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Abstract
We present an analysis of an additive cellular automaton (CA) under asynchronous dynamics. The asynchronous scheme is

maxmin-x, a deterministic system, introduced in our previous work with a binary alphabet. Extending this work, we study

the impact of a larger alphabet, which also allows a meaningful inference of the behaviour of the resultant CA from the

asymptotic behaviour of the maxmin-x update system. Far from being a straightforward positive correlation between

complexity and alphabet size, we show that there is a region of x and alphabet size where complexity of CA is maximal.

Thus, despite employing a fixed CA rule, the complexity of this CA can be controlled by x and alphabet size. The main

message is that the effect of maxmin-x updating on the state of a network can be well understood, especially if the state

alphabet is counter-intuitively large.
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1 Introduction

The maxmin-x system was introduced in Patel (2016) as a

model of asynchronous dynamics on networks. Each node

in this system updates its state upon receiving input from a

proportion x of neighbourhood nodes. In terms of a cel-

lular automaton (CA) application, the main attraction for

this type of asynchrony is its determinism; here, ‘receiving

neighbourhood inputs’ corresponds to knowing the CA

states of a cell’s neighbours after some delay. Maxmin-x is

therefore not only a departure from traditional asyn-

chronous CA schemes (e.g., Schönfisch and de Roos

(1999) and Fatès and Morvan (2005)) but differs from

recent work that similarly considers the receipt of such

neighbourhood information, but where this receipt is

stochastic (Bouré et al. 2012). Moreover, by thinking of x
as a threshold that must be met before this neighbourhood

information is processed, maxmin-x provides a simpler

and intuitive mechanism for asynchrony, mimicking the

dynamics of similar models whose applications include

neuronal networks (McCulloch and Pitts 1943; Wilson and

Cowan 1972; Thul et al. 2016) and virus transmis-

sion (Granovetter 1978; Watts 2002; Backlund et al.

2014). Taking these points together, maxmin-x looks like a

new member of the class of threshold models that have

their roots in epidemic spreading (Granovetter 1978).

We briefly describe the system here. Consider a one-

dimensional CA lattice. This lattice has a natural definition

of neighbourhood, i.e., the neighbourhood N i of cell i of

radius r is fi� r; . . .; i� 1; i; iþ 1; . . .; iþ rg, as intro-

duced in Wolfram (1983). Maxmin-x views the CA lattice

as a network, whose nodes play the role of cells. Thus, a

cell state is updated at the end of a cycle. The processes

that constitute such a cycle are as follows. First, the

neighbourhood nodes N i complete their kth cycle,

k 2 f0; 1; 2; . . .g, and then transmit their CA state to node i;

the transmission of such a state from node j to i takes

transmission time sij. (Note that k ¼ 0 corresponds to the

initialisation of the system, where all nodes simply transmit

their initial states.) Node i waits for a fraction x of the

arriving states before processing its new CA state, which

takes processing time ni. Once this is complete, the node

updates its CA state and simultaneously transmits this state

to downstream nodes, where the cycles are reiterated.

Fig. 1 graphically shows this state change process. Thus,
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the delay parameters sij and ni are central to the asyn-

chronous receipt of neighbourhood states; the fastest

arriving states are processed.

For an ordered set of n objects and x 2 ð0; 1�, let us
define the xth object as the mth object where m ¼ dxne.
(For example, the 0.25th object in the set

f3; 3:2; 5; 9; 15:8g is 3.2.) We denote the time of state

change of node i by xiðk þ 1Þ, whilst the CA state of node i

in the same cycle is denoted siðk þ 1Þ. Given the tempo-

rally ordered set of arrival times of all neighbourhood

inputs in cycle k, the ðk þ 1Þth update time of node i is

given by the following recurrence relation.

xiðk þ 1Þ ¼ xðxÞðkÞ þ ni ð1Þ

where xðxÞðkÞ represents the kth time of arrival of the xth
input from the neighbourhood of i; if k is clear from con-

text, we denote this xðxÞ for short.

For our study, we employ an additive CA rule as fol-

lows. We first consider an alphabet of CA states taking size

Z, namely R ¼ f0; 1; 2; . . .; Z � 1g. We represent the (CA)

state of the system at cycle k 2 N by the vector

sðkÞ ¼ ðs1ðkÞ; s2ðkÞ; . . .; sNðkÞÞ. Our CA rule is a function

f : f0; 1g2rþ1 ! f0; 1g given by siðk þ 1Þ ¼ f ðN ðsiðkÞÞÞ,
where NðsiðkÞÞ denotes the CA states of N i in cycle k.

Further, consider

AiðkÞ ¼ fj 2 N i : xjðkÞ þ sij � xðxÞðkÞg ð2Þ

which is the set of all nodes whose CA states arrive before

or at the same time as the xth input at node i. We call

AiðkÞ the set of affecting nodes of i. We focus on the

following CA rule

siðk þ 1Þ ¼
X

j2Ai

sjðkÞ mod Z : ð3Þ

Simply put, the CA state of each cell will be the sum of the

fastest arriving states at that cell. The main reason for using

rule (3) is that it is simple to understand and analyse. Under

certain conditions, however, such additive CA have been

known to exhibit complex behaviour (Manzini and Mar-

gara 1999; Chaudhuri et al. 1997; Aso and Honda 1985;

Cattaneo et al. 2000; Guan and He 1986). Importantly for

this paper, due to their simplicity, such CA can be used to

investigate chaos (Cattaneo et al. 2004; Dennunzio et al.

2019). In a similar vein, we want to investigate the sensi-

tivity of CA to the parameter x; an additive CA gives a

transparent and uncomplicated rule to enable this study.

We make special note that k is a discrete quantity, with

the state of a cell remaining constant between successive

cycles k and k þ 1. Thus, there is an underlying real time

t 2 R, which is punctuated by cycles k. This means that

there are two ways to index the time—by its real time value

or by the counter value k; in this way, k may also be

referred to as an epoch. Overall, we can denote the state of

a cell i in two ways: siðkÞ is the state on epoch k whilst s
ðtÞ
i

is the state at real time t. Thus, for example, on epoch

k ¼ 2, if t ¼ 5:8, we have sið2Þ ¼ s
ð5:8Þ
i . These epochs are

depicted as contours in Fig. 2. If the CA updating was

synchronous, these contours would be horizontal, and all

cells would process the same epoch at the same time; under

maxmin-x asynchrony, at some real time t, two cells can

be in different epochs. Notice that, even though the same

number of iterations are taken of (1), the system runs for a

longer real time for larger x; this is as expected since

larger x implies waiting for more inputs before updating.

We exhibited the impact of maxmin-x on CA with a

binary alphabet in Patel (2016), i.e., R ¼ f0; 1g. Figure 2

shows an example of such a binary CA. In this paper, we

demonstrate the difference in effect for an extended

alphabet, i.e., jRj[ 2. In particular, we ask the question:

what is the effect of maxmin-x on the complexity of cel-

lular automata?

In Sect. 2, we present a measure of CA space-time

pattern complexity, and make analytical predictions for the

impact of the alphabet size on complexity. Section 3

introduces a reduced form of the maxmin-x system that

allows us to make heuristic predictions of the impact of x
on CA complexity. Section 4 presents the results from

simulations of maxmin-x CA; these results are compared

with the theory of the previous two sections. We discuss

the work in Sect. 5, giving arguments for the results

obtained and potential avenues for future work that max-

min-x opens up.

Fig. 1 The processes within the kth cycle that yield a state change for

cell i due to maxmin-x. Assuming a neighbourhood size n, we take

m ¼ dxne
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2 Cellular automata with general alphabet

In the analysis of cellular automata, the fundamental

breakthroughs have been demonstrated with binary states,

i.e., R ¼ f0; 1g. Whilst this continues to provide informa-

tive results, it is instructive to expand the state possibilities.

Not only would this allow an analysis of the generalised

system—with hypotheses for binary R being tested for

general R—but, importantly, potential applications would

be better reflected. Examples include models of traffic

flow, where cars (represented by cells) can take on a range

of velocities (Nagel and Schreckenberg 1992); epidemic

models often assume a person to be in one of three states -

susceptible, infected, or recovered (White et al. 2007); and

cancerous tumour growth models take cells to be in one of

the proliferating, quiescent and necrotic states, and possi-

bly more, depending on the accuracy desired (Piotrowska

and Angus 2009; Gevertz and Torquato 2006).

2.1 Cellular automaton pattern complexity

To classify our CA in space-time, we use the entropy

measures of Marr and Hütt (2005). The Shannon entropy S

relies on the density pðsjÞ of the CA state sj 2 R in the time

series of the evolving CA states of each cell. Thus, for

example, given jRj ¼ f0; 1; 2; 3g and the following time

series of length 15,

121033322023033 ð4Þ

we have pð0Þ ¼ 3=15, pð1Þ ¼ 2=15, pð2Þ ¼ 4=15, and

pð3Þ ¼ 6=15. The Shannon entropy of cell i is defined as

Si ¼ �
XjRj

j¼1

pðsjÞ log2 pðsjÞ: ð5Þ

For the example time series (4), Si ¼ 1:8892. The quantity

we require is the Shannon entropy of the overall CA space-

time pattern, defined as the average of Si over the N cells in

the lattice: S ¼ 1
N

PN
i¼1 Si.

The word entropy W depends on the occurrence of

blocks of constant states of length l (l-words) in the time

series of a cell. The l-words we consider are independent of

the state comprising them, e.g., in the example (4), there

are eight 1-words (namely 1, 2, 1, 0, 0, 2, 3, 0, in that

order), two 2-words (22 and 33), one 3-word (333), and no

words of longer length. Thus, if p(l) is the density of an l-

word along the time series of a cell i, then

Wi ¼ �
XT

l¼1

pðlÞ log2 pðlÞ ð6Þ

where T is the length of the time series. Using (4) again to

illustrate, there are eleven words in total such that

pð1Þ ¼ 8=11, pð2Þ ¼ 2=11, and pð3Þ ¼ 1=11. The word

entropy of the entire CA pattern is then defined as the

average of Wi over the N cells: W ¼ 1
N

PN
i¼1 Wi.

Fig. 2 Above: Binary CA space-time patterns as a function of x; state
0 is coloured white, state 1 is black. Below: Update times, depicted as

contours, of the CA above. Contour k connects the update times xiðkÞ
and xiþ1ðkÞ (y-axis) of nodes i and iþ 1 (i ¼ 1; . . .; 9). In all cases, the

lattice has size 8, with r ¼ 2; we take 40 iterations of (1) and (3) (so

there are 41 contours displayed for each x) with xð0Þ ¼ ð0; . . .; 0Þ and
s4ð0Þ ¼ 1, sið0Þ ¼ 0 for i 6¼ 4; the x-axis denotes the node number,

and (real) time travels down
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We make a crucial note that the entropy measures used

here should not be interpreted in the standard information-

theoretical or thermodynamical way. This is mainly due to

the finiteness in the time series that we analyse, the aver-

aging over individual entropies, and the strict definition of

Wi such that it is not bounded to [0, 1].

Marr and Hütt themselves acknowledge such drawbacks

in Marr and Hütt (2005) and Marr et al. (2007). However,

they go on to advocate their S and W measures since they

are generically applicable to arbitrary topologies (Marr and

Hütt 2005) and ‘‘their combination was found to perform

well in separating different dynamic regimes’’ (Marr et al.

2007). It is this amenability to generalisations that attracts

us to the employment of these entropy measures. We

envisage the latter point to be particularly pronounced as

jRj increases in this paper, whilst the first point of appli-

cations to different networks forms the basis of current

research. Of course, there are other classification schemes,

such as those that deal with specific types of CA out-

put Dennunzio et al. (2013a), Cattaneo et al. (2002), and

those that approach it from the angle of computational

complexity (for example, Dennunzio et al. 2017).

Notwithstanding this, the entropic measure of complexity

employed in this paper can be best compared with that of

LMC complexity (Lopez-Ruiz et al. 1995) and Rènyi

entropy (Rényi 1961) (see later in this section).

Additive rules have the same Langton parameter ks for
all states s 2 R (Gutowitz and Langton 1995). In other

words, in the look-up table for the additive CA rule (3) that

we consider, each state is equally likely (the look-up

table lists all possible neighbourhood states and their

transitions according to (3)). Suppose this equiprobability

is true also in the time series evolution of such a CA. Then

we have that pðsjÞ ¼ 1=Z, giving

Si ¼�
XZ

j¼1

1

Z
log

1

Z

� �
ð7Þ

¼ log Z: ð8Þ

Taking the average of this quantity over N cells gives

S ¼ log Z. Although it is not as straightforward to calculate

the exact densities of states in a time series, the assumption

of equiprobability of states gives a Shannon entropy that is

maximal, as is the case for a thermodynamic entropy, that

is,

Proposition 1 The Shannon entropy is maximal when all

CA states are equiprobable (see ‘‘Appendix’’ for proof).

Therefore, (8) tells us that, in the extremal case, S is

expected to increase logarithmically with the size of

alphabet.

As for the word entropy W, it is reliant on the state in a

time series of a cell being unchanged over some fixed

length l of time. Recall s
ðtÞ
j , the state of cell j at time t 2 R.

Thus, an l-word satisfies the following.

s
ðtÞ
j ¼ s

ðtþ1Þ
j ¼ � � � ¼ s

ðtþl�1Þ
j

ð9Þ

where s
ðt�1Þ
j 6¼ s

ðtÞ
j and s

ðtÞ
j 6¼ s

ðtþlÞ
j . Note that, despite

defining t as a continuous real index of time, here we have

considered the state of cell i at discrete points of time with

step size 1; this will be sufficient to demonstrate our theory.

Assuming the extremal S case again, where all CA states

are equally likely, p s
ðtÞ
j

� �
¼ 1=Z for all t. The probability

of the next state being the same is P s
ðtÞ
j ¼ s

ðtþ1Þ
j

� �
¼ 1=Z,

whilst the probability of the next state being different is

P s
ðtÞ
j 6¼ s

ðtþ1Þ
j

� �
¼ Z�1

Z
. Then the probability p(l) of

observing an l-word is P s
ðt�1Þ
j 6¼ s

ðtÞ
j ¼ s

ðtþ1Þ
j ¼ � � � ¼

�

s
ðtþl�1Þ
j 6¼ s

ðtþlÞ
j Þ, calculated as

Z � 1

Z
:
1

Z
: � � � : 1

Z|fflfflfflfflffl{zfflfflfflfflffl}
ltimes

:
Z � 1

Z
¼ ðZ � 1Þ2

Zlþ2
: ð10Þ

Using earlier notation, we have pðlÞ ¼ ðZ�1Þ2
Zlþ2 . The inset of

Fig. 3 plots p(l) as a function of Z and l for various values

of l and Z respectively. Figure 4 shows histograms of word

lengths arising from the CA time series of one cell in four

example systems (each taking different alphabet sizes). The

correspondence with the left hand inset of Fig. 3 is clear;

1-words in particular are most frequent.

Substituting p(l) into (6) gives Wi, the word entropy of

each cell; taking the average over all cells gives W ¼ Wi

here. Figure 3 plots W as a function of jRj. The word

entropy is, thus, expected to decrease as the alphabet size

increases.

For comparison, let us briefly discuss the LMC com-

plexity C from Lopez-Ruiz et al. (1995). Since we consider

two measures characterised by individual cell states and

blocks of cell states in a time series, we carry this concept

over to construct two parallel LMS measures: (i)

CS ¼ SDS, where DS ¼ RZ
j¼1 pðsjÞ � 1=Z
� �2

is a measure of

‘disequilibrium’, and (ii) CW ¼ WDW , where DW is a

measure of disequilibrium, given by

DW ¼ RT
l¼1 pðlÞ � 1=Tð Þ2. The values 1/Z and 1/T respec-

tively denote the probability of observing a CA state and an

l-word if all states and all words are equiprobable. Since

our additive rules imply pðsjÞ ¼ 1=Z for all j, we have

DS ¼ 0 so that CS ¼ 0. To calculate CW we substitute

pðlÞ ¼ ðZ�1Þ2
Zlþ2 in DW to obtain a decreasing CW with

alphabet size. Thus, in the language of Lopez-Ruiz et al.
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(1995), both CS and CW tend to behave like ideal gases,

where a variety of CA patterns are observed.

The LMC complexity as a function of x is more inter-

esting. We predict that, for small x, since only a few cell

states prevail (the fastest ones), then the overall behaviour

is akin to a crystal—predictably periodic; as x increases,

more CA states become admissable, giving a wider prob-

ability distribution, though each non-zero probability is

equal. Thus, DS is decreasing with x and, since S is

increasing with x, we have an intriguing situation to that of
Fig. 1 of Lopez-Ruiz et al. (1995), with CS maximising for

some value of x between 0 and 1, and disappearing when

x ¼ 0 and 1. Since p(l) is expected to decrease with x, we
have DW ! 0 as x increases. Therefore, CW ! 0 as

x ! 1.

3 Cellular automata as a function of x

How do we expect the maxmin-x system to affect CA

output? We try to answer this question by looking at the

impact of x on the complexity of additive CA space-time

output. The nature of complexity makes prediction a dif-

ficult science. We can, however, speculate on the tendency

of CA behaviour as a function of x. Whilst we know about

maxmin-x on a binary CA (Patel 2016, 2012), here we

focus on the effect of a larger alphabet on the Shannon and

word entropies.

We first introduce the concept of a reduced network.

Recall AiðkÞ, the set of affecting nodes of i in cycle k.

Definition 3.1 In cycle k, the reduced network is the set of

affecting nodes AiðkÞ of all nodes, together with the edges

that connect affecting nodes j 2 AiðkÞ to their affected

node i.

In other words, the reduced network does not contain

those nodes and edges whose states arrive too late, i.e.,

after the xth input. We can draw up a reduced network for

each counter k. In Patel (2012), we show that this sequence

of reduced networks asymptotically settles onto a fixed set

of reduced networks. Formally, let us denote by GrðkÞ the
reduced network in cycle k. Then we obtain the sequence

Grð0Þ;Grð1Þ;Grð2Þ; . . . of reduced networks such that, for

some k� 0, there exists g 2 N such that

Grðk þ gÞ ¼ GrðkÞ. The set O ¼ fGrðkÞ;Grðk þ 1Þ; � � � ;
Grðk þ gÞg is called a periodic orbit of reduced networks.

This set is dependent on the initial set of update times

xð0Þ ¼ ðx1ð0Þ; x2ð0Þ; . . .; xNð0ÞÞ of the maxmin-x sys-

tem Patel (2012). Figure 5 shows an example of such a

sequence of reduced networks that enter a periodic orbit of

size two; here the original network is a size 3 fully con-

nected regular network (with neighbourhood size 3), whilst

the system takes x ¼ 2=3.

Pertinently, this means that, as k ! 1, the maxmin-x
system can be replaced by a reduced system (with an

underlying reduced network) with x ¼ 1. This is intu-

itive—since only the affecting nodes affect the future state

of a node i, it is equivalent to node i accepting all (such that

x ¼ 1) inputs from AiðkÞ.

2 3 4 5 6 7 8 9 10
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w
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word length l
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Fig. 3 Word entropy (6) as a

function of alphabet size Z, for

Z � 10. The underlying CA

system is iterated 100 times, so

that the largest word length

possible is 100 and T ¼ 100 in

(6). Inset, left: p(l) against word

length l for alphabet sizes 2 to 5.

Inset, right: p(l) as a function of

alphabet size for l ¼ 1; . . .; 8,
where a small l gives a higher

curve
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Fig. 4 Histograms giving the frequency of words obtained in the CA

time series of the 20th cell after 50 iterations of the maxmin-x
system. The underlying lattice has size 20 and neighbourhood size

n ¼ 9; transmission times are taken as random integers up to 5, whilst

processing times are all 1. Histograms from left to right respectively

correspond to x ¼ 0:05, 0.5, and 1. Alphabet sizes increase from top

to bottom: jRj ¼ 2; 5; 10; and 20, whilst initial CA states are taken

uniformly at random from R
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The implication on the asymptotic CA state of nodes can

now be discussed. Once the idea of affecting nodes and the

reduced network is understood, the size of each affecting

node set can be inferred as jAiðkÞj � m, where m ¼ dxne
(and recall that n is the neighbourhood size of each node in

the original network). This implies that the neighbourhood

size of each node in GrðkÞ should be approximately m. In

fact, due to the simultaneous arrival of some affecting

nodes, jAiðkÞj �m (Patel 2012). Nevertheless, it is

instructive to assume the average neighbourhood size of

each node in a reduced network to be m (for example, see

Fig. 5, where most nodes take neighbourhood size m ¼ 2).

Instead of x, we can now think about the effect of m.

For further illustration, it is sufficient to take g ¼ 1, i.e.,

the periodic orbit of the asymptotic reduced network takes

size 1. Asymptotically then, we need only consider one

underlying network; from here onwards, we shall take all

mentions of ‘‘reduced network’’ to refer to the asymptotic

reduced network, denoted Gr. Thus, when m is small, the

neighbourhood size of each node in Gr is small. This

implies that some CA states—namely the fastest arriving

ones–are favoured over other states. Consequently, the

cellular automaton state space is narrower, giving fewer

state possibilities and therefore a smaller Shannon entropy.

Assuming the extremal case again—that those CA states

that appear with non-zero probability are equiprobable—

we can use (8), which says that S ¼ log Z, where Z is the

number of CA states. That is, the maximal Shannon

entropy increases with the number of states. Thus, we

obtain the following proposition.

Proposition 2 Let n denote the neighbourhood size of each

node in a network. The maximal Shannon entropy of an

additive CA pattern resulting from the maxmin- x system

on this network increases with x as logxþ log n.

Proof We assume that jRj[ n to ensure that a node

receives different states with a large probability. Then, for

m ¼ dxne, we apply (8) to find that the maximal Shannon

entropy is proportional to logm since the node is likely to

receive m different states. Expanding this gives the

result. h

So, given x1\x2, we know that the maximal Shannon

entropy �S
ð2Þ

of a maxmin-x2 system will be greater than

the maximal Shannon entropy �S
ð1Þ

of a maxmin-x1 system.

However, this does not guarantee that the Shannon entropy

Sð2Þ of any maxmin-x2 system will be greater than the

Shannon entropy Sð1Þ, since Sð2Þ might not necessarily be

maximal. In fact, consider Fig. 6, which indicates where

randomised Shannon entropies are likely to lie for each m;

the logarithmic growth of the maximal entropy is echoed

by the box plot. That is, for larger x1 and x2, if we select

Sð1Þ and Sð2Þ uniformly at random (via their probabilities),

then Sð2Þ is likely to be larger than Sð1Þ by a smaller amount.

Additionally, note the tightening of the box plot as m

increases; this suggests that such an Sð2Þ will not deviate

considerably from Sð1Þ, especially if x2 � x1 is small.

We move onto the analysis of word entropy as a func-

tion of x. For x small, the reduced network will have small

neighbourhood size. Using the same arguments as earlier,

the fastest CA states will prevail, giving few state possi-

bilities. This is equivalent to having a small alphabet such

that a range of word lengths are likely to be observed (see

inset, right, of Fig. 3 where, for small alphabet, a range of

word lengths have large, non-zero probabilities of being

observed). For a larger x, the reduced network will have a

larger neighbourhood size such that more CA states are

prevalent; the likelihood of observing l-words is therefore

decreasing with l (see inset, left, of Fig. 3). Thus, we

expect word entropy to decrease with x.
Compared to the Shannon entropy, the exact trend of

how W varies with x is tricky to calculate, suffice it to say

that we have presented here heuristic arguments for

developing such functions; these will be compared with the

experimental results presented in the next section.

Fig. 5 Sequence of reduced networks of a maxmin-2/3 system where N ¼ 3. Larger arrows indicate the transitions between successive iterations

of the maxmin-2/3 system
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4 Experimental results

We now run the maxmin-x system and implement the

additive cellular automaton rule (3). The underlying net-

work is regular, equivalent to the one-dimensional CA

lattice, and we take network size N ¼ 11, where cells N

and 1 are connected. We record the asymptotic values of

Shannon and word entropies, along with the asymptotic

quantities that summarise the update times of the maxmin-

x system itself. For this purpose, we require the following

definitions.

Define the function M as the mapping M : RN ! RN

whose components Mi are of the form of Eq. (1). We

represent a system of N such equations by the following.

xðk þ 1Þ ¼ MðxðkÞÞ ð11Þ

for k� 0, where xðkÞ ¼ ðx1ðkÞ; x2ðkÞ; . . .; xNðkÞÞ. Denote

by MpðxÞ the action of applying M to a vector x 2 RN a

total of p times, i.e., MpðxÞ ¼ MðMð� � � ðM|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ptimes

ðxÞÞ � � �ÞÞ.

Definition 4.1 If it exists, the cycletime vector of M is

vðMÞ and is defined as limk!1ðMkðxÞ=kÞ.

Definition 4.2 For some k� 0, consider the set of vectors

xðkÞ; xðk þ 1Þ; xðk þ 2Þ; . . . 2 RN

where xðnÞ ¼ Mnðxð0ÞÞ for all n� 0. The set xiðkÞ; xiðk þ
1Þ; xiðk þ 2Þ; . . . is called a periodic regime of i 2 N if

there exists li 2 R and a finite number qi;2 N such that

xiðk þ qiÞ ¼ li þ xiðkÞ:

The period of the regime is qi and vi ¼ li=qi is the cy-

cletime of i. The smallest k for which the periodic regime

exists is called the transient time.

Under our initial conditions, Ki will be finite [see Hei-

dergott et al. (2006), Theorem 12.7] and so, maxmin-x
always yields a periodic regime with the following system-

wide quantities.

K ¼ max
i
fKig; q ¼ LCM iðqiÞ; v ¼ ð1=NÞ

XN

i¼1

vi:

Our experiments may best be described by the following.

Algorithm 4.1

1. Choose ni; si 2 Z both from the uniform distribution

(with equal probability) taking largest value 5.

2. Choose an initial timing vector, xð0Þ ¼ ð0; . . .; 0Þ, and
an initial CA state sð0Þ uniformly (with equal proba-

bility) from the alphabet R ¼ f0; 1; . . .; Z � 1g.
3. Iterate the maxmin- x system 100 times for each x

value from 0.05 to 1, in steps of 0.05 (so there are 20

maxmin- x systems to run).

4. For each maxmin- x system, record the period q and

cycletime v, as well as the Shannon and word

entropies.

5. Repeat above three steps 50 times to obtain, for each

maxmin- x system above, 50 independent transient

times, periods, and cycletimes, as well as Shannon and

word entropies.
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Fig. 6 Shannon entropies

generated uniformly at random.

The entropy is calculated using

(5) by selecting probabilities

pðsjÞ uniformly at random, and

letting jRj ¼ m such that the x-

axis denotes the number of

terms m in the sum. For each m,

we plot the distribution of 105

such Shannon entropies
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6. For each maxmin- x system, record the mean of the 50

transient times, periods, cycletimes, Shannon and word

entropies obtained.

We vary the neighbourhood radius such that neigh-

bourhood sizes explored are n ¼ 3; 5; 7; 9, and 11. Thus,

this algorithm is implemented on five regular networks of

increasing connectivity. We also vary the alphabet size

such that, for each of these networks, the algorithm is run

for alphabet sizes jRj ¼ 2; 3; . . .; 10. Figures 7 and 8

summarise the results.

We first comment on the asymptotic values of the

maxmin-x update times. The ‘bell’ curve for both period

and transient time was conjectured in Patel (2012), and is
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Fig. 7 Mean transient time, period and cycletime as a function of x for a regular network of size 11 with neighbourhood size n ¼ 9. Each curve

represents each of the alphabet sizes 2 to 10 (although these sizes are relevant only for the cellular automaton evolution)

Fig. 8 (Colour online) Shannon and word entropy S and W for a

regular size 11 network with neighbourhood sizes n ¼ 9, and 11

(results for n ¼ 3; 5, and 7 similar to n ¼ 9). (a) Mean S and mean W

versus x; each curve represents each of the alphabet size Z ¼ 2 to 10,

where a lower Z corresponds to a lower curve. (b) Mean S and mean

W versus Z; each curve represents each x 2 f0:05; 0:1; . . .; 1g. Black:
x ¼ 1, blue: 0:1�x� 0:95, red: x ¼ 0:05
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evident for the period in Fig. 7. There is no evidence,

however, to link the same shape to the Shannon or word

entropy as functions of x, particularly when larger alphabet
sizes are considered.

For all neighbourhood sizes except for n ¼ 11, the

Shannon entropy is an increasing value with x (see

Fig. 8a), in agreement with our analytical predictions in the

previous section. The word entropy behaves differently,

however; it is not strictly decreasing with x. In fact, it is

increasing for most alphabet sizes, with a sharp decrease at

x ¼ 1; this decrease does fit with our heuristic arguments,

but there is no evidence to suggest maximal W at the

smallest x value (0.05). On the other hand, Fig. 8b agrees

with our heuristic predictions when alphabet size is

approximately greater than or equal to 8; that is, W is a

decreasing function of x for a large alphabet size (the red

curve is higher than the blue curve, which is higher than the

black curve).

The logarithmic trend (8) of S with alphabet size is most

apparent—this is attained when all CA states are

equiprobable, and it is maximal, supported by the black

Shannon entropy curve in Fig. 8b, which is the x ¼ 1 case.

As expected, the word entropy is decreasing with alphabet

size, although the case x ¼ 0:05 is almost constant (see red

line in Fig. 8b).

The exception seems to be the case n ¼ 11. This is

where the network is fully connected; all nodes are

neighbours of every other node. Here, the Shannon entropy

does not follow a logarithmically increasing trend with x,
instead following the bell-like curve referenced above,

taking maximal value at approximately x ¼ 0:5. This

Shannon entropy is minimal when x ¼ 1 (see black curve

in Fig. 8b).

We end this section by combining the Shannon and

word entropy results into one (S, W)-plane. Thus, for each

n, consider a fixed alphabet size. This gives a pair

ðmean S;mean WÞ for each x value. To find which of

these produces the ‘most complex’ point, we take the fol-

lowing simple distance from the origin, for x 2 ð0; 1�.

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmean SÞ2 þ ðmean WÞ2

q
ð12Þ

Then, we are interested in x� ¼ argmaxx dx, i.e., the x
values that maximise dx. Often there exist more than one

such x. For example, for n ¼ 3,

x� ¼ f0:75; 0:8; 0:85; 0:9; 1g for all alphabet sizes; in such

cases, we take the mean of this list of x� values.

Thus, for each alphabet size, we have one x� value.

Performing this calculation for all alphabet sizes up to 10,

we produce histograms indicating where such x� values

congregate; these are shown in Fig. 9. A similar calculation

finds, for a fixed x value, the alphabet size that produces

the ‘most complex’ (S, W) point; we denote this alphabet

size Z�, also depicted in Fig. 9.

5 Discussion

We have demonstrated the effect of maxmin-x dynamics

on an additive cellular automaton. Thus, we have departed

from synchronous elementary CA studies in two orthogo-

nal ways: asynchrony was imposed via maxmin-x and,

secondly, the alphabet of state possibilities was extended.

Overall, we have exhibited the properties of a deterministic

asynchronous dynamical system that better reflects the

internal decision-making processes of CA and its applica-

tions, such as epidemic spreading.

A synchronous CA is one whose contours would be

horizontal in space-time; all cells update at the same real

time. Moreover, such CA cell states are updated upon

knowledge of all neighbourhood cell states. This implies

that a synchronous CA is equivalent to the maxmin-1

system where all transmission times sij and processing

times ni are equal and constant. In fact, for x ¼ 1, we have

previously shown that, even when sij and ni are not all

equal, the entropy measures S and W do not deviate sig-

nificantly from the fully synchronous case (Patel 2012).

This is primarily due to the bijection between states on

maxmin-1 contours and states on horizontal contours of a

synchronous CA; all neighbourhood information is retained

in both systems (Patel and Broomhead 2014). As x is

decreased from 1, more of this neighbourhood information

is lost such that, when x � 0, the system is losing the most

information; prediction of CA behaviour is thus more dif-

ficult with decreasing x.
Indeed, whilst we previously noted some correspon-

dence in complexity between timing and CA pattern when

the alphabet R was binary (Patel 2012, 2016), here, we

have shown that such a link is simplistic; an extended

alphabet generates additional facets to the story of com-

plexity. Notwithstanding this, we have been able to ana-

lytically predict the tendency for complexity by thinking

about the asymptotic behaviour of maxmin-x—the so-

called reduced system, which is effective for larger

alphabet sizes (at least larger than the neighbourhood size).

Thus, we claim that the essence of the maxmin-x system is

best captured by a CA with a larger number of states than

two; here, complexity doesn’t follow simple bell-like

curves, unless the network is fully connected, such as the

n ¼ 11 case. Interestingly, however, we note that the

(S, W)-plane offers some support to the argument that the

most complex patterns occur when x � 0:5 (see Fig. 9).

To conclude, we have introduced a larger alphabet to a

maxmin-x update scheme for cellular automata, opening
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up many avenues for future work. For instance, the reduced

system is smaller, and more predictable (Sect. 3) such that

a strict sequence of updated nodes can be extracted. Thus,

we can assign a probability of update to each cell; we

would expect this probability to depend on sij and ni. This
suggests that maxmin-x can yet be described in terms of

traditional, probabilistic, asynchronous models; indeed, we

have previously proposed maxmin-1 as a system that

delves into how updating probabilities might be generated

by local ‘handshaking’ of nodal states (Patel and Broom-

head 2014). It would be interesting to see how maxmin-x
fits into the more generalised class of probabilistic

asynchronous CA, such as m-asynchronous CA (Dennun-

zio et al. 2013b).

Finally, we are currently thinking about the maxmin-x
system on various topologies; this would allow a better

reflection of applications such as information spreading

over social networks. Along these lines, Marr et al. have

looked at the impact of metabolic network structures and

scale-free networks on the resulting complexity of binary

CA dynamics (Marr et al. 2007), finding that metabolic

networks ‘dampen’ the effect of perturbations in the net-

work structure; complexity is thus reduced in such ‘non-

regular’ graphs. The analytical work of this paper (such as

Fig. 9 Frequency of x� and Z�

values that yield the most

complex CA patterns. Left:

Frequency of x� values. Right:

Frequency of Z� values. We

present results for

neighbourhood sizes n ¼ 9 and

n ¼ 11 as they show the most

variation
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Proposition 2) suggests that the general properties of the

Shannon and word entropies are independent of the global

network structure, beyond local neighbourhood informa-

tion; this conjecture itself gives a tantalising suggestion of

complexity under maxmin-x being universal. It would

therefore be interesting to test this by comparing our

methods with that of Marr et al. (2007) and to implement

maxmin-x CA on arbitrary network structures. Already,

the case n ¼ 11 is in contrast to the hypothesis of Marr

et al. (2007), but we reiterate that the predictable reduction

to a smaller system, which would be independent of x, can
aid this study significantly. That is, prediction of the

behaviour of a threshold-like state system is straightfor-

ward with a maxmin-x model.
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Appendix: Proof of Proposition 1

When all CA states are equiprobable, we have that S ¼
log Z from (8), where Z ¼ jRj, the number of CA states.

The Shannon entropy can be rewritten as

S ¼
XjRj

j¼1

pðsjÞ log2ð1=pðsjÞÞ:

Now we use the fact that the logarithm function is concave

and apply Jensen’s inequality, as follows (Jensen 1906).

log

PZ
j¼1 pðsjÞ:1=pðsjÞPZ

j¼1 pðsjÞ

 !
�
PZ

j¼1 pðsjÞ: logð1=pðsjÞÞPZ
j¼1 pðsjÞ

ð13Þ

log
XZ

j¼1

pðsjÞ:1=pðsjÞ
 !

�
XZ

j¼1

pðsjÞ: logð1=pðsjÞÞ

since
XZ

j¼1

pðsjÞ ¼ 1:

ð14Þ

logZ � S: ð15Þ
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