ bt+1 ⊕ r1 ⊕ · · · ⊕ r t+1 = 0. Then, we
have b = b1 = r1, and hence, we have no knowledge
about whether b = 0 or b = 1 (because b1 and r1 are
unknown random bits). All the current face-up cards are
commitments to b:

? ?
︸ ︷︷ ︸

b1=b

? ?
︸ ︷︷ ︸

r1=b

;

in the current status, we have entries
(

· · · ♣♥♣♥ · · · ,
(

0, 0, p10
p10+p11

, 0
))

(

· · · ♥♣♥♣ · · · ,
(

0, 0, 0, p11
p10+p11

))

,

implying that it is opaque under player’s view x1 =
(1, . . . , 1). A similar discussion works for other player’s
views x1 = s.

Case 2: A does not contain some of b1, . . . , bt+1.
Without loss of generality, assume that A does not contain
b1. Then, reveal all cards except for b1 and r1. In a similar
way to Case 1, we can show that the resulting status is
opaque.

7 Conclusion

In this paper, we first described the KWH-tree of the five-
card trick and formally defined non-committed protocols.
Against the actively revealing card attack, we defined the
t-secureness and presented a 1-secure AND protocol and a
general t-secure AND protocol.

We assume in this paper that players’ inputs are one-bit
and they want to securely compute a one-bit output function.
Thus, extending the results to the case of multiple bits is an
intriguing direction for future research. Furthermore, consid-
ering actively revealing attacks on other problems or models
(e.g., Ono and Manabe 2020; Ruangwises and Itoh 2020;

123



Actively revealing card attack on card-based protocols 627

Shinagawa and Nuida 2021; Sasaki et al. 2020; Miyahara
et al. 2020; Takashima et al. 2020; Koch et al. 2019; Ibaraki
and Manabe 2016; Ono and Manabe 2019; Ono and Manabe
2018) will be future work in the research area of card-based
cryptography.
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