
Understanding measure-driven algorithms solving irreversibly ill-
conditioned problems

Jakub Sawicki1 • Marcin Łoś1 • Maciej Smołka1 • Robert Schaefer1

Accepted: 15 December 2020 / Published online: 20 February 2021
� The Author(s) 2021

Abstract
The paper helps to understand the essence of stochastic population-based searches that solve ill-conditioned global

optimization problems. This condition manifests itself by presence of lowlands, i.e., connected subsets of minimizers of

positive measure, and inability to regularize the problem. We show a convenient way to analyze such search strategies as

dynamic systems that transform the sampling measure. We can draw informative conclusions for a class of strategies with a

focusing heuristic. For this class we can evaluate the amount of information about the problem that can be gathered and

suggest ways to verify stopping conditions. Next, we show the Hierarchic Memetic Strategy coupled with Multi-Winner

Evolutionary Algorithm (HMS/MWEA) that follow the ideas from the first part of the paper. We introduce a complex,

ergodic Markov chain of their dynamics and prove an asymptotic guarantee of success. Finally, we present numerical

solutions to ill-conditioned problems: two benchmarks and a real-life engineering one, which show the strategy in action.

The paper recalls and synthesizes some results already published by authors, drawing new qualitative conclusions. The

totally new parts are Markov chain models of the HMS structure of demes and of the MWEA component, as well as the

theorem of their ergodicity.

Keywords Irreversibly ill-conditioned problems � Measure-driven algorithms � Markov chain modeling

1 Introduction

1.1 Ill-conditioned global optimization problems

Many problems in machine learning, optimal control,

medical diagnostics, optimal design, geophysics, etc. are

formulated as global optimization ones. They are fre-

quently irreversibly ill-conditioned and possess many

solutions that can form uncountable, continuous subsets in

the admissible domain.

A substantial part of such computational tasks are called

‘‘inverse problems’’ (IPs) in which parameters of a prede-

fined mathematical model have to be identified. A general

framework for handling inverse problems for which

mathematical model is given by the system of Partial

Differential Equations (PDEs) can be found in [22, 59]. Ill-

conditioning of IPs, mentioned above, is caused mainly due

to unavailability of complete and accurate measurements,

e.g. insufficient set of data used for Artificial Neural Net-

work (ANN) learning or pointwise measurement of the

electric field called ‘‘logging curve’’ for investigation of oil

and gas resources (see [28, 31] and [9]). Ambiguity and

lack of correctness of their mathematical model ( e.g. due

to some symmetries, see [7]) can also contribute.

We may also refer to the representative examples of

engineering ill-conditioned IPs: regression solved by Deep

Neural Networks (DNNs) [18], ambiguity in lens design

[23], calibration of conceptual rainfall-runoff models [12],

investigation of oil and gas resources [56], and diagnosis of

tumor tissue [37].
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1.2 Deterministic and stochastic strategies
of solving ill-conditioned problems

Traditional methods of local, convex optimization are

hardly relevant for solving ill-conditioned problems men-

tioned above. If the problem is formulated as finding all

global or ‘‘almost global’’ minimizers of the objective

function (e.g. misfit between the measured and simulated

data for IPs or loss function in case of ANN learning) then

any single steepest-descent method can converge at least to

a single minimizer. Even if multistart of steepest-descent

processes is applied, a finite number of minimizers can be

approximated at most. Moreover, a remarkable search

redundancy may appear when many processes focus on the

same minimizer or on different points of the same con-

nected component of a continuous set of minimizers.

A more advantageous way is to apply a stochastic

population-based strategy, which generally ‘‘breeds’’ a

‘‘flock’’ of candidate solutions in such a way that they tend

to concentrate in regions containing solutions (both iso-

lated and continuous clusters).

There are many stochastic AI techniques inspired by

nature such as evolutionary computation, ant colony opti-

mization, simulated annealing as well as their recent spe-

cialized instances (CMA-ES, IM, HGS, HMS, etc.) that

follow this idea. Generally, they perform consecutive re-

sampling of the more or less structured ‘‘flock’’ of candi-

date solutions, where the sampling measure is successively

updated according to the information gathered during the

search process.

The broad review of stochastic, population-based

methods of solving global optimization problems in con-

tinuous domains involving multiple local minimizers is

reported in Pardalos and Romeijn handbook [36], while the

population-based methods dedicated to the ill-conditioned

multimodal global optimization problems was discusses in

the Preuss book [39]. The information about some spe-

cialized strategies (HGS, HMS, CGS and EMAS) can be

found in our former papers

[4, 6, 13, 17, 47, 50, 53, 55–57, 64].

1.3 State-of-the-art approaches of a solving
strategies analysis

Most popular technique of analyzing stochastic global

searches consists in evaluating the First Hitting Time

(FHT) after which at least one point from the sample hits

the set of solutions. Chapter devoted to such methods

written by Wood and Zabinsky can be found in the

monograph [36]. Yao and He delivered a survey of FHT

evaluation based on the Markov processes theory and

applied to Evolutionary Algorithms (EAs) analysis [20].

The similar results for Island Model were obtained by

Rudolph [45].

An other approach of studying population-based algorithm

dynamics starts from the features of elementary stochastic

operations changing the population members at each step, and

then generalizing them to some rules of sampling measure

modification. Such results were obtained by Arabas [3],

Ghosh [19] as well as by Qi and Palmieri [40, 41].

Analysis of the sampling measure dynamics of a whole

population for small population instances were studied by

numerous researchers, e.g. Rudolph [45], Sudholt [58],

Beume [5] and their collaborators. The dynamics of a

population composed of two individuals encoded by real

numbers, processed by EA was deeply investigated by

Karcz-Dulęba [25, 26].

The last approach, but most interesting from our point of

view, consists in analyzing the sampling measure dynamics

as a stochastic dynamic system, especially as the stationary

Markov chain. Such model for the population composed of

individuals encoded by real numbers and processed by EA

was introduced by Rudolph [43, 44]. Our future consider-

ation will refer mainly to the model developed by Vose

with collaborators [33, 62] suitable for expressing the

dynamics of the sampling measure of the stochastic pop-

ulation-based search in finite, but very large admissible set

and who introduced the so called ‘‘heuristic operator’’.

2 Modeling measure-driven stochastic
algorithms inspired by nature

2.1 Reconsidering definition of the ill-
conditioned global optimization problems

We intent to describe more precisely the class of ill-con-

ditioned problems and their sets of solutions under con-

sideration. The solutions of such problems will be searched

is a bounded, connected, closed admissible set D �
Rl; l� 1 with a Lipschitz boundary [65], having a positive

measure. Potential solutions will be evaluated by the

objective function f 2 CðRl ! RÞ so, that the lower the

value f(x) is, the better is the candidate solution x. Of

course, there exists at least one pair xmin; xmax 2 D so, that

�1\f ðxminÞ� f ðxÞ� f ðxmaxÞ\þ1; 8x 2 D.

Definition 1 (see Definition 3 in [30])

1. Each y 2 D will be called the local minimizer to f in D

if

9By�D;y2By;By is connected; f ðyÞ¼ f ðnÞ8n2By and

9A2 topðR‘Þ; By�A; f ðyÞ\f ðnÞ 8n2ðA\DÞnBy:

ð1Þ
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2. Each local minimizer y to f in D will be called a global

minimizer if f ðyÞ ¼ f ðxminÞ.
3. Set By will be called the minimum manifold to f in D.

We will denote by Mmanifoldsf ;D the family of all

minimum manifolds to f in D.

4. Each minimizer y 2 D to f in D will be called isolated

if By ¼ fyg.

It can be proven (see Theorem 5 in [30]), that if y is a local

minimizer of f in D, then By is a connected component of

f jDð Þ�1ðf ðyÞÞ that contains y. Moreover By0 ¼ By 8y0 2 By

and By ¼ By. Additionally if f is differentiable, then

rf jx ¼ 0 8x 2 By (see Observations 6 and 11 in [30]).

Definition 2 (see Definition 9 in [30]) Lowland Pz to f in

D associated with local minimizer z 2 By is the maximum

open-connected set (in the sense of inclusion) so that Pz �
By and z 2 Pz or the empty set. Let us denote by

Lowlandsf ;D the family of all non-empty lowlands to f in

D.

It can be proven, that a non-empty lowland Pz is

unambiguously defined for z 2 By and satisfies

measðPzÞ[ 0. Moreover, 8z0 2 Pz Pz ¼ Pz0 ; f ðzÞ ¼
f ðz0Þ ¼ f ðyÞ (see Remark 10 in [30]).

The further constructs will base on a strictly-steepest-

descent local optimization methods denoted by loc.

Roughly saying, they generate a minimizing sequence

fxigi¼1;2;... � D starting form an arbitrary x0 2 D which

tends to the ‘‘nearest’’ stationary point to f (possibly, to the

nearest local minimizer) called locðx0Þ. Moreover, the

value of f(x) has to decrease strictly along its path. The

methods mentioned above were introduced in [11, 42]. The

paper [30] contains the broad discussion of such methods

and also proposes their approximation called a-strictly-

steepest-descent method. In the particular case when f is

continuously differentiable, we may replace the strictly-

steepest-descent method by the antigradient flow for f, i.e.

the family of solutions of equation dc
dt ðtÞ ¼

�rf ðcðtÞÞ; cð0Þ ¼ x0 for which locðx0Þ will be set as

lim cðtÞ; t ! þ1.

Definition 3 (see Definitions 28, 32 and 36 in [30]) Let loc

be a strictly-steepest-descent local optimization method on

D and y the local minimizer of f in D.

1. The set Rloc
y ¼ x 2 D; y ¼ locðxÞf g will be called the

set of attraction of y with respect to method loc. We

will further simplify its notation to Ry.

2. The sets

RBy
¼

[

x2By

Rx; RPy
¼

[

x2Py

Rx

will be called the set of attraction of minimum manifold

By, and the set of attraction of lowland Py, respectively.

Definition 4 (see Definitions 35 and 38 in [30])

1. Basin of attraction BBy
of minimum manifold By to the

function f is the connected part of set

x 2 D; f ðxÞ\hy
� �

\ ðRBy
[ ByÞ that includes By,

where hy ¼ infff ðzÞ; z 2 oRBy
n oDg.

2. Basin of attraction BPy
of lowland Py to the function f

is the connected part of set x 2 D; f ðxÞ\hy
� �

\
ðRPy

[PyÞ that includes Py, where

hy ¼ infff ðzÞ; z 2 oRPy
n oDg.

It can be observed, that By � RBy
and Py � RPy

. Moreover

Definition 3 does not depend on loc method if f is con-

tinuously differentiable. The definition of the basin of

attraction for an isolated minimizer y can be obtained from

the Definition 4.1 for the case By ¼ fyg.

Remark 1 The following important separability conditions

can be drawn (see Theorems 43, 47 and Remark 50 in

[30]):

1. All different lowlands are pairwise disjoint.

Moreover in case of continuously differentiable function f:

2. All different minimum manifolds are pairwise disjoint.

3. Basins of attractions of two different minimum man-

ifolds are disjoint.

4. If two lowlands have disjoint closures then their basins

of attractions are also disjoint.

Finally, we introduce the ill-conditioned problems which

will be studied in the sequel of this paper.

Definition 5 Given the admissible domain D and the

objective function f find:

P1 Approximation of all lowlands.

P2 Approximation of the central parts of basins of

attraction for all minimum manifolds.

Notice, that both above problems lead to find a subset

(possibly not connected) of the admissible domain

D � Rl; l� 1, such that each of its connected parts has a

positive measure in Rl. Such tasks are suitable for
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stochastic search methods working with a finite samples in

the admissible domain.

2.2 The principles of Vose model and its
extensions for more advanced strategies

Perhaps the first result towards stochastic modeling popu-

lation-based searches as a stochastic dynamic system was

obtained by Michael Vose and his collaborators in 1990s

[33, 62].

Let U be the finite genetic universum being a set of

codes of the finite number of chosen potential solutions to

the global optimization problem. The universum U will be

identified (labeled) with the set of positive integers where

r\þ1 is the number of codes. Such labeling introduces

the total linear order on U. We will write i\j, i; j 2 U if the

label of the code i is smaller than the label of j, if it does

not lead to ambiguity.

We assume that U is injectively mapped into the

admissible set D by function code : U ! D and denote by

Dr ¼ codeðUÞ the set of ‘‘phenotypes’’. Moreover, we

denote by di;j ¼ dð code ðiÞ; code ðjÞÞ; i; j 2 U the distance

between points code ðiÞ; code ðjÞ 2 D corresponding to the

codes i; j 2 U. Finally, we introduce the fitness function

f : U ! Rþ being the composition f ¼ f � code . For the

sake of simplicity, we will denote fi ¼ fðiÞ, i 2 U.

The random sample of a size l processed at each step of

a stochastic algorithm is a multiset which can be also

represented by its frequency vector

xt ¼ ðx0
t ; . . .; x

r�1
t Þ; xjt ¼ 1

l gtðjÞ; j ¼ 0; . . .; r � 1. The pop-

ulation Pt represents also the sample ðDr; gtÞ in D, so that

gtðxÞ ¼ gtðiÞ if code ðiÞ ¼ x.

Let us denote by Xl the sets of all frequency vectors

associated with the populations of size l. The cardinality of

Xl � Kr�1 is equal to:

card ðXlÞ ¼ sðr; lÞ ¼
lþ r � 1

l

� �
\þ1 . ð2Þ

When we want to highlight the size of the genetic uni-

versum, we shall use the double-script notation Xr
l. Further

it can be proven that

ð3Þ

where the simplex Kr�1 � Rr is a universal set of repre-

sentations of all populations with an arbitrary size l 2 Zþ
containing codes from U [62].

The stochastic, population-based strategy with a con-

stant size of population l generates a random sequence of

populations or, equivalently, a sequence of their frequency

vectors If the following conditions hold:

ð4Þ

then the strategy is modeled by a stationary Markov chain

with the space of states Xl. Let us denote by ptl 2 MðXlÞ
the probability distribution of a random variable xt at a step

where MðXlÞ is a space of probabilistic measures on the

set Xl. The stochastic dynamics of such algorithm are

determined then by the initial probability distribution p0
l

and the Kolmogorov equation:

ptþ1
l ¼ Qptl; t ¼ 0; 1; 2; . . . , ð5Þ

where denotes the transition probability matrix of this

process. Further, we will use for various Xl � Kr�1 the

polymorphic notation for the probability transition map-

pings s : Xl ! MðXlÞ that return the probability distribu-

tions over the states in the next step accordingly to the

current state, i.e. sðxÞ ¼ fQx;x0 gx02Xl
(see e.g. [35]).

The essence of the model presented above is shown at

the upper part of diagram Fig. 1. The real operations

applied to pass from the population frequency vector xt to

the next one xtþ1 called implementation can be expressed

by extracting the probability distribution ptþ1
l over the set

of all population vectors Xl, followed by one-time sam-

pling of xtþ1 from Xl. Both ways are stochastically

equivalent.

Let us consider now the family of the population-based

stochastic algorithms FU;f so, that all of them operate on

populations P ¼ ðU; gÞ of clones from the same finite set U

and all of them use the same stochastic operations trans-

forming a population Pt to the consecutive one Ptþ1, and

such operations do not depend on the step t of the algo-

rithm. In fact, all of these algorithms solve the same opti-

mization problem imposed by the same fitness function f,

and they differ only in size of population l they proceed.

Of course, the frequency vectors of all such populations

belong to the simplex Kr�1.

Fig. 1 Heuristic diagram
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Notice, that each x 2 Kr�1 can be also interpreted as a

stochastic vector that belongs to MðUÞ. In order to avoid

ambiguity, we introduce the mapping H : Kr�1 ! MðUÞ,
being numerically the identity, changing only the meaning

of its argument.

Definition 6 We will say, that the family FU;f has a

heuristic, if there exists the continuous mapping H :

Kr�1 ! Kr�1 so, that:

1. 8x 2 Kr�1 HðxÞ is the expected population vector in

the next step following x,

2. 8x 2 Kr�1 HðHðxÞÞ is the measure used for sampling

the members of population immediately following x

from the set of codes U.

Moreover, we will say, that the heuristic is focusing, if

there exists a non-empty set of fixed points K � Kr�1 to

the operator H so, that:

3. 8x 2 Kr�1 9!z 2 K; HpðxÞ ! z; p ! þ1, where

Hp denotes the p-times composition of the mapping

H.

Remark 2

1. Because Kr�1 is a bounded and convex set in Rr and

H is continuous then the Schauder theorem (see [54])

follows, that it has at least one fixed point.

2. Assuming an arbitrary size of the population l, the

coefficients of the transition probability matrix Q can

be computed from the formula (see [62])

Qx;y ¼ l!
Yr�1

j¼0

ðHðxÞjÞly
j

ðlyjÞ! ; 8x; y 2 Xl . ð6Þ

The lower part of a diagram shown on Fig. 1 illustrates

the idea of modeling dynamics of a search with heuristic.

The implementation can be replaced by taking the heuristic

value on the current frequency population vector, followed

by the l-times sampling without return from U according

to the probability distribution imposed by HðxtÞ.
The above model was introduced and successfully

applied for the Simple Genetic Algorithm (SGA) by Vose

and his collaborators. In particular, they effectively com-

puted the SGA heuristic, called the genetic operator (see

e.g. [62]). During the last two decades the authors of the

proposed contribution partially extended this model to

several more complex stochastic searches interesting from

the application point of view:

1. Island Model (IM) [52],

2. multi-deme memetic algorithm governed by computing

agents (EMAS) [6],

3. Hierarchic Genetic Strategy (HGS) performing search

with the adaptive accuracy [14, 51, 53],

4. sequential niching with fitness deterioration called

Clustered Genetic Search (CGS) [50, 64],

5. multi-objective evolutionary search with non-domi-

nated selection (NSGA-MOEA) [16].

2.3 Extracting the behavioral features
from the Markov model of a strategy

The mathematical model of a family of population-based

stochastic searches FU;f with heuristic H allow for a new

course of their asymptotic analysis well suited when the ill-

conditioned problems P1;P2 (see Definition 5) are solved.

Let us assume for a further consideration, that:

H1: The heuristic is strictly positive, i.e.

HðxÞi [ 0; 8x 2 Kr�1; 8i 2 U. It holds in

particular, if the mutation is applied as the last

stochastic operation at each step of the algorithm.

Typically, it appears in almost all evolutionary

searches.

H2: The heuristic is focusing, and there is a finite

number of fixed points (cardðKÞ\þ1). The

computing experience shows, that typically the

unique fixed point to heuristic exists and more fixed

points appear occasionally [1].

Remark 3 If the assumptions H1;H2 for a family of

stochastic searches FU;f hold, then:

1. Each search from FU;f processing the population of an

arbitrary size l can be modeled by the ergodic Markov

chain and the associated sequence of measures

fptlgt¼0;1;2;... has a weak limit pl independent of a

starting population x0 or/and initial distribution p0
l (see

[33, 62]).

2. The probability distribution pl can be computed as a

solution of the algebraic system, if we know the

transition probability matrix Q of such process (see

[35]). The computational cost of such task for a real

wold problems is huge, because of a huge matrix

dimension sðr; lÞ2
(see (2)), so this way of asymptotic

analysis is applicable only for searches in small

universa U.

3. The sequence fplg contains at least one sub-sequence

fplng converging in distributions to some p� 2
MðKr�1Þ for ln ! þ1, moreover p�ðKÞ ¼ 1 (see

[33, 62]).

4. Each trajectory of the heuristic iterates x0;Hðx0Þ;
H2ðx0Þ; . . .;HKðx0Þ can be arbitrarily closely approx-

imated by the trajectory x0; x1; x2; . . .; xK of a finite, l-
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sized population for arbitrary x0 2 Xl; K[ 1 with an

arbitrarily large probability m, if the population size is

sufficiently large l[N (see Theorem 13.2 in [62]).

5. The fixed points of the heuristic can be well approx-

imated by the finite population vector xt 2 Xl in the

stochastic sense, i.e. xt will be sampled from an

arbitrarily close metric neighborhood of Ke 	 K with

the arbitrarily large probability m, if the size of

population l and the number of steps t are sufficiently

large (see [8]).

Remark 4 The above considerations lead us to the fol-

lowing qualitative conclusions:

1. The stochastic population-based searches with a

dynamic sampling measure adaptation that belong to

FU;f are in fact the machine learning processes, that

gather more and more information about the problem

characterized by a fitness f, when the number of

iteration grows.

2. We may conjecture, that the maximum information

about the problem that can be gathered by the family

FU;f is contained in the fixed points of heuristic

z 2 K, that are the frequency vectors of the limit

populations representing most exhaustive searches

(infinite sample after infinite number of steps).

3. Roughly saying, the family FU;f might be assessed as

‘‘well tuned’’ to the solving problem, if its members are

effective learning processes, i.e. the information about

the solutions they are able to gather is satisfactory for

the user.

The crucial questions that remain are: what could be the

validation criteria for the family FU;f to be ‘‘well tuned’’

and how such criteria could be verified?

One of the possible answers to the first question needs

the additional construction of a special family of proba-

bilistic measures over the admissible domain D. For each

y 2 Dr we select the set #y � D of points located closer to

y then to other phenotypes w 2 Dr; w 6¼ y. If D is suffi-

ciently regular, then the family of subsets f#ygy2Dr
is the

Voronoi tessellation associated with phenotypes (see e.g.

[34]). We can introduce now a new measure over D with

the following density function:

qxðnÞ ¼
HðxÞj

meas #codeðjÞ
� � if n 2 #codeðjÞ: ð7Þ

No matter how qx is only a partial function (it is not defined

for n 2 D equally distanced from at least two phenotypes),

it satisfies measðdomðqxÞÞ ¼ measðDÞ and for all x 2 Kr�1

we have qx 2 LpðDÞ; p� 1 (see [49]). We will further call

qx the ‘‘brightness’’ of a population represented by the

frequency vector x.

The idea of ‘‘well tuning’’ criteria was introduced in [49,

Def. 4.63] for a family of SGA searches and a finite set of

local minimizers. Its extended version proposed below

consists in assuming some numerical conditions on the

brightness qz of all fixed points z 2 K to the heuristic H

of the family of searches FU;f leading to find continuous

subsets of the admissible domain (lowlands and minimum

manifolds).

Definition 7 We will say, that the family of stochastic,

population based searches FU;f with a focusing heuristic

H possessing a finite set of fixed points K is well tuned to

the set of lowlands if for each Py 2 Lowlandsf ;D hold:

1. 9CðPyÞ, simply connected, closed set so that

Py � CðPyÞ � BPy
,

2. 8z 2 K qz � threshold a.e. in CðPyÞ and

qz\threshold a.e. in D n CðPyÞ.
Replacing Lowlandsf ;D by Mmanifoldsf ;D, Py by By and

BPy
by BBy

in the above definition, we get a similar def-

inition of well tuning with respect to the minimum

manifolds.

The intuition standing behind the above Definition is as

follows. If we represent the chart of ‘‘brightness’’ qz as an

l-dimensional monochrome graphic, then the sets we are

looking for (lowlands, minimum manifolds) should

‘‘shine’’ over a darker background. Because all stochastic

global searches allow for some degree of ‘‘blurring’’, it is

more convenient to assume that the central parts of the

interesting basins of attraction have a ‘‘shine’’.

Remark 5

1. Recalling the Remark 1 we may observe, that all sets

CðPyÞ;CðBwÞ, Py 2 Lowlandsf ;D, Bw 2
Mmanifoldsf ;D are pairwise disjoint, which ensures,

that each set we are looking for can ‘‘shine’’ separately

(see Fig. 2).

2. It can be proven (see [49, Th. 4.67]), that each

‘‘brightness’’ qz associated with a fixed point of

heuristic z 2 K can be well approximated in LpðDÞ
norm (p� 1) in the stochastic sense, i.e. with the

arbitrary large probability m, by the sequence of

‘‘brightness’’ qxt ; xt 2 Xl, if the size of population l
and the number of steps t are sufficiently large.

Now, we are able to gather main qualitative conclusions

and suggestions derived in the first part of this paper.

Remark 6

1. The formal model presented in above sections shows,

that if the family of stochastic searches applied FU;f is

‘‘well tuned’’ to the ill-conditioned problems P1;P2

(see Definition 5), then we can draw the information
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about lowlands and minimum manifolds by the proper

post-processing of the limit population xK or the

cumulative population 1
K

PK
t¼1 xt, where K is a suffi-

ciently large number of steps and xK 2 Xl for suffi-

ciently large l (see Remark 5.2). Such post-processing

may consist in clustering, cluster separation analysis,

local fitness approximation, etc.

2. The above reasoning shows us, that in order to solve

P1;P2 we really expect to obtain a random sample

with a probability distribution sufficiently close to at

least one fixed point of heuristic. It is then much more

reasonable to analyze the dynamics and asymptotic

features of sampling measures fqxtg; t ¼ 0; 1; 2; 3; . . .,

then the dynamics of a single individual in the

consecutive populations, as it is performed in the

classical approaches.

3. The assumed ergodicity of the Markov chain modeling

each search from the family FU;f, ensures the asymp-

totic guarantee of success of each search for which

Xl \Ke 6¼ ;, i.e. the well approximation of at least

one fixed point of heuristic can be reached in a finite

number of steps, starting from an arbitrary x0 2 Xl.

4. The possible concept of stopping a stochastic strategy

solving one of the problems P1;P2 is to recognize,

whether at least one population vector xt falls into the

set of states Ke, arbitrary close to the fixed points of

the heuristic. The Remark 5.2 guarantees, that the

associated measure qxt will ‘‘shine’’ over the basins of

attraction of lowlands or minimum manifolds to be

found if the family FU;f is ‘‘well tuned’’.

5. More formally, we can define the random variable

He
l ¼ infft� 0; xt 2 Ke; xt 2 Xlg being the first hit-

ting time (FHT) of the set Ke \ Xl by the Markov

chain modeling the stochastic search. It can be proven,

that the expected hitting time Ex0
ðHe

lÞ of reaching He
l

starting from x0 2 Xl is the unique non-negative

solution to the linear system [14, 35]:

Ex0
ðHe

lÞ¼ 0; for x0 2Ke\Xl;

Ex0
ðHe

lÞ¼ 1þ
P

y2Xl
Qx0;y EyðHe

lÞ; for x0 62Ke\Xl:

(

ð8Þ

Notice, that Ex0
ðHe

lÞ is wholly determined by the

heuristic, because Ke depends only on its fixed points

and the matrix Q can be computed for arbitrary l from

the formula (6). No matter how, the above system (8)

allows for qualitative study of a mean complexity of

solving problems under consideration, its practical

application is restricted to the problems with moderate

set of codes U because of a huge dimension of the

system matrix Q.

6. The other, more practical possibility of verifying

stopping condition is to check, whether the consecutive

samples form clusters of a sufficiently high quality, i.e.

sufficiently dense and well separated from each other.

7. The third possibility is to couple the stochastic searches

with a fitness deterioration, that ‘‘fills’’ consecutively

the parts of basins of attraction recognized in each step

or several steps of the algorithm. At the end of this

strategy the resulting fitness becomes flat, so new

heuristic has only one fixed point—the center of the

simplex Kr�1 [49, 62]. Such fitness imposes the chaotic

behavior of the searching process, which can be

recognized by analyzing HðxtÞ in several consecutive

steps (see e.g. [50, 60, 64]).

8. Assessing whether the particular family of searches is

‘‘well tuned’’ is difficult in the computational practice.

Typically, the algorithms with a stronger selection

pressure are more likely ‘‘well tuned’’. Unfortunately,

such algorithms are ineffective in a global search. The

possible solution is to use a cascade of stochastic

searches, in which the upper ones are designated to

Fig. 2 The two graphs show the

fitness functions (values at left

axes) and density of a unique

fixed point of a heuristic (right

axes). The results were obtained

for SGA type heuristic with

proportional selection and

mutation rate of 0.05. No

crossover was utilized. The

universum U collects all single

byte binary codes that represent

256 uniformly distributed

phenotypes in the domain

D ¼ ½0; 10
. Fixed points were

computed analytically, see [27]
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global search, while the lowest ones deliver the sample

concentrated in the basins of attraction of lowlands or

minimum manifolds. Such proposition called HMS

will be presented later in this paper.

9. The Fig. 2 shows two examples of finding fixed points

of heuristic to the family of SGA equipped with

proportional selection and mutation only. The 1D

domain was encoded using only single byte binary

strings representing uniformly distributed phenotypes.

Fixed points were computed analytically, see [27]. The

Example 1 shows, that the utilized SGA family is

‘‘well tuned’’ for the wide range of threshold param-

eter, so the brightness will ‘‘shine’’ on central parts of

basins of attraction to both minimizers. The ‘‘bright-

ness’’ of fixed point in Example 2 does not ‘‘shine’’ on

the whole lowland areas leaving ‘‘dark’’ parts close to

their border, so the family of searches is not ‘‘well

tuned’’ in this case. Such behavior is observed for most

stochastic searches using classical evolutionary mech-

anisms as selection and mutation. The complex

stochastic search including the MWEA component is

recommended in next Sect. 3 to avoid this obstacle.

10. The ‘‘well tuned’’ stochastic search can be also used as

the first phase of solving particular problems, if only

the finite number of isolated local minimizers have to

be found (all minimum manifolds are singletons). In

this phase the number of solutions and the central parts

of their basins of attractions are recognized. The

precise approximation of minimizers are performed in

the second phase, by a steepest descent local methods

started in parallel in each basin already recognized (see

e.g. [60]).

3 Multi-Winner evolutionary algorithm

Multi-Winner Evolutionary Algorithm (MWEA) is a pop-

ulation-based stochastic search with the Multi-Winner

Selection (MWS), which mimics the rules originally used

for electing boards of directors in large corporations [13]. It

significantly increases the capability of identification of

insensitivity set shape components. Here we introduce

MWEA Markov model and derive the formula for its

probability transition, i.e. the transition probability matrix.

We will study an artificial genetic system which at each

genetic epoch t ¼ 0; 1; 2; . . . takes the parental population

Pt, to create an intermediate offspring population Ot and a

resulting population Ptþ1, which will be an input to the next

epoch. Both Pt and Ptþ1 are multisets of codes from U of

the cardinality l represented by the frequency vectors

xt; xtþ1 respectively. The offspring can be also represented

by the frequency vector

yt ¼ ðy0
t ; . . .; y

r�1
t Þ; yj ¼ 1

k ctðjÞ; j ¼ 0; . . .; r � 1. Moreover

xt 2 Xl; yt 2 Xk where both Xl;Xk � Kr�1 (see Sect. 2.2).

Using the notation of frequency vectors we obtain

gtðiÞ ¼ lxit, ctðiÞ ¼ kyi, 8i 2 U and Pt ¼ ðU; lxtÞ,
Ot ¼ ðU; kytÞ, where xt 2 Xl, yt 2 Xk.

We can compute the union of multisets containing

clones of codes from U (see [49]). Let A ¼ ðU; gÞ and

B ¼ ðU;wÞ be two arbitrary multisets, so that

card ðAÞ ¼
P

i2U gðiÞ ¼ ,, card ðBÞ ¼
P

i2U wðiÞ ¼ v and

,; v\þ1, then:

A [ B ¼def C ¼ ðU; gþ wÞ: ð9Þ

Remark 7 If the parental and offspring populations are

Pt ¼ ðU; lxtÞ, Ot ¼ ðU; kytÞ for some epoch t and their

Boolean sum Pt [ Ot ¼ ðU; ðlþ kÞztÞ 2 Xlþk, then

zt ¼ 1
lþk ðlxt þ kyÞ. For the particular case k ¼ l we obtain

zt ¼ 1
2
ðxt þ ytÞ.

Apart from the frequency vector notation, we will use

the notation of multisets based on the permutational power

of a set (see [49, Def. 2.13]). We can introduce an equiv-

alence eqp � Ul � Ul, so that two strings d; f 2 Ul satisfy

ðd; fÞ 2 eqp if there exists a permutation from a symmetric

group Sl that maps d to f.

Each multiset ðU; lxÞ associated with a frequency vector

x 2 Xl can be represented by a class of abstraction ½nx
eqp

of a sequence nx ¼ ðnx1; . . .; nxlÞ 2 Ul so that:

nxi ¼ bk1
; i ¼ 1; . . .; lxk1

nxi ¼ bk2
; i ¼ lxk1 þ 1; . . .; lðxk1 þ xk2Þ

� � �
nxi ¼ bkq ; i ¼ l

Pq�1
j¼1 xkj

� 	
þ 1; . . .; l

Pq
j¼1 x

kj ,

ð10Þ

where bkj 2 supp ðlxÞ, j ¼ 1; . . .; q, bkj [ bkl if j[ l,

supp ðlxÞ � U is a set of codes represented in the multiset

ðU; lxÞ, and q ¼ card ð supp ðlxÞÞ� l. We will denote

such a representation of the multiset ðU; lxÞ, corresponding

to the permutational power of the set, as:

bk1
;bk1

; . . .; bk1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
lxk1 times

; bk2
; bk2

; . . .; bk2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
lxk2 times

; . . .; bkq ; bkq ; . . .; bkq|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
lxkq times

* +
.

ð11Þ

The main advantage of this representation over the repre-

sentation using the occurrence function is the possibility to

distinguish between two individuals nxi , nxj , i 6¼ j which

represent the same code bkp 2 supp ðlxÞ. All individuals

are unambiguously labeled and linearly ordered by their

indices in the chosen sequence nx which takes a form (11),

while all permutations of nx represent the same multiset.
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However, this representation is not mathematically

precise and makes the Boolean operations difficult to for-

malize. It can be proven that both representations are

equivalent if l\þ1 (see [49, Rem. 2.15]).

In Algorithm 1, we show the scheme of the evolutionary

strategy that performs lþ l succession using MWS [13].

The stochastic, population-based strategy following the

above schema (Algorithm 1) generates a random sequence

of populations or, equivalently, a sequence of their fre-

quency vectors

The line 5 in Algorithm 1 represents the evolutionary

search which can be modeled by a stationary Markov chain

with a space of states Xl, (i.e., it satisfies (4)) with a

transition probability matrix . We will use also the

stochastic operation mutate : Xl ! MðXlÞ characterized

by a strictly positive transition probability matrix

M 2 ½0; 1
sðr;lÞ�sðr;lÞ
.

Now, we intend to derive a transition probability matrix

for the Markov model of Algorithm 1, assuming that we

know the transition probability matrices Q and M.

Proposition 1 Assuming l ¼ k, the probability distribu-

tion of the offspring Ot frequency vector yt 2 Xl at the t-th

epoch of Algorithm 1 is given by the product Qptl, where

Q is the transition probability matrix of the SGA.

Let us now study the probability distribution of a sum of

the current population at an epoch t and its direct offspring

Pt [ Ot. The frequency vector of such multiset will be

denoted by zt 2 X2l and by Remark 7 we have

zt ¼ 1
2
ðxt þ ytÞ.

We will denote by pt2l 2 MðX2lÞ the probability distri-

bution of a frequency vector zt, so that:

ð12Þ

Proposition 2 Probability distribution pt2l 2 MðX2lÞ of

the frequency vector zt can be obtained by the product

pt2l ¼ Aptl where A 2 ½0; 1
sðr;lÞ � ½0; 1
sðr;2lÞ is given by:

Ax;z ¼
Qx;y if 9y 2 Xl; z ¼

1

2
ðxþ yÞ 2 X2l

0 otherwise

8
<

: ;

ð13Þ

where x 2 Xl and z 2 X2l. For each combination (x, z), it

ensures that it is possible to reach z from x by adding a

member y of Xl. Only for such combinations, the proba-

bility Qx;y is copied to A. In that way, there is a certainty,

that for each possible z (given x), one has x � z and the

additional individuals are added according to Qx;y.

Let us now define an operator:

E : X2l 3 z ! w 2 Xl , ð14Þ

which determines the outcome of election carried out on a

sum of parents and children. Moreover, it allows to define a

probability transition matrix:

B 2 ½0; 1
sðr;2lÞ�sðr;lÞ;

Bz;w ¼
1 if EðzÞ ¼ w

0 otherwise

�
; z 2 X2l; w 2 Xl;

ð15Þ

associated with this step of evolution. The definition of E

presented below employs the greedy-CC election rule and

the plus-1 proportional utility function. The CC rule

chooses the highest-ranking committee among all the

possible ones, so it has exponential computation time. See

Fig. 3 for an example election with the CC voting rule. The

greedy version uses a simple heuristic, which favors the

individuals which contribute the most to the scoring

function.
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The election is based on a family of utility functions:

util a : U 3 b !
fb

da;b þ 1
2 Rþ a; b 2 U . ð16Þ

Next, we use a representation of the population ðU; 2lzÞ by

the sequence nz 2 U2l (see (10)), which allows to distin-

guish the individuals containing the same genotype.

Using utility functions (16) we can introduce a family of

linear total orders , a 2 supp ð2lzÞ in the population nz so

that:

<=>

ð17Þ

On the right side, the first part (before the alternative

operator) checks the utility values. The second part breaks

the ties in the utility values using the ordering of nz, which

is ensured by the representation (10).

Next, we define a family of permutations

a 2 supp ð2lzÞ, so that posz;a reorders the sequence nz to a

sequence ordered by the relation �a. The image

posz;að1; . . .; 2lÞ of the naturally ordered set of indices will

be the preference list associated with a genotype

a 2 supp ð2lzÞ.
The resulting frequency vector w 2 Xl will be obtained

in l steps. In each step, the multi-winner procedure

produces one element of a finite sequence of sets

W1; . . .;Wl, called committees such that card ðW,Þ ¼ ,,

, ¼ 1; . . .; l, and W, � W,þ1, , ¼ 1; . . .; l� 1. The

coordinates of the vector w will be given by:

ð18Þ

The first element of the sequence of committees will be

obtained as:

ð19Þ

The scoreð�Þ function will be given by the formula:

ð20Þ

where posz;nzi ðjÞ stands for the position of the coordinate of

the population member nzj in the preference list

posz;nzi ð1; . . .; 2lÞ, associated with the genotype of popula-

tion member nzi .
The next elements Wiþ1, i ¼ 1; . . .; l� 1 of the

sequence will be defined by the formula:

ð21Þ

Fig. 3 Example showing election with Chamberlin-Courant voting

rule. We have 4 candidates (represented by heads) and 4 voters, who

have the candidates ordered by preference. We want to choose a

winning committee with two candidates, so we consider all possible

committees of two and choose the committee that maximizes its total

score. On the bottom right we show 6 possible committees and we

intersect them with the voters. In each cell, we show the Borda score

of the best ranking committee member for a voter. (For example,

voter 1 and the first committee: the two committee members have

scores 3 and 2, respectively, so we note 3, the better score, in the cell.)

Summing each column, we get the total scores of all possible

committees. We have a tie (two scores 11), so we arbitrarily choose

one of them
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This is the main formulation of the greedy algorithm, as

each candidate added to the winning committee maximizes

the score surplus. Invariants are maintained by enforcing

satisfaction of the inequality in arg max.

The function scoreð�Þ calculates the k-Borda score of a

committee (20). What it does, is for each voter to find the

most preferred candidate from a committee and add its k-

Borda score to the sum. The k-Borda score linearly depends

on the position of the committee member on the preference

list of a voter.

Transition matrix D 2 ½0; 1
sðr;lÞ�sðr;lÞ
of the entire ðlþ

lÞ scheme is then given by:

D ¼ CM where ½0; 1
sðr;lÞ�sðr;lÞ 3 Cx;w

¼
X

z2X2l

Ax;z Bz;w x;w 2 Xl:
ð22Þ

Finally, the Kolmogorov equation for the Markov process

associated with Algorithm 1 has the form:

ptþ1
l ¼ Dptl; t ¼ 0; 1; 2; . . .: ð23Þ

Remark 8 The Markov process modeling MWEA is

ergodic, because D is a strictly positive stochastic matrix as

a product of the stochastic matrix C and the strictly positive

stochastic matrix M.

4 A formal model of the dynamics of HMS
enhanced with MWEA

In this contribution we will concentrate on our recent

strategy HMS/MWEA devoted to solving most challenging

global search problems. This complex memetic strategy is

equipped with a new component, MWEA —an evolution-

ary algorithm with the Multi-Winner Selection (MWS).

The whole complex strategy turns out to be a global

search tool especially well-suited for solving problems

with many local solutions possibly surrounded by thick

objective insensitivity sets. The strategy aims at providing

the information about all the global solutions, even when

these form an uncountable set. The algorithmic details of

the described strategy are covered in our previous works. In

this paper we will include a formal model of the dynamics

of the strategy. In the model the strategy is represented by a

homogeneous (stationary) Markov chain. We provide the

details on the construction of the state space and the tran-

sition matrix.

In this paper after the model formulation we prove the

ergodicity of the obtained Markov chain, which implies the

asymptotic guarantee of success. The other properties, such

as well-tuning of the whole strategy or a concept of stop-

ping conditions, are subject to further studies.

4.1 HMS extended with insensitivity region
approximation

The HMS is a complex stochastic strategy consisting of a

multi-deme evolutionary algorithm and other accuracy-

boosting, time-saving and knowledge-extracting tech-

niques, such as gradient-based local optimization methods,

dynamic accuracy adjustment, sample clustering and

additional evolutionary components equipped with a MWS

operator aimed at the discovery of insensitivity regions in

the objective function landscape (see e.g. [47, 57] and the

references therein).

The HMS sub-populations (demes) are organized in a

parent-child tree hierarchy. The number of hierarchy levels

is fixed but the degree of internal nodes is not. Each deme

is evolved by means of a separate single-population evo-

lutionary engine with a finite genetic universum such as

SGA or MWEA.

In a single HMS global step (a metaepoch) each deme

runs a prescribed number of local steps (genetic epochs).

After each metaepoch, a change in the deme tree structure

can happen: some of the demes that are not located at the

maximal level of the tree can produce child demes through

an operation called sprouting. It consists in sampling a set

of points around the parent deme’s current best point using

a prescribed probability distribution: here we use the nor-

mal distribution. The sprouting is conditional: we do not

allow sprouting new children too close to other demes at

the target HMS tree level. HMS typically starts with a

single parent-less root deme. The maximal-level child-less

demes are called leaves. The evolutionary search per-

formed by the root population is the most chaotic and

inaccurate. The search becomes more and more focused

and accurate with an increasing tree level. The general idea

is that the higher-level populations discover promising

areas in the search domain and those areas are explored

thoroughly by the child populations. It is then the leaves

that find actual solutions.

The well-tuning of the entire strategy is achieved by

having well-tuned lower-level demes. However, the high-

level demes can, and even should not be well tuned,

maintaining good exploratory characteristic.

The hierarchic structure of the HMS search is especially

effective if the computational cost of objective evaluation

strongly decreases with its accuracy, which is typically the

case when solving Inverse Parametric Problems (IPPs)

[14].

The results of such global phase are then transferred to

the MWEA. Each deme from the highest level of the HMS

hierarchy is treated as a cluster. We merge neighboring

clusters using the hill-valley rule, i.e., we ascertain that

there is no hill separating the two clusters to be merged
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[61]. Such merged clusters are input to the MWEA, which

raises their local diversity.

In this case, MWEA is well-tuned not to obtain best

objective values, but to concentrate its sampling measure

on the lowlands. Such concentration allows the next stage,

local approximation, to determine the boundaries of the

lowlands.

The next stages, not included in the formal model,

consist in designing the local objective approximation for

each set of individuals eQi, where i is the identifier of an

MWEA population, with the methods described in [47].

We prepare the Lagrange 1st order splines on a tetrahedral

grid spanned over the eQi points with the Delaunay’s

algorithm. Next, this function is mapped onto the space of

2nd order B-splines spanned over a regular polyhedral grid

using either L2 or H1 projection. Both types of projections

result in C1 smoothness of the local objective representa-

tion. We compare the two projections to the kriging

approximation [24]. Let us denote by ef i the local approx-

imation of the objective associated with the set of indi-

viduals eQi.

Finally, the level set of ef i, taken at a sufficiently low

level with respect to the local minimum encountered, is

taken as the approximation of the insensitivity set com-

ponent, associated with each set of individuals eQi.

4.2 HMS model basic notions

Now, let us recall some notions from [51] used to build the

HMS formal model. The model was formulated for the

HGS but the HMS inherits its main structural features from

the predecessor.

• a family of m 2 N genetic universa Ui with card ðUiÞ ¼
ri 2 N for i ¼ 1; . . .;m;

• an associated family of encoding operators

code i : Ui ! D ð24Þ

featuring the progressive increase of the search accu-

racy, i.e.,

riþ1 ¼ di ri; i ¼ 1; . . .;m� 1; ð25Þ

for some di 2 N describing the increment rate in the

search accuracy between Ui and Uiþ1;

• the following sequence of inheritance onto mappings

inherit i : Ui ! Ui�1; i ¼ 2; . . .;m ð26Þ

and sets

Uijn ¼ð inherit iÞ�1ðnÞ
¼ f 2 Ui : inherit iðfÞ ¼ nf g; n 2 Ui�1;

ð27Þ

where we assume that

card Uijn
� 	

¼ di�1 for n 2 Ui�1; i ¼ 2; . . .;m;

Uijn \ Uijf ¼ ; for n 6¼ f;

ð28Þ

• a family of probability distributions r0 2 MðU1Þ and

rni 2 MðUiþ1Þ for n 2 Ui, i ¼ 1; . . .;m� 1 such that

rni Uiþ1jn
� 	

¼ 1;

used for sampling initial populations in demes.

• the family of fitness functions

fi : Ui ! Rþ; ð29Þ

e.g., fi ¼ f � code �1
i � f ðxminÞ; since Ui is finite we

can identify fi with the vector of its values indexed by

n 2 Ui;

• deme state spaces X1 ¼ Xr1
l1

,. . ., Xm ¼ Xrm
lm

with popu-

lation sizes l1; . . .; lm; at HMS tree levels 1; . . .;m;

• lengths of ‘‘metaepochs’’ kstep1; . . .; kstepm 2 N;

• one-step transition matrices Qi 2 ½0; 1
sðri;liÞ�sðri;liÞ gov-

erning the deme evolution, cf. (5), (22), (23); obviously,

the respective metaepoch transition matrices are Qkstepi
i ;

• the probability pprune 2 ½0; 1
 of pruning one of stopped

branches of the root;

• a family of local efficiency stopping conditions of type

described in [51], i.e., a family of positive thresholds

lsc i such that the probability of stopping a deme

evolution after executing a metaepoch in a deme state

x 2 Xi is given by

SiðxÞ ¼ 1 �
X

x02Xi

Qkstepi
i

� 	

x;x0
fi; x� x0
� �

� lsc i

� 

;

ð30Þ

where ½�
 is the Iverson bracket, i.e., and ð�; �Þ is the

standard inner product in Rri ;

• a family of proximity relations

Ci � Ui � Xiþ1 ð31Þ

meaning that ðn; xÞ 2 Ci if an individual n 2 Ui is close

enough to a deme with population vector x 2 Xiþ1.

In the sequel we shall use the following functions:

b i : X
i 3 x7!min g 2 Ui : x

g [ 0; fiðgÞ� fiðfÞ
�

for f 2 Ui such that xf [ 0
�
2 Ui

ð32Þ

that selects the best individual from the population x that

has the minimal genotype according to any fixed ordering

in Ui. We shall also use a kind of neighborhoods (prox-

imity sets) related to the proximity relation:

300 J. Sawicki et al.

123



CiðnÞ ¼ x 2 Xiþ1 : ðn; xÞ 2 Ci

� �
: ð33Þ

A particular example of proximity relation (31) that is

useful in practice can be found in [51].

4.3 HMS tree

The HMS populations form a hierarchy represented here by

m-level undirected graph

HMSTREE ¼ hV ;E;Fi:

The vertices V correspond to HMS populations (demes),

the edges E follow the parent-child relation between pop-

ulations. In our formal model we assume that this graph

shows all the possible populations and does not change

over time. Operations that in practice create new demes

(i.e., the sprouting) here simply activate an available one.

Similarly, the deme destruction (in the pruning) is here

replaced with the deactivation. The number of children of

each node can be different for different levels but at each

level it is a constant ki (i ¼ 2; . . .;m). For the uniformity we

set k1 ¼ 1. The labeling

F : V ! Nm

encodes the path from the root to a given node. Namely, let

us take the set of admissible deme numbers at the tree level

i

Ki ¼ f1; . . .; kig

and define

K1 ¼ fj0g ¼ fð1; 0; . . .; 0|fflfflffl{zfflfflffl}
m�1times

Þg;

Ki ¼ fð1; j2; . . .; ji; 0; . . .; 0|fflfflffl{zfflfflffl}
m�itimes

Þ : jj 2 Kj; j ¼ 2; . . .; ig for i� 2;

Km ¼ fð1; j2; . . .; jmÞ : jj 2 Kj; j ¼ 2; . . .;mg;

K ¼
[m

i¼1

Ki � Nm;

Kpar ¼ K n Km ¼
[m�1

i¼1

Ki:

ð34Þ

Here, K is the domain of all labels (i.e., the image of F), Ki

is the set of labels of i-level demes, Kpar is the set of

parental deme labels and Km is the set of leaf deme labels.

In the sequel we shall use two auxiliary functions len :
K ! f1; . . .;mg returning the length of a path j 2 K, i.e.,

the level of the deme with label j, and prefix i : K ! K

returning the length-i ‘‘prefix’’ of j. Namely

len ðjÞ ¼ max l 2 f1; . . .;mg : jl [ 0f g

prefix iðjÞ ¼ j1; . . .; ji; 0; . . .; 0ð Þ 2 Kminfi; len ðjÞg:
ð35Þ

The root is obviously the unique node for which

len ðjÞ ¼ 1. Furthermore, for each parental node j 2 Kpar

(i.e., such that len ðjÞ\m) we can introduce the set of child

node indices Ij

Ij ¼ j 2 K len ðjÞþ1 : prefix len ðjÞðjÞ ¼ j
n o

: ð36Þ

In the sequel we shall also make use of the set of all

descendants of j together with j, i.e.,

I�
j ¼ j 2 K : prefix len ðjÞðjÞ ¼ j

n o
. ð37Þ

4.4 The HMS state space

First, note that the HGS model differs from the one pre-

sented in [51] in some points. To make the structure more

flexible we have added a pruning operation. The latter

consists in deactivating a stochastically selected sub-tree

that was previously stopped, i.e., it exhausted its search

capabilities. The pruning operation is already used in the

computational practice and provides a probabilistic way to

stop ineffective computations. In this manner it also

enables us to prove the ergodicity of the whole strategy.

The overall state of the algorithm is determined by the

states of all active and potentially active demes. All such

demes are one-to-one related to nodes of the HMSTREE

structure described in Sect. 4.3, hence they are also one-to-

one related to the node indices, i.e., the elements of K. The

state of a particular deme with label j 2 K is determined by

its frequency vector x 2 X len ðjÞ. Moreover, each non-root

deme has a status indicator that can have one of values

sj 2 finactive; new; active; stoppedg. The root deme can

only have status active or stopped.

At the beginning the only active deme is the root, all the

other are set as inactive. An initial population of the root

deme is generated by sampling with return from U1

according to a given probability distribution.

Below we summarize the meaning of the status values.

• A deme is inactive if it has not been activated yet by the

sprouting operation or was pruned previously. To make

it entirely formal, we assume that the deme vector of

each inactive deme at the level i has a fixed arbitrary

value from Xi. This assumption affects neither the

formal analysis nor the computational results in any

way.

• A deme j is new if it has just been sprouted by its

parental deme. A new deme cannot sprout another

deme. The population of the new deme is sampled
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according to a given distribution, hence the population

vector is set appropriately to a specific value (the initial

setting is removed). The status changes from new to

active or stopped after having executed the deme’s first

metaepoch. In order to perform the sprouting the

parental deme has to be active in at least one of the

previous steps.

• A deme is active if it was new or active in the previous

metaepoch and the stopping condition is not satisfied.

• A deme is stopped if the efficiency stopping condition

is satisfied currently or was satisfied in the past, and the

deme has not been pruned yet. In the case of a parental

deme the status is also set to stopped when all its child

demes have been activated (i.e., they have status active

or stopped). Such a situation appears very rarely in the

computational practice. The deme marked stopped once

either stays stopped up to the end of computation and

does not change its deme vector, or can be pruned with

some positive probability.

Note that there are some relations among node status val-

ues and not all sequences of status values are possible.

First, the HMS tree develops from the root towards leaves,

hence if a deme is inactive, then all its descendants must

bear the same status, i.e.,

sj ¼ inactive ) sj ¼ inactive for j 2 I�
j :

This condition is naturally preserved by the pruning oper-

ation (cf. Algorithms 2–4). Second, the root is stopped if

and only if all its children are not inactive.

Summing up, the HMS state space can be described in

the following way:

X ¼
��

ðsj; xjÞ
	

j2K
: xj 2 X len ðjÞ; sj0 2 factive; stoppedg;

sj 2 finactive; new; active; stoppedg for j 6¼ j0;

sj ¼ inactive ) sj ¼ inactive for j 2 I�
j ;

sj0 ¼ stopped , sj 6¼ inactive for j 2 Ij0

�
:

ð38Þ

Note that an HMS state is a vector indexed by the elements

of HMSTREE. Each component of this vector has in turn

two sub-components: a deme population vector xj and a

deme status sj. Note also that X is finite provided all genetic

universa Ui are finite.

In the sequel we shall also need the following subsets of

child node labels for j 2 K computed in a strategy state

x 2 X.

Iin
j ðxÞ ¼ j 2 Ij : sj ¼ inactive

� �
;

Iasn
j ðxÞ ¼ Ij nIin

j ðxÞ;

Is
j ðxÞ ¼ j 2 Ij : sj ¼ stopped

� �
:

ð39Þ

Iin
j ðxÞ is the set of labels of nodes that are active in state

x 2 X, Is
j ðxÞ is the set of stopped node labels and Iasn

j ðxÞ
is the set of labels of nodes that are active, stopped or new.

We shall also use the function returning the label of the

inactive child of j that has the minimal number

mind : X � Kpar 3 ðx; jÞ �! arg min
j2Iin

j ðxÞ
j len ðjÞþ1 2 K:

ð40Þ

4.5 Algorithmic details

In this subsection we shall provide a detailed description of

particular algorithms used in the HMS. It is based on the

one presented in [51] but here we provide some clarifica-

tions and noteworthy modifications.

First of all, let us note that the strategy can be highly

parallelized: the demes (sub-populations) can be evolved in

parallel with some well-defined synchronization points.

Moreover, the HMS structural operations (sprouting and

pruning) can also be parallelized to some degree. There-

fore, we shall formulate the overall strategy as three types

of algorithms that are run concurrently: the root deme

algorithm, the mid-level deme algorithm and the leaf deme

algorithm. The latter two differ only in that the leaves do

not perform actions related to children management.

We assume that in the initial state of the strategy, all

demes except the root are inactive and the root itself is set

to be active, i.e.,

x0 ¼ �sj; �xj
� �� �

j2K

with sj0 ¼ active and sj ¼ inactive for j 6¼ j0:The follow-

ing auxiliary functions will be used as primitive building

blocks of the algorithms presented in the sequel. They are

explained here without details.

• —samples with return k times according

to a probability distribution r.

• —selects an element from list with the

even probability.

• —returns indi-

ces of the children of deme, i.e. the elements of Ideme, that

have either of provided statuses (see (36)).

• —runs a metaepoch for

the current deme, i.e., evolves population according to the

transition matrix Qksteplevel
level .
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• —checks the global stopping

condition.

• —checks the local stopping

condition for deme.

Moreover, the algorithms use the functions b i and mind

introduced above, see (32) and (40), respectively.

The deme synchronization is based here on message-

passing primitives. Namely we use two following

operations:

• —a non-blocking operation of

sending message to another deme;

• —a blocking operation of

receiving message from another deme.

When there is a need to receive or send an object along

with a message we use the overloaded functions

and

. The realization of and

is a classical problem: their implementation can

make use of, e.g., message queues.

Algorithm 2 shows the activity of the root deme. First,

an initial population is sampled according to the distribu-

tion r0. Then, the main event loop is started. Its first stage

is the execution of metaepochs in admissible subtrees fol-

lowed by the execution of a metaepoch in the root itself.

Note that during the first run of the loop there are no

admissible subtrees, i.e., all children of the root are inac-

tive. After the receipt of messages signaling metaepoch

finishing the root checks the proximity of the best current

individual to feasible children’s populations, initiates the

sprouting in admissible subtrees and, if possible, sprouts a

new branch from the current best individual. The com-

pletion of the sprouting in the subtrees is followed by the

stochastic pruning of a stopped subtree. The decision of

pruning is taken with probability pprune: note that Bi-

nom(n, p) denotes the binomial distribution with parame-

ters n and p. If the decision is positive, we select one of

stopped children of the root and prune it, i.e., deactivate the

children and all its successors. After the finish of the

pruning the root checks if there are some inactive children.
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If not, the root status is set to stopped, otherwise it is set to

active. The final stage of the loop is the evaluation of a

global stopping condition of the whole strategy. If the latter

is satisfied, the computations are finished and all the demes

are halted in the appropriate order. Otherwise, the loop

proceeds to the next run.
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Next, let us consider a mid-level deme activity shown in

Algorithm 3. After the initialization of the deme status and

a loop control variable, the mid-level deme starts an event

loop that consists of handling orders sent by the parent

deme. The following order types are handled.

• ACTIVATE—the deme is initialized, i.e., its population

is sampled according to the distribution rseed
len ðjÞ�1

and the

deme status is set to new.

• PRUNE—the deme gets deactivated along with all its

children.

• FINISH—the deme halts its computations and passes

the message to all its children.

• RUNMETA—the deme passes the message to all its children

and then runs its own metaepoch if its status is newor active;

afterwards, the deme waits for the READY responses from

all their children that signal the end of the children-deme

metaepochs; subsequently, the local stopping condition is

checked, which can change appropriately the deme status;

finally, the READY message is sent to the parent.

• ISCLOSE—the deme checks if an individual sent from

the parent is close to the current population, cf. (31).

• RUNSPROUT —if the deme’s children are not leaves

they are requested to perform the sprouting; then, if the

deme is active it performs the sprouting itself; next, it

waits for the finish of the sprouting in the children; if

there are no inactive children, the deme status changes

to stopped; finally, the deme acknowledges the parent

about the completion of the sprouting.

Finally, the activity of leaf demes is presented in Algo-

rithm 4. Note that it is a simplified version of Algorithm 3

that omits all operations related to child management. To

state it clearly, the event handling in leaves looks as follows.

• ACTIVATE —the population is sampled according to

the distribution rseedm�1 and the deme status is set to new.

• PRUNE —the deme simply gets inactive.

• FINISH—the deme halts the evolution.

• RUNMETA—the deme runs its metaepoch if its status is

new or active; afterwards, the local stopping condition

is checked, which can change appropriately the deme

status; finally, the READY acknowledgment is sent to

the parent.

• ISCLOSE —the deme checks if an individual sent from

the parent is close to the current population, cf. (31).

4.6 Transition operators related to HMS steps

The vast part of this subsection is a simplified version of

the description provided in [51]. For the full details we

refer the reader there. Note that the model presented in [51]

uses the agent-based framework, hence such notions as

‘‘action’’ arise therein naturally. To highlight the corre-

spondence between the current model and the older one we

preserve the basic terminology, at the same time not

retaining agents themselves. Therefore, in the sequel ‘‘ac-

tion’’ has exactly the same meaning as ‘‘operation’’.
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4.6.1 General structure of operators

An HMS action a is here represented as a pair of functions

da; #að Þ. The first of them

da : X ! ½0; 1
 ð41Þ

is the decision function. It computes the probability of

choosing the action a in state x 2 X, i.e., a is run with

probability daðxÞ and rejected with probability 1 � daðxÞ.
The state transition function

#a : X ! MðXÞ ð42Þ

defines a non-deterministic state transition resulting from

the execution of a: #aðxÞðyÞ gives the probability of

changing state from x to y as the result of a. A trivial yet

important example of such an action is the no-op (do-

nothing action) denoted here null. Its state transition

function is the Kronecker delta, i.e.,

#nullðxÞðyÞ ¼
1 if x ¼ y

0 otherwise:

�
ð43Þ

The overall Markov kernels related to any action a can be

computed using the chain rule. It has the following form.

.aðxÞðyÞ ¼ daðxÞ � #aðxÞðyÞ þ 1 � daðxÞð Þ � #nullðxÞðyÞ:
ð44Þ

The first term on the right-hand side is connected to the

state transition when the decision of executing a is positive.

The second term represents the case of the rejection of a
when in fact we do not perform any state transition.

In the sequel we show decision functions and state-

transition functions for the following non-trivial action

types:

• metaepoch actions metaj : j 2 K
� �

available for all

demes;

• sprouting actions sproutj : j 2 Kpar
� �

defined only for

the parental demes;

• pruning action prune available for the root deme.

4.6.2 Metaepoch operators

Now let us recall the stochastic operators for the metaj
action. To this end let us consider two consecutive states

x; y 2 X appearing during the HMS computation. We will

denote by ðsj; xjÞ the components of x and by ðtj; yjÞ the

components of y.

The decision function for the root deme j0 is given by

the following formula

dmetajðxÞ ¼
1 if sj0 ¼ active;

0 otherwise:

�
ð45Þ

For lower-level demes j 2 K n K1 the decision function has

the form

dmetajðxÞ ¼
1 if sj ¼ active or sj ¼ new;

0 otherwise:

�
ð46Þ

Now let us proceed to the state transition function for

metaj. To this end denote i ¼ len ðjÞ. Then we have

#metajðxÞðyÞ

¼ Qkstepi
i

� 	

xj;yj

�

SiðxjÞ fi;xj� yj
� �

\ lsc i

� 

if tj ¼ stopped and

sj ¼ tj;xj ¼ yj for j 6¼ j;

ð1�SiðxjÞÞ fi;xj� yj
� �

� lsc i

� 

if tj ¼ active and

sj ¼ tj;xj ¼ yj for j 6¼ j;

0 otherwise.

8
>>>>>><

>>>>>>:

ð47Þ

4.6.3 Sprouting operators

First let us introduce the following family of stochastic

functions:

Ti : Xi �! MðXiþ1Þ; i ¼ 1; . . .;m� 1; ð48Þ

where TiðxÞ is the distribution of liþ1-times sampling with

return from Uiþ1 according to the distribution r b iðxÞ
i . To

simplify the formulae defining operators let us introduce

another auxiliary function

a : X � Kpar 3 ðx; jÞ �! cardIin
j ðxÞ 2 N;

Using the above-defined notions we can formulate the

decision function for the sprouting in demes j 2 Kpar

dsproutjðxÞ¼
1 if sj¼active and b iðxjÞ;xj

� �
62Ci for j2Iasn

j ðxÞ;
0 otherwise

�

ð49Þ

Similarly we obtain the following form of the state-tran-

sition function for the sprouting.

#sproutjðxÞðyÞ ¼

T len ðjÞðxjÞðymind ðx;jÞÞ if

��
zj ¼ active and aðx; jÞ[ 1

�
or

�
zj ¼ stopped and aðx; jÞ ¼ 1

��
and

tmind ðx;jÞ ¼ new and

sj ¼ tj; yj ¼ xj for j 6¼ mind ðx; jÞ;
0 otherwise.

8
>>>>>>>>>><

>>>>>>>>>>:

ð50Þ

4.6.4 Pruning operator

Now, let us proceed to the pruning operator. Note that this

definition cannot be found in [51] because the model
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presented in that paper does not include the pruning. The

decision function in our case has the following form.

dpruneðxÞ ¼
pprune if Is

j0ðxÞ 6¼ ;;
0 otherwise:

�
ð51Þ

The state transition function can be expressed as follows

#pruneðxÞðyÞ ¼
1

card Is
j0ðxÞ

� 	 if y 2 PBjðxÞ for some j 2 Is
j0ðxÞ;

0 otherwise

8
><

>:

ð52Þ

where

PBjðxÞ ¼ y 2 X : tj ¼ inactive; yj ¼ xjf

for j 2 I�
j ; tk ¼ sk; yk ¼ xk for k 62 I�

j

o

4.7 The transition probability function
for the whole HMS

First, let us recall that the superposition of two Markov

kernels

.1; .2 : X ! MðXÞ; ð53Þ

can be computed using the total probability law:

.2 � .1ðxÞðyÞ ¼
X

u2X
.1ðxÞðuÞ .2ðuÞðyÞ: ð54Þ

In [51] we showed that if two actions a1, a2 are either both

metaepoch actions or both sprouting actions their kernels

commute, i.e,

.a1
� .a2

¼ .a2
� .a1

;

which means that the outcome of the actions’ execution is

independent upon their order. Therefore, as in Algo-

rithms 2–4 they can be safely run in parallel.

The Markov kernel for the whole metaepoch step smeta :
X ! MðXÞ is the superposition of single-deme metaepoch

Markov kernels .metaj for all demes j 2 K:

ð55Þ

Note that according to what has been written above the

superposition in (55) does not depend on an order of labels

in K. Similarly, the Markov kernel for the sprouting step

ssprout : X ! MðXÞ is the superposition of single-deme

Markov kernels .sproutj for all parental demes j 2 Kpar.

Therefore

ð56Þ

Here, again, the superposition is not sensitive to deme

ordering.

The synchronization scheme used in Algorithms 2–4

divides each global step of the HMS into three subsequent

stages: the metaepoch stage, the sprouting stage and the

pruning stage. Therefore, the transition function for the

whole strategy s : X ! MðXÞ is the superposition of the

respective Markov kernels, i.e.,

s ¼ .prune � ssprout � smeta: ð57Þ

4.8 HMS asymptotic analysis

In this subsection we consider an important asymptotic

property of the whole strategy, i.e., its ergodicity, which

can be understood as the guarantee of success, in the sense

that if a complex dynamical system as HMS can reach any

of its states in a finite number of steps, it can end up in any

desired state in finite time.

Theorem 1 Assume that for every i ¼ 1; . . .;m

ðH1
stopÞ: the stopping conditions (30) are not trivial,

i.e., the genetic universa Ui, the fitness

functions fi and the thresholds lsc i are such

that for each x 2 Xi we have

0\ Pr y 2 Xi : fi; x� y
� �

\ lsc i

� �
\1;

ðH2
stopÞ: the global stopping condition is trivial, i.e., it

cannot be satisfied;

ðHevoÞ: the evolution in each deme is an ergodic

Markov chain such that the metaepoch

transition matrix Qkstepi
i is positive;

ðHpruneÞ: the pruning is probable but not certain, i.e.,

0\pprune\1;

ðH1
proxÞ: the proximity relations Ci are not trivial, i.e.,

for every n 2 Ui

ðH2
proxÞ: the proximity relations Ci are such that the

sprouting is always possible provided not all

child indices are used, i.e., for every k\ki,

j 2 Ki and every n1; . . .; nk 2 Ui
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Then the Markov chain with transition function (57) is

ergodic.

Proof To prove the ergodicity of the considered chain we

need to show its irreducibility and aperiodicity.

Recall that the irreducibility means that any two states

x; y 2 X communicate, i.e., we can pass from x to y in a

finite number of steps with positive probability. The proof

shall proceed by showing that all elements of X are

reachable from x0 and that x0 is reachable from any other

state.

Let us start with the second claim. Let x be an arbitrary

state. First observe that if the root has some children that

are not inactive (i.e., they are new, active or stopped) any

of them can be deactivated by means of the pruning

operation in the following sequence of steps:

1. If it is new or active We execute a metaepoch (and

possibly the sprouting) such that the local stopping

condition gets satisfied and the status changes to

stopped;

2. We prune the stopped child.

Step 1 has positive probability because it is a chain of

positive-probability events. Namely, thanks to assumption

ðHevoÞ we can pass between arbitrary elements of Xi in one

metaepoch with positive probability and thanks to

assumption ðH1
stopÞ, the probability that the reached popu-

lation satisfies the local stopping condition is also positive.

After the completion of step 1 the probability of running

the pruning action is positive, see (51), and the probability

of selecting the considered child is also positive, see (52).

Therefore, the chain rule implies that the deactivation of

the child deme in a finite number of steps has a positive

probability.

Next, observe that, as long as there are the root’s

children that are not inactive, with positive probability we

can repeatedly prune stopped demes without sprouting any

new children between two subsequent deactivations. This

means that the event of not sprouting a new deme after

pruning a stopped one has the positive probability provided

there are not-inactive children of the root. But thanks to

assumptions ðHevoÞ and ðH1
proxÞ this is a positive-probability

event: a metaepoch in the root ending up with the best

individual that falls close to any of not-inactive children.

This way, with positive probability we can prune all-

but-one children of the root. The next step is that we evolve

the root finishing in xj0 at the same time pruning the last

child. Such an event has a positive probability as well due

to assumptions ðHevoÞ, ðHpruneÞ and ðH2
stopÞ. Therefore, we

have shown the way to pass from an arbitrary state x 2 X to

x0 in a finite number of steps with positive probability.

To proceed the opposite way, take an arbitrary x 2 X

and consider the following chain of possible events:

1. We start in x0 evolving the root in such a way that we

sprout the number of children that equals the maximal

child number at level 2 in x,

2. We proceed the same way at lower levels at the same

time pruning the branches that are inactive in x,

3. We evolve the not-inactive branches to reach the same

status and population as in x.

The above events have positive probability thanks to our

assumptions, which shows that we can pass from x0 to x

with positive probability.

To conclude the proof, we need to prove the aperiodicity

of the chain, which, thanks to the irreducibility, is

equivalent to the aperiodicity of any of its states. To this

end, take x 2 X such that sj ¼ stopped for all j 2 K. Then

no sprouting is possible because all demes are busy and no

deme evolution occurs because all demes are stopped.

Hence, as long as the pruning does not happen, which has

positive probability thanks to ðHpruneÞ, the state does not

change, which means that x is aperiodic. h

Remark 9 Assumption ðHevoÞ is satisfied for both SGA

with positive mutation and MWEA (see Sects. 2 and 3).

Remark 10 For some natural proximity relations assump-

tions ðH1
proxÞ and ðH2

proxÞ reduce to geometric constraints on

the neighborhoods Ci with respect to the computational

domain. This is, e.g., the case of proximity relation defined

in [51] where the neighborhoods are discretizations of balls

in Rn that must have sufficiently small diameters in order to

satisfy ðH2
proxÞ.

5 Illustrative examples

The essential, qualitative results of this paper are presented

in the preceding sections. Here, we mean to present in

action the strategies which are supported by these formal

postulates. We have carefully chosen these simulations

from our previous publications [47, 48], refining their

results.

In particular, we will show two benchmark cases, fol-

lowed by an engineering example. The first benchmark will

use a fitness function with 4 non-convex regions of

insensitivity. We will show how particular stages of the

algorithm up to the local approximation work on this

example. The second will use a fitness function with sim-

ilar features, but with more regions of insensitivity—we

present a comparison based on metrics for this case. In both

benchmarks insensitivity regions and their approximations

are constructed as level sets with cutoff 0.1, i.e. subsets of
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the domain where the objective function (or its approxi-

mation) assumes values less than 0.1. We will finish with

the engineering example from the domain of underground

hydrocarbon prospecting.

5.1 Benchmark with 4 regions of insensitivity

The first example consists in finding the shapes of the four

insensitivity regions, which objective function is shown in

Fig. 4 on the left, and it is meant to present the mechanics

of the strategy. The strategy is composed of the global

phase and the local phase with MWEA. In the global phase

we use HMS-CMA-ES [46], and compare it with NEA2

[38]. The former is supported by the Markov analysis we

presented earlier in the paper, and the latter is a state-of-

the-art algorithm dedicated to multimodal problems. For

more details about the objective function and the configu-

ration, see [48, Sect. 3.1].

We show the results of running both variants of the

strategy in Fig. 5. In the first row, there are clusters

returned by the global phases. HMS-CMA-ES produces

more focused samples, which better identify the lowlands.

The clusters laying in the same basins of attraction, based

on the hill-valley rule, are in the second row. For NEA2,

this operation results in clusters that do not separate low-

lands. In the final row, we show MWEA demes popula-

tions. For HMS-CMA-ES clusters, MWEA explores the

neighborhoods of the lowlands, possibly allowing shape

approximation, maintains separation and reducing overall

number of evaluations. However, MWEA does not handle

NEA2 clusters well: although lowland neighborhoods are

explored, the lowlands are not separated, and it results in

expendable objective evaluations.

5.2 Benchmark with 25 regions of insensitivity

Here, we present how the two variants of the strategy

(NEA2 and HMS-CMA-ES based) perform on a bench-

mark with more lowlands, compared to the previous case.

Fig. 4 The plots of the first and

the second benchmark functions

in their domains [48, Fig. 1]

Fig. 5 The strategy steps visualised for NEA2 and HMS-CMA-ES

global phase [48, Fig. 2]. Steps are presented in consecutive rows:

clusters after the global phase, clusters after reduction and points

obtained by MWEA. The clusters from the first row are not

exhaustive to keep the plots readable. Each cluster is shown with a

different mark type and the solid lines are 0.1 isolines of the fitness

function
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We show its objective function in Fig. 4 on the right. In

this example, we perform calculations with evaluation

budget varying from 2000 to 10000. After its exhaustion,

the global phase is stopped and only the local phase con-

tinues, see [48, Sect. 3.2].

Figure 6 displays the results of the global and local

phases. On the graphs, three metrics are shown in function

of the budget: number of clusters after the global phase,

after reduction and the ratio of covered regions. For a well-

tuned strategy, we expect the number of clusters to reflect

the number of lowlands, especially after the reduction. The

higher the region coverage ratio, the better. Unfortunately,

the NEA2 features indicated in the previous example make

it ineffective at identifying a larger number of lowlands —

the non-separated clusters are merged into a single one.

HMS-CMA-ES fares much better in that regard, yielding

also a higher region coverage ratio.

We also compare the quality of the lowland shape

approximation with different methods: kriging, L2-projec-

tion and H1-projection. In Table 1 we collect Hausdorff

distances of the approximations from the exact lowlands.

Kriging achieves the best accuracy, with L2-projection

closely behind. The samples obtained from using NEA2

prevent obtaining good approximations for any approxi-

mation algorithm.

For illustration, we present an example of the shape

approximations for different approximation and global

phase algorithms in Fig. 7. The approximations resulting

from HMS-CMA-ES are better than NEA2 in general, and

deficiency of the H1-projection is evident.

5.3 Engineering example

The magneto-telluric (MT) method [10, 63] is a geophys-

ical prospecting method which is used to determine the

resistivity distribution in the Earth crust. It exploits the

telluric currents induced by the solar wind, modeling the

electromagnetic field. The underground formation influ-

ences these currents, which in turn are measured indirectly

by antennae placed at the surface of Earth or its seafloor.

This feature makes it possible to invert such measurements

to obtain the unknown resistivity distribution. Being clean

and inexpensive, it has been applied for different purposes,

such as mapping of active faults [29], the study of volca-

noes [21], and exploration of offshore hydrocarbons [66].

Figure 8 describes the selected Earth model for the MT

problem. The computational domain consists of air and a

1D layered media where a 2D heterogeneity (grey rectan-

gle) is embedded in one of the layers. The blue rectangle

corresponds to the natural source in the ionosphere, while

the red triangles correspond to the receivers at the Earth’s

surface. The physical domain is truncated with a Perfectly

Matched Layer (PML) complemented with a Dirichlet

homogeneous border condition imposed on its outer part,

and hp�FEM solves the problem, see [2] and [57, Sect. 3]

for more details.

The task is to identify the resistivities of the subsurface

regions presented in Fig. 8. We take the computation

domain of the problem D ¼ ½0; 6
4, to be able to apply

HMS. The points from the computation domain are map-

ped to the resistivities by a function .

The resistivities depend on the type of subsurface

region. Example approximate values of resistivities are:

water 1Xm, rock 1000Xm, oil 20Xm, shale 5Xm.

We calculate the misfit for a single wave frequency

m1 ¼ 10�1:2 Hz. Such a choice ensures sufficient penetra-

tion of the waves into the subsurface (in terms of depth)

while maintaining resolution, see, e.g. [63].

In this case, in the global phase we only used HMS. For

configuration and other details, see [47, Sect. 3.4].

The best misfit values in most of the demes fluctuate

around 10�11 and the median is around 10�9, which misfit

level is comparable to results obtained when solving sim-

ilar problem in [57]. In Fig. 9, all points from the local

phases are shown. An insensitive region in x4 dimension is

clearly visible.

Some of the demes returned from the global phase

contained individuals, which were within the range 0.3 in

the 4D space from the real resistivity parameter vector,

which was around the best achieved distance. In particular,

the solution with best approximation of the q3 value, that

also had the misfit of a degree 10�10, was within 10�3 of

Fig. 6 Metric values for NEA2

and HMS-CMA-ES variants in

the second case. The data points

are shown for budgets ranging

from 2000 to 10000 evaluations.

Each point is an average of the

metric value for 10 runs of each

configuration. The error bars

depict the maximum and the

minimum value among these 10

runs
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the real q3 value. So, the extracted clusters, which we

created based on demes, inherited information about the

subregion which may contain oil. However, such evalua-

tion is an a posteriori claim. Because of the ill-condition-

ing, we cannot distinguish which points with good misfit

Table 1 Average Hausdorff

distances between the exact sets

of insensitivity and their

approximations [48, Tab. 1]

Algorithm Budget L2-projection H1-projection Kriging

NEA2 2000 1:372 
 0:13 1:910 
 0:35 1:313 
 0:07

4000 1:369 
 0:12 1:766 
 0:18 1:315 
 0:11

6000 1:390 
 0:11 1:707 
 0:18 1:315 
 0:10

8000 1:395 
 0:08 1:797 
 0:18 1:309 
 0:06

10000 1:319 
 0:09 1:746 
 0:21 1:322 
 0:07

HMS-CMA-ES 2000 1:382 
 0:16 1:761 
 0:19 1:056 
 0:11

4000 1:062 
 0:09 1:746 
 0:15 0:797 
 0:05

6000 0:939 
 0:14 1:781 
 0:11 0:664 
 0:07

8000 0:907 
 0:13 1:700 
 0:16 0:610 
 0:08

10000 0:940 
 0:15 1:770 
 0:20 0:640 
 0:09

(a) (b)

Fig. 7 Each graph presents contours of the insensitivity region generated by approximation methods compared to the exact contour [48, Fig. 4].

We show L2-projection, H1-projection and kriging methods

Fig. 8 The domain of the MT computation [47, Fig. 4]

Fig. 9 MT local phase test, a combined sample from all the LBA runs

[47, Fig. 5]. Selected dimensions are plotted, including misfit and a

projection of points with misfit below 10�10 in gray

Understanding measure-driven algorithms solving irreversibly ill-conditioned problems 311

123



values correspond to the real resistivity parameters, how-

ever, the real parameters can be extracted with further

informed analysis of the lowland regions.

As a reference solution for the assessment of the local

phase, we use an approximation based on evaluations

gathered from multiple MT experiments (over 80,000

evaluations with different precision levels, 2000 chosen to

cover the domain with the highest available precision

solutions). For this test, we have identified 30 individual

lowland regions by computing a level set of such an

approximation of misfit, one of which contained the real

resistivity parameters vector.

The statistics of the approximation errors for all the

LBAs are presented in Table 2. Moreover, for each LBA,

we calculate two dedicated coverage metrics, shown in

Table 3. For each LBA, we determine the points which lie

within the obtained lowland approximation (with either L2

projection, H1 semi-projection, or kriging), let us call them

approximation points.

Firstly, we verified if each LBA covered the real resis-

tivity parameters vector by checking if any of its approx-

imation points lies within the distance 0.3 from the vector.

Then, we calculated the percentage of the runs, that had

such an LBA, and we show its values under name coverage

of real parameters (column 2, Table 3).

For calculating the second metric we use the reference

points, which are inside a particular reference lowland.

Then, for each reference lowland we calculate how well the

approximation points cover it, which is done by checking if

a point from the reference lowland lies within the distance

0.1 from an approximation point. The lowland coverage

equals to the percent of the reference points covered. The

best lowland coverage is then the best coverage from the

30 reference lowlands (column 3, Table 3).

Kriging achieves the best lowland coverage in these

results, but the results are too uncertain to make stronger

claims.

6 General conclusions

1. The stochastic population-based search with a dynamic

sampling measure adaptation, that can be modeled as a

stationary Markov chain, might be treated as a machine

learning process that gathers more and more informa-

tion about the problem with each iteration. If the family

of such searches has a focusing heuristic (see Defini-

tion 6), then we may conjecture, that the maximum

information about the problem is contained in the set

K of fixed points of heuristic, that are the frequency

vectors of the limit populations representing most

exhaustive searches (infinite sample after infinite

number of steps) (see Remarks 4.1 and 4.2). Notice,

that typically K is a singleton.

2. The above reasoning shows us, that in order to solve

P1;P2 (see Definition 5) we really expect to obtain a

random sample with a probability distribution suffi-

ciently close to at least one fixed point of heuristic, i.e.

falling into e—convex envelope Ke of the fixed points,

for a sufficiently small e. The analysis of dynamic and

asymptotic features of sampling measures, seems to be

more adequate in such case, than behavior analysis of

single, selected individuals (e.g. best fitted ones) in the

consecutive populations, as it is performed in the

classical approaches (see Remark 6.2).

3. If the Markov chain modeling the search is ergodic,

than it ensures the asymptotic guarantee of success i.e.

the well approximation of fixed point of heuristic Ke

can be reached in a finite number of steps, starting from

an arbitrary x0 2 Xl, if l is sufficiently large, so that

Ke \ Xl 6¼ ; (see Remark 6.3).

4. If we apply the family of ‘‘well tuned’’ searches to

solve the ill-conditioned problems P1;P2, then we can

draw the information about lowlands and minimum

Table 2 MT local phase test, approximation errors [47, Tab. 6]

Method L2 error H1 error

L2 projection 1:85 
 0:30 12:4 
 3:8

H1 semi-projection 1:84 
 0:30 2:78 
 0:47

Kriging 2:19 
 0:33 3:88 
 0:81

Table 3 MT local phase test,

coverage results
Method Coverage of real parameters (%) Best lowland coverage (%)

L2 projection 30 69 
 35

H1 semi-projection 30 47 
 39

Kriging 40 81 
 32

Coverage of real parameters is the percentage of the runs that resulted in covering the real resistivity

parameters vector. Best lowland coverage metric shows the best achieved reference lowland coverage for

each LBA
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manifolds by the proper post-processing of the limit

population xK or the cumulative population 1
K

PK
t¼1 xt,

where K is a sufficiently large number of steps and

xK 2 Xl for sufficiently large l. Such post-processing

may consist in clustering, cluster separation analysis,

local fitness approximation, etc. (see Remarks 4.3, 6.1

and 6.2).

5. The possible concept of stopping a stochastic strategy

solving such problems is to recognize, whether at least

one population vector xt 2 Xl falls into the set of states

Ke. More formally, we may evaluate the proper

statistic of the FHT of the set Ke \ Xl. In particular,

FHT expectation might be computed from the linear

system (8) (see Remarks 6.4, 6.5). The other, more

practical possibility of verifying a stopping condition is

to check, whether the consecutive samples form

clusters of a sufficiently high quality, i.e. sufficiently

dense and well separated from each other (see

Remark 6.6).

6. Assessing whether the particular family of searches is

‘‘well tuned’’ is difficult in the computational practice

(see Remark 6.8). Typically, the algorithms with a

stronger selection pressure are more likely ‘‘well

tuned’’. Unfortunately, such algorithms are ineffective

in a global search. The possible solution is to use a

cascade of stochastic searches, in which the upper ones

are designated to global search, while the lowest ones

deliver the sample concentrated in the basins of

attraction of lowlands or minimum manifolds. Such

proposition called HMS/MWEA was presented later in

Sect. 4.

7. We have proven that the HMS/MWEA strategy has the

asymptotic guarantee of success in the sense that it can

reach any of its states in a finite number of steps with

positive probability (see Sect. 4). Therefore, we can

expect that when run sufficiently long, the strategy will

produce populations in leaf demes that will occupy

significant parts of interesting regions. However mostly

theoretical, this result forms a solid foundation for the

confidence in the HMS/MWEA search capabilities.

8. In Sect. 5, the computational examples display how the

HMS/MWEA strategy performs on benchmarks and in

an engineering case. The strategy behaves as expected

from the previous Markov chain analysis. The search is

focused in the vicinity of the lowland regions. Thanks

to this, decent lowland shapes approximations are then

obtained. We also determine lowland regions of the

engineering example’s misfit function. This case

proves more challenging, nevertheless, correctness of

the obtained solution is retained.

9. Currently, it is impossible to provide a comprehensive

comparison of the presented strategy with respect to

state-of-the-arts strategies. The reason is that the aim of

our strategy is the insensitivity region approximation,

which is illustrated in Sect. 5, and possible competi-

tors, like those described in [15, 32, 38], concentrate on

finding the global minimizers or even a single global

minimizer. Despite that, in Sect. 5 we compare the

performance of our strategy with algorithms that

provide partial coverage of its functionality. In partic-

ular, we compare its global phase with NEA2 [38] and

its local-approximation phase with kriging method [24]

(see Figs. 6, 7 and Tables 6–3).
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