
Evolving graphs with semantic neutral drift

Timothy Atkinson1 • Detlef Plump1 • Susan Stepney1

Published online: 29 October 2019
� The Author(s) 2019

Abstract
We introduce the concept of Semantic Neutral Drift (SND) for genetic programming (GP), where we exploit equivalence

laws to design semantics preserving mutations guaranteed to preserve individuals’ fitness scores. A number of digital

circuit benchmark problems have been implemented with rule-based graph programs and empirically evaluated, demon-

strating quantitative improvements in evolutionary performance. Analysis reveals that the benefits of the designed SND

reside in more complex processes than simple growth of individuals, and that there are circumstances where it is beneficial

to choose otherwise detrimental parameters for a GP system if that facilitates the inclusion of SND.

Keywords Genetic programming � Evolutionary algorithms � Neutral drift � Semantic equivalence � Mutation operators �
Graph programming

1 Introduction

In genetic programming the ability to escape local optima

is key to finding globally optimal solutions. Neutral drift, a

mechanism whereby individuals with fitness-equivalent

phenotypes to the existing population may be generated by

mutation (Galván-López et al. 2011) offers the search of

new neighborhoods for sampling thus increasing the

chance of leaving local optima. A number of studies on

neutrality in Cartesian Genetic Programming (CGP)

(Miller and Smith 2006; Vassilev and Miller 2000; Turner

and Miller 2015b) find it to be an almost always beneficial

property for studied problems. In general, comparative

studies (Miller 2011) find that CGP using only mutation

and neutral drift is able to compete with traditional tree-

based Genetic Programming (GP) which uses more

familiar crossover operators (see Koza 1992) to introduce

genetic variation.

Turner and Miller (2015b) makes a distinction between

implicit neutral drift (where a genetic operator yields a

semantically equivalent child) and explicit neutral drift

(where a genetic operator only modifies intronic code). We

note that many comparative studies largely focus on the

role of both types of neutral drift as byproducts of existing

genetic operators and neutrality within the representation

(Miller and Smith 2006; Vassilev and Miller 2000; Turner

and Miller 2015b; Banzhaf 1994) rather than as deliber-

ately designed features of an evolutionary system. We

propose the opposite; to employ domain knowledge of

equivalence laws to specify mutation operators on the

active components of individuals which always induce

neutral drift. Hence our work can be viewed as an attempt

to explicitly induce additional implicit neutral drift in the

sense of Turner and Miller (2015b).

We build on our approach EGGP (Evolving Graphs by

Graph Programming) (Atkinson et al. 2018a), by imple-

menting semantics preserving mutations to directly achieve

neutral drift on the active components of individual solu-

tions. Here, we implement logical equivalence laws as

mutations on the active components of candidate solutions

to digital circuit problems to produce semantically equiv-

alent, equally fit, children. While our semantics-preserving

mutations produce semantically equivalent children they

do not guarantee preservation of size; our fitness measures

evaluate semantics only, not, for example, size or

complexity.

& Timothy Atkinson

tja511@york.ac.uk

Detlef Plump

detlef.plump@york.ac.uk

Susan Stepney

susan.stepney@york.ac.uk

1 Department of Computer Science, University of York, York,

UK

123

Natural Computing (2021) 20:127–143
https://doi.org/10.1007/s11047-019-09772-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5036-3358
http://orcid.org/0000-0002-1148-822X
http://orcid.org/0000-0003-3146-5401
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-019-09772-4&domain=pdf
https://doi.org/10.1007/s11047-019-09772-4

We describe and implement Semantic Neutral Drift

straightforwardly by using rule-based graph programs, here

in the probabilistic language P-GP 2 (Atkinson et al.

2018b). This continues from Atkinson et al. (2018a) where

we use a probabilistic variant of the graph programming

language GP 2 to design acylicity-preserving edge muta-

tions for digital circuits that correctly identify the set of all

possible valid mutations. The use of P-GP 2 here enables

concise description of complex transformations such as

DeMorgan’s laws by identifying and rewriting potential

matches for these laws in the existing formalism of graph

transformation. This reinforces the notion that the direct

encoding of solutions as graphs is useful as it allows

immediate access to the phenotype of individual solutions

and makes it possible to design complex mutations by

using powerful algorithmic concepts from graph

programming.

We investigate four sets of semantics-preserving muta-

tions for digital circuit design, three built upon logical

equivalence laws and a fourth taken from term-graph

rewriting. We run EGGP with each rule-set on a set of

benchmark problems and establish statistically significant

improvements in performance for most of our visited

problems. An analysis of our results reveals evidence that it

is the semantic transformations, beyond simple ‘neutral

growth’, which are aiding performance. We then combine

our two best performing sets of mutation operators and

evaluate this new set under the same conditions, achieving

further improvements. We also provide evidence that,

although operators implementing semantics-preserving

mutations may be more difficult to use, the inclusion of

those semantics-preserving mutations may allow evolution

to out-perform equivalent processes that use ‘easier’

operators.

The rest of this paper is organised as follows. In Sect. 2

we review existing literature on Neutral Drift in Genetic

Programming. In Sects. 3 and 4 we describe the graph

programming language GP 2 and our existing approach

EGGP. In Sect. 5 we describe our extension to EGGP

where we incorporate deliberate neutral drifts into the

evolutionary process. In Sect. 6 we describe our experi-

mental setup and in Sect. 7 we give the results from these

experiments. In Sect. 8 we provide in-depth analysis of

these results to establish precisely what components of our

approach are aiding performance. In Sect. 9 we conclude

our work and propose potential future work on this topic.

2 Neutral drift in genetic programming

Neutral drift remains a controversial subject in Evolution-

ary Computation. See Galván-López et al. (2011) for a

survey. Here, we focus on neutrality in the context of

genetic programming as the most relevant area to our own

work; there is also literature on, for example, genetic

algorithms (Harvey and Thompson 1997) and landscape

analysis (Barnett 1998).

The process of neutral drift might be described as the

mutation of individual candidate solutions to a given

problem without advantageous or deleterious effect on

their fitness. This exposes the evolutionary algorithm to a

fitness ‘plateau’ with each fitness-equivalent individual

offering a different portion of the landscape to sample.

Neutral drift can be viewed as random walks on the

neighborhoods of surviving candidate solutions. In a sys-

tem with neutral drift, an apparently local optimum might

be escaped by ‘drifting’ to some other fitness-equivalent

solution that has advantageous mutations available.

The most apparent demonstration of neutral drift in

genetic programming literature occurs in Cartesian Genetic

Programming (CGP) (Miller and Thomson 2000). In CGP,

individuals encode directed acyclic graphs; some portion of

a genome may be ‘inactive’, contributing nothing to the

phenotypic fitness, because it represents a subgraph that is

not connected to the phenotype’s main graph. These

inactive genes can mutate without influencing an individ-

ual’s fitness and then, at some later point, may become

active. Early work on CGP has found that by allowing

neutral drift to take place (by choosing a fitness-equivalent

child over its parent in the 1 þ k algorithm), the success

rate of experiments significantly improves (Vassilev and

Miller 2000). A later claim that neutrality in CGP aids

search in needle-in-haystack problems (Yu and Miller

2002) has been contested by a counter-claim that better

performance can be achieved by random search (Collins

2006). Miller and Smith (2006) finds that better perfor-

mance can be achieved with neutral drift enabled by

increasing the amount of redundant material present in

individuals. Turner and Miller (2015b) establishes a dis-

tinction between explicit and implicit neutral drift. Explicit

neutral drift occurs on inactive components of the indi-

vidual, whereas implicit neutral drift occurs when active

components of the individual are mutated but the fitness

does not change. The authors were able to isolate explicit

neutral drift and demonstrate that it offers additive benefits

beyond those of implicit neutral drift.

Outside of CGP, Banzhaf (1994) proposes a form of

Linear Genetic Programming where programs are decoded

from bit-strings, and redundancy exists, in that certain

operations have multiple representations. A study of

evolvability in Linear GP (Hu and Banzhaf 2009) found

that neutrality cooperates with ‘variability’ (the ability of a

system to generate phenotypic changes) to generate adap-

tive phenotypic changes which aid the overall ability of the

system to respond to the landscape. Recent work Hu and

Banzhaf (2018) studying the role of neutrality in small

128 T. Atkinson et al.

123

Linear GP programs found that the robustness of a geno-

type (the proportion of its neighbours within the landscape

which are neutral changes) has a complex and non-mono-

tonic relationship with the overall evolvability of the

genotype.

In Downing (2005), binary decision diagrams are

evolved with explicit neutral mutations. Although those

neutral mutations are not isolated for their advantages/

disadvantages, a later work has found that a higher rate of

neutral drift on binary decision diagrams is advantageous

(Downing 2006). Koza also makes some reference to the

ideas we employ in Sect. 5 when he describes the editing

digital circuits by applying DeMorgan’s laws to them

(Koza 1992, Ch. 6). A study of neutrality in tree-based GP

for boolean functions (Vanneschi et al. 2012) found a

correlation between using a more effective function set and

the existence of additional neutrality when using that

function set.

While not directly related to neutrality, a number of

investigations have been carried out exploring the notion of

semantically aware genetic operators to improve the

locality of mechanisms such as crossover in tree-based GP

(Moraglio et al. 2012; Nguyen et al. 2009). We refer the

reader to the extensive survey (Vanneschi et al. 2014) on

this field of research. Whereas neutrality is the process

whereby phenotypically identical and genotypically dis-

tinct individuals are visited by the evolutionary process,

semantically aware genetic operators attempt to produce

phenotypically ’close’ individuals to improve the locality

of the search neighbourhood. It should be noted that

employing semantically aware genetic operators may

sometimes lead to a loss of diversity (Pham et al. 2013). It

could be argued that the deliberate neutral operators we

propose in this work are a form of semantically aware

mutation operators designed to explicitly exploit neutrality.

Neutral drift has some parallels with work on biological

evolution. Kimura’s Neutral Theory of Molecular Evolu-

tion (Kimura 1983) posits that most mutations in nature are

neither advantageous or deleterious, instead introducing

‘neutral’ changes that do not affect phenotypes but account

for much of the genetic variation within and between

species. While Kimura’s theory remains controversial (see

Hahn 2007), it appears to loosely correspond to the notions

of neutral mutation described in genetic programming

literature.

Throughout the literature we have covered, neutrality is

mostly considered in the sense of explicit neutral drift as

defined in Turner and Miller (2015b). Conversely in our

work here we are focusing on neutral drift on the active

components of individual solutions, with some relationship

therefore to the neutral mutations on binary decision dia-

grams in Downing (2005).

3 Graph programming with P-GP 2

Here we give a brief introduction to the graph program-

ming language GP 2; see Plump (2017) for a detailed

account of the syntax and semantics of the language.

A graph program consists of declarations of graph

transformation rules and a main command sequence con-

trolling the application of the rules. Graphs are directed and

may contain loops and parallel edges. The rules operate on

host graphs whose nodes and edges are labelled with

integers, character strings or lists of integers and strings.

Variables in rules (relevant for this paper) are of type int,

string or list. Integers and strings are considered as

lists of length one, hence every label in GP 2 is a list. For

example, in Fig. 1, the list variables a, c and e are used as

node labels while b and d serve as edge labels. The small

numbers attached to nodes are identifiers that specify the

correspondence between the nodes in the left and the right

graph of the rule.

Besides carrying list expressions, nodes and edges can

be marked. For example, in the program of Fig. 3, blue and

red node marks are used to prevent the rule mu-

tate_edge from creating a cycle. In rules, a magenta

colour can be used as a wildcard for any mark. For

example, in the rules remove_edge, unmark_edge

and unmark_node of Fig. 6, pairs of magenta nodes with

the same identifier on the left and the right represent nodes

with the same green, blue or grey mark.

The principal programming constructs in GP 2 are

conditional graph-trans-for-mation rules labelled with

expressions. To apply a rule to a host graph, the rule is first

instantiated by replacing all variables with values and

evaluating the expressions. The rule’s condition, if present,

has to evaluate to true. Then the left graph of the instan-

tiated rule is matched (injectively) with a subgraph of the

host graph. Finally the subgraph is replaced with the right

graph of the instantiated rule. This means that the nodes

corresponding to the numbered nodes of the left graph are

preserved (but possibly re-labelled), any other nodes and

all edges of the left graph are deleted, and any unnumbered

nodes and all edges of the rule’s instantiated right graph are

inserted.

Fig. 1 A GP 2 program computing the transitive closure of a graph

Evolving graphs with semantic neutral drift 129

123

For example, given any host graph G, the program in

Fig. 1 produces the smallest transitive graph that results

from adding unlabelled edges to G. (A graph is transitive if

for each directed path from a node v1 to another node v2,

there is an edge from v1 to v2.) The program applies the

single rule link as long as possible to a host graph. In

general, any subprogram can be iterated with the postfix

operator ‘‘!’’. Applying link amounts to non-determin-

istically selecting a subgraph of the host graph that matches

link’s left graph, and adding to it an edge from node 1 to

node 3 provided there is no such edge (with any label). The

application condition where not edge(1,3) ensures

that the program terminates and extends the host graph

with a minimal number of edges.

Besides applying individual rules, a program may apply

a rule set fr1; . . .; rng to the host graph by non-determin-

istically selecting a rule ri among the applicable rules and

applying it. Further control constructs include the sequen-

tial composition P;Q of programs P and Q, and the

branching construct try T then P else Q. To execute

the latter, test T is executed on the host graph G and if this

results in some graph H, program P is executed on H. If

T fails (because a rule or set of rules cannot be matched),

program Q is executed on G. The variant try T of this

construct executes T on G and if this results in graph H,

returns H. If the execution fails, G is returned unmodified.

In general, the execution of a program on a host graph

may result in different graphs, fail, or diverge. The se-

mantics of a program P maps each host graph to the set of

all possible outcomes (Plump 2012). GP 2 is computa-

tionally complete in that every computable function on

graphs can be programmed (Plump 2017).

GP 2’s inherent non-determinism is useful as many

graph problems are naturally multi-valued, for example the

computation of a shortest path or a minimum spanning tree.

The results described in the rest of this paper have been

obtained with a probabilistic extension of GP 2, called P-

GP 2. This provides a rule-set command ½r1; . . .; rn� which

chooses a rule uniformly at random among the applicable

rules and applies the rule with a match selected uniformly

at random among all matches of that rule (Atkinson et al.

2018b).

4 Evolving graphs by graph programming
(EGGP)

4.1 Introduction to EGGP

In Atkinson et al. (2018a) we introduce EGGP, an evolu-

tionary algorithm that evolves graphs (specifically, in that

case, digital circuits) using graph programming. We have

found that by evolving graphs directly and designing

mutation operators that respect the constraints of the

problem, we are able to significantly outperform CGP

under similar conditions on a number of digital circuit

benchmark problems. In this section we formally describe

this approach.

Our approach is justified by two observations: (1) the

use of graphs as a representation is beneficial, as it directly

addresses a number of motivating problems within com-

puter science such as neural network topology, Bayesian

network topology, digital circuit design, program design,

and quantum circuit design; (2) with graphs as a repre-

sentation it is necessary to have a language to describe the

neighborhoods (mutations) on individuals. Graph pro-

gramming readily lends itself to this endeavour due to its

computational completeness over functions on graphs.

Our approach is not alone in addressing the issue of

evolving graphs and graph-like programs. CGP (Miller and

Thomson 2000), where individuals encode directed acyclic

graphs, is a primary candidate for related work and is used

as a benchmark here. Parallel Distributed Genetic Pro-

gramming (Poli 1997, 1999) introduces a ‘graph on a grid’

representation for genetic programming in a similar man-

ner to the grid-like description of CGP, allowing the evo-

lution of programs with multiple outputs and sharing.

MIOST (López et al. 2007) also extends traditional genetic

programming to these same concepts of multiple outputs

and sharing. For a more detailed discussion of related

approaches, see Atkinson et al. (2018a). Our approach

differs from these in that (1) we deal with graphs directly

rather than through an encoding or some subset of graphs;

and (2) our mutation operators are domain-specific and

may be changed to suit the constraints of a problem and to

exploit domain-specific knowledge.

Here we address the problems of digital circuits, pri-

marily because they suit our discussion of neutral drift by

design. For this reason, the rest of this paper focuses on the

evolution of digital circuits as a concrete case study.

4.2 Evolving digital circuits as graphs

We directly encode digital circuits as graphs such that the

graph contains input and output nodes (corresponding to

the inputs and outputs of the intended problem) and func-

tion nodes. In P-GP 2, we identify input nodes and output

nodes by labels of the form }IN} : x and }OUT} : y

respectively, where x and y are integers that identify which

particular input or output the node corresponds to. Function

nodes are labelled as }½fi�}: a, where ½fi� is a string

uniquely identifying function fi 2 F and a is the arity of fi.

In this work our functions are symmetrical, but an exten-

sion is available to associate each edge with an integer to

identify which particular input of a function it corresponds

to. Figure 2 shows a digital circuit encoded in this form.

130 T. Atkinson et al.

123

For a specific i input, o output problem over function set

F, we must evolve graphs that are constrained:

– Individual solutions are acyclic.

– Individual solutions have i input nodes.

– Individual solutions have o output nodes.

– All other nodes that are neither inputs nor outputs must

be function nodes associated with some function fi 2 F

and have exactly a outgoing edges where a is the arity

of fi.

We use three graph programs to induce a landscape;

InitCircuit, MutateFunction and MutateEdge. The

first is the initialisation program for generating individual

graphs, and the others are mutation operators.

InitCircuit and MutateFunction are given in ‘‘Ap-

pendix’’; it should be clear that they satisfy the constraints

described above. Here we describe in more detail the

MutateEdge operator, which is the mutation operator pri-

marily responsible for the topological changes to individual

solutions.

The MutateEdge operator is shown in Fig. 3. It works

by first picking an edge to mutate at random using the

pick edge rule, marking that edge red, its source blue and

its target red. Then mark output is applied as long as

possible, marking blue every node for which there is a

directed path to the source of the edge we wish to mutate.

mutate edge can be safely applied to redirect the edge to

target some unmarked node (chosen at random); this can-

not introduce a cycle as the new target is unmarked and

therefore does not have a directed path to the existing

source of the mutating edge. Finally unmark is applied as

long as possible to return the graph to an unmarked state.

This P-GP 2 program uses a uniform random distribution

to chose the edge to mutate, a uniform distribution over all

possible edge mutations that preserve acyclicity, and

clearly respects the other constraints mentioned above, as it

does not relabel any nodes or change the number of out-

going edges of any node. In Atkinson et al. (2018a) we

argue that this edge mutation generalises the order pre-

serving mutations of CGP and offers additional possible

mutations. A visual step-by-step execution of this mutation

operator is shown in Fig. 4.

In general, we use the 1 þ k evolutionary algorithm with

EGGP. 1 þ k has been used extensively with CGP with

favourable comparisons with large-population GP systems

(see Miller 2011). A comparative study of crossover in

CGP (Husa and Kalkreuth 2019) found that there is no

currently known universal crossover operator for CGP and

that 1 þ k is sometimes the best known approach for cer-

tain problems. Current advice (Miller 2011; Turner and

Miller 2015a) is to use 1 þ k as the ‘standard’ CGP

approach. The comparative study between EGGP and CGP

(Atkinson et al. 2018a) exclusively used the 1 þ k strategy

with EGGP performing favourably on many digital circuit

benchmark problems. In combination, these points appear

to justify the exclusive use of 1 þ k with EGGP in our

study. Additionally, the use of 1 þ k has the added effect of

‘isolating’ our notion of semantic neutral drift, in that we

can apply logical equivalence laws to the single surviving

individual in each generation knowing that its application

is not disrupting other processes e.g. crossover or non-

elitist selection.

5 Semantic neutral drift

5.1 The concept

Semantic Neutral Drift (SND) is the augmentation of a GP

system with semantics-preserving mutations. These muta-

tions are added to the standard mutation and cross-over

operators, which are intended to introduce variation to

search. In this section we refer to mutation operators and

individuals generally, not just our specific operation. For

individual solutions i, j and mutation operator m, we write

i !m j to mean that j can be generated from i by using

mutation m. A semantics-preserving mutation is one that

guarantees that the semantic meaning of a child generated

by that mutation is identical to that of its parent, for any

choice of parents and a given semantic model. This

Fig. 2 A P-GP 2 encoding of a 2-input, 2-output digital circuit over

the function set fAND; OR; NAND; NORg. (The outgoing edges of a node

point to the sources of that node’s input values, following the

convention used in the graph programming community). Output 0

(corresponding to the node labelled }OUT} : 0) has logical behaviour

:ði0 _ i1Þ where i0 and i1 correspond to the input nodes labelled

}IN} : 0 and }IN} : 1 respectively.

Evolving graphs with semantic neutral drift 131

123

definition is adequate for our domain of GP, where there is

no distinction between the genotype and phenotype.

For our digital circuits case study, this semantic equiv-

alence is well-defined: two circuits are semantically

equivalent if they describe identical truth tables. Therefore,

semantics preserving mutations in this context are ones

which preserve an individual’s truth table. As we will be

evaluating individuals by the number of incorrect bits in

their truth tables, there may be individuals with equivalent

fitness but different truth tables. Therefore, semantic

equivalence is distinct from, but related to, fitness

equivalence.

Additionally, semantics preserving mutations do not

necessarily induce neutral drift. In the circumstance that a

fitness function considers more than the semantics of an

individual, there is no guarantee that the child of a parent

generated by a semantics-preserving mutation has equal

fitness to its parent. For example, if a fitness function

penalized the size of an individual, a semantics-preserving

mutation which introduces additional material (e.g.

increases size) would generate children less fit than their

parents under this measure.

We identify a special class of fitness functions, where

fitness depends only on semantics, and so where seman-

tics-preserving mutations are guaranteed to preserve fit-

ness. In this circumstance, any use of semantics-pre-ser-

ving mutations is a deliberate, designed-in, form of neutral

drift. The fitness function in our case study is an example

of this; the fitness of an individual depends only on its truth

table. Formally we have the following: a set of semantics-

preserving mutation operators M over search space S with

respect to a fitness function f that considers only semantics

guarantees that

8i; j 2 S;m 2 M : ðj !m iÞ) ðf ðiÞ ¼ f ðjÞÞ:

Consider a GP run that has reached a local optimum; no

available mutations or crossover operators offer positive

improvements with respect to the fitness function. It may

be the case that there is a solution elsewhere in the land-

scape that is equally fit as the best found solution but has a

neighborhood with positive mutations available. By

applying a semantics preserving mutation to transform the

best found solution into this other, semantically equivalent,

solution, the evolutionary process gains access to this better

neighborhood and can continue its search. Hence the pro-

posed benefit of Semantic Neutral Drift is the same as

conventional neutral drift: that by transforming discovered

solutions we gain access to different parts of the landscape

that may allow the population to escape local optima. The

distinction here is that we are employing domain knowl-

edge to deliberately preserve semantics, rather than

accessing neutral drift as a byproduct of other evolutionary

processes. The hypothesis we are investigating is that this

deployment of domain knowledge yields more meaningful

neutral mutations than simple rewrites of intronic code, and

that this leads the evolutionary algorithm to more varied

(and therefore useful) neighborhoods.

A simple visualization of Semantic Neutral Drift is

given in Fig. 5. Here the landscape exists in one dimension

(the x-axis) with fitness of individuals given in the y-axis.

In this illustration, the individual has eached a local opti-

mum, then a semantics-preserving mutation moves it to a

Fig. 3 A P-GP 2 edge mutation MutateEdge for digital circuits. This

edge mutation preserves acylicity. The rule pick edge is used to

probabilistically choose an edge to mutate. Then mark output is

applied as long as possible, marking every node with a path to the

source of the edge we wish to mutate blue. mutate edge can then be

applied safely, redirecting the edge to target some unmarked node

which does not have a path to the source of the mutating edge. Finally

unmark is applied as long as possible to return the graph to an

unmarked state

132 T. Atkinson et al.

123

different ‘hill’ from which it is able to reach the global

optimum.

While our experiments will focus on the role of

semantic neutral drift when evolving graphs with EGGP,

we argue that the underlying concept is extendable to other

GP systems. For example, Koza noted the possibility of

applying DeMorgan’s laws to GP trees (Koza 1992, Ch. 6)

which, if used in a continuous process rather than as a

solution optimiser, would induce semantic neutral drift. It

is also plausible to apply similar operators to CGP (Miller

and Thomson 2000) representations, although the ordering

imposed on the representation raises some technical diffi-

culties with respect to where newly created nodes should

be placed. The potential for Embedded CGP (Walker and

Miller 2008) to effectively grow and shrink the overall size

of the genotype offers some hope in this direction.

5.2 Designing semantic neutral drift

We extend EGGP by applying semantics-preserving

mutations to members of the population each generation.

Here we focus on digital circuits as a case study, and

design mutations which modify the active components of

the individual by exploiting domain knowledge of logical

equivalence.

For the function set fAND; OR; NOTg there are a number

of known logical equivalences. Here we use DeMorgan’s

laws:

DeMorgan F1 : :ða ^ bÞ ¼ :a _ :b
DeMorgan F2 : :ða _ bÞ ¼ :a ^ :b
DeMorgan R1 : :a _ :b ¼ :ða ^ bÞ
DeMorgan R2 : :a ^ :b ¼ :ða _ bÞ

and the identity and double negation laws:

ID-AND F : a ¼ a ^ a

ID-AND R : a ^ a ¼ a

ID-OR F : a ¼ a _ a

ID-OR R : a _ a ¼ a

ID-NOT F : a ¼ ::a
ID-NOT R : ::a ¼ a

Here we investigate different subsets of these semantics-

preserving rules. We encode them as graph transformation

rules to apply to the active component of an individual. In

the context of the 1 þ k evolutionary algorithm, we apply

Fig. 4 A step-by-step execution of the edge mutation operator given

in Fig. 3. For visual simplicity, node labels have been omitted

Fig. 5 A simple visualization of Semantic Neutral Drift. Individuals

exist in one dimension along the x-axis. On the y-axis, each individual

has an associated fitness. Normal mutations (black arrows) allow the

evolutionary algorithm to hill-climb by sampling from adjacent

points. A semantics-preserving mutation (red arrow) allows the EA to

leave a local optimum to move to a different slope where it can then

climb to the global optimum. (Color figure online)

Evolving graphs with semantic neutral drift 133

123

one of the rules from the subset to the surviving individual

of each generation.

Encoding these semantics-preserving rules is non-trivial

for our individuals as they incorporate sharing; multiple

nodes may use the same node as an input, and therefore

rewriting or removing that node, e.g. as part of DeMor-

gan’s, may disrupt the semantics elsewhere in the indi-

vidual. To overcome this, we need a more sophisticated

rewriting program. The graph program in Fig. 6 is designed

for the logical equivalence laws DeMorganF1jF2,

DeMorganR1jR2; analogous programs are used for other

operators.

The program Main in Fig. 6 works as follows.

{mark_out, mark_active}! : Mark all active nodes

with the given rule-set applied as long as possible. Once

this rule-set has no matches, all inactive nodes must be

unmarked: these are ‘neutral’ nodes that do not contribute

to the semantics of the individual.

mark_neutral! : Mark these neutral nodes grey with

the rule applied as long as possible. We can then rewrite

the individual while preserving semantics with respect to

shared nodes by incorporating neutral nodes into the active

component rather than overwriting existing nodes.

try [demorgan_f1, demorgan_f2, demor-

gan_r1, demorgan_r2] : pick some rule with uniform

probability from the subset of the listed rules that have

valid matches. When a rule has been chosen, a match is

chosen for it from the set of all possible matches with

uniform probability. The probabilistic rule-set call is sur-

rounded by a try statement to catch the fail case that none

of the rules have matches.

In Fig. 6 we show one of the 4 referenced rules,

demorgan f1, which corresponds to the logical equiva-

lence law DeMorganF1; the others may be given analo-

gously. On the left hand side is a match for the pattern

:ða ^ bÞ in the active component and 2 neutral nodes. If

the matched pattern were directly transformed, any nodes

Fig. 6 A P-GP 2 program for

performing semantics

preserving mutations to digital

circuits

134 T. Atkinson et al.

123

sharing use of the matches for node 2 or node 3 could have

their semantics disrupted. Instead, the right-hand-side of

demorgan f1 changes the syntax of node 1 to correspond

to :a _ :b by absorbing the matched neutral nodes (pre-

serving its semantics) without rewriting nodes 1 or 2 and

disrupting their semantics. Nodes 3 and 4 are marked green

and their newly created outgoing edges are marked red.

These marks are used later in the program to clean up any

previously existing outgoing edges they have to other parts

of the graph.

remove_edge: once a semantics preserving rule has

been applied, the rule is applied as long as possible to

remove the other outgoing edges of green marked absorbed

nodes.

unmark_edge!; unmark_node!: return the graph

to an unmarked state, where nodes and edges with any

mark (indicated by magenta edges and nodes in the rules)

have their marks removed.

This program highlights the helpfulness of graph pro-

gramming for this task. The probabilistic application of

complex transformations, such as DeMorgan’s law, to only

the active components of a graph-like program with shar-

ing is non-trivial, but can be concisely described by a graph

program.

5.3 Variations on our approach

We identify 3 sets of logical equivalence rules to study,

alongside another example of semantics preserving trans-

formation taken from term-rewriting theory. These sets are

detailed in Table 1. The first 3 sets comprise the logical

equivalence laws already discussed. The last, CC, refers to

collapsing and copying from term graph rewriting (see

Habel et al. 1988). Collapsing is the process of merging

semantically equivalent subgraphs, and copying is the

process of duplicating a subgraph.

The rules collapse2 and copy2 are shown in Fig. 7.

These collapse and copy, respectively, function nodes of

arity 2 without garbage collection. We only require rules

for arity 1 and arity 2 as our function sets in experiments

are limited to arity 2. This final set is included for several

reasons: it takes a different form from the domain-specific

logical equivalence laws in the other 3 sets; it allows us to

investigate if the apparent overlap between term-graph

rewriting and evolutionary algorithms bears fruit; it

appears to resemble gene duplication, which is a natural

biological process believed to aid evolution (Zhang 2003).

6 Experimental setup

To evaluate our approach, we study the same digital circuit

benchmark problems as in Atkinson et al. (2018a), listed in

Table 2. We perform 100 runs of each of our 4 neutral drift

sets (Table 1) on each problem (Table 2). We use the 1 þ k
evolutionary algorithm with k ¼ 4. We use a mutation rate

Table 1 The studied semantics preserving rule-sets

Set Rules

DeMorgan (DM) DeMorganF1, DeMorganF2, DeMorganR1, DeMorganR2

DeMorgan and Negation (DMN) DeMorganF1, DeMorganF2, DeMorganR1, DeMorganR2, ID-NOTF , ID-NOTR

Identity (ID) ID-ANDF , ID-ANDR, ID-ORF , ID-ORR, ID-NOTF , ID-NOTR

Collapse/Copy (CC) collapse1, collapse2, copy1, copy2

Fig. 7 The rules copy 2 and collapse 2. The rule copy 2 matches

a 2-arity function node that is shared by 2 active nodes and absorbs a

neutral node to effectively copy that 2-arity function node and redirect

one of the original node’s shared incoming edges to that copy. The

rule collapse 2 attempts the reverse of copy 2 by matching 2

active identical 2-arity function nodes and redirecting one of those

nodes’ incoming edges to the other. The node which has lost an

incoming edge, if it was shared by no other nodes, may now become

neutral.

Evolving graphs with semantic neutral drift 135

123

of 0.01 and fix all individuals to use 100 function nodes.

The fitness function used is the number of incorrect bits in

an individual’s truth table compared to the target truth

table, hence we are minimizing the fitness. We are able to

achieve 100% success rate in finding global optima in our

evolutionary runs, so we compare the number of evalua-

tions required to find perfect fitness.

The function set used here is fAND; OR; NOTg, rather than

the set fAND; OR; NAND; NORg used in Atkinson et al.

(2018a) and (Miller 2011, Ch.2). Our function set is chosen

to directly correspond to the logical equivalence laws used.

To give context to the results in Sect. 7, and to highlight

that the chosen function set is the harder of the two, we run

EGGP with both function sets and detail the results in

Table 3. For additional context, the comparative study in

Atkinson et al. (2018a) has shown EGGP to perform

favourably in comparison to CGP on these problems with

the fAND; OR; NAND; NORg function set.

We use a two-tailed Mann–Whit-ney U test (Mann and

Whitney 1947) to establish a statistically significant dif-

ference between the median number of evaluations using

the two different function sets. When a result is statistically

significant (p\0:05) we also use a Vargha–Delaney A test

(Vargha and Delaney 2000) to measure the effect size. On

every problem, using {AND, OR, NOT} takes significantly

(p\0:05) more effort (in terms of evaluations) than when

using {AND, OR, NAND, NOR}. This justifies our assertion

that the former function set is ‘harder’ to evolve.

7 Results

The results from our experiments are given in Table 4.

Each neutral rule-set is listed with the median evaluations

(ME) required to solve each benchmark problem.

We use a two-tailed Mann–Whitney U test to demon-

strate statistical significance in the difference of the median

evaluations for these runs and the unmodified EGGP results

given in Table 3.

For most problems and neutral rule-sets, the inclusion of

semantic neutral drift yields statistically significant

improvements in performance. There are some exceptions:

for the 4 � 1-bit comparator (COMP) problem, the inclu-

sion of neutral rule-sets leads either to insignificant dif-

ferences or to significantly worse performance for every

rule-set except ID, which performs significantly better. The

DeMorgan’s rule-set (DM) and Copy/Collapse rule-set

(CC) appear to yield the smallest benefit, finding significant

improvement on only 8 and 9 of the 13 benchmark prob-

lems respectively. Additionally, both of these rule-sets

yield significantly worse performance for the 4 � 1-bit

comparator (COMP) problem. The DeMorgan’s and

Negation rule-set (DMN) offer the best performance on the

2-bit and 3-bit adder problems (2-Add and 3-Add), in terms

of median evaluations, p value and effect size. The Identity

rule-set (ID) achieves the best performance on the 2-bit and

3-bit multiplier problems (2-Mul and 3-Mul) but fails to

achieve significant improvements on the 3:8-bit de-multi-

plexer problem (DeMux).

Our results show that, for some problems and certain

neutral rule-sets, the inclusion of neutral drift may improve

performance with respect to the effort (measured by the

Table 2 Digital circuit benchmark problems

Digital circuit No. inputs No. outputs

1-bit adder (1-Add) 3 2

2-bit Adder (2-Add) 5 3

3-bit Adder (3-Add) 7 4

2-bit Multiplier (2-Mul) 4 4

3-bit Multiplier (3-Mul) 6 6

3:8-bit De-Multiplexer (DeMux) 3 8

4 � 1-bit Comparator (Comp) 4 18

3-bit Even Parity (3-EP) 3 1

4-bit Even Parity (4-EP) 4 1

5-bit Even Parity (5-EP) 5 1

6-bit Even Parity (6-EP) 6 1

7-bit Even Parity (7-EP) 7 1

Table 3 Baseline results from digital circuit benchmarks for EGGP on

the fAND; OR; NOTg and fAND; OR; NAND; NORg function sets. ME/IQR:

the median/inter-quartile range of the number of evaluations used to

solve the problem

Problem EGGP

fAND; OR; NOTg fAND; OR; NAND; NORg p A

ME IQR ME IQR

1-Add 15,538 18,963 7495 8764 10�7 0.71

2-Add 162,003 172,781 82,688 79,333 10�8 0.73

3-Add 742,948 679,040 309,570 288,865 10�16 0.83

2-Mul 21,733 28,319 14,263 13,801 10�4 0.65

3-Mul 1,326,880 907,544 932,430 643,529 10�6 0.68

DeMux 28,123 17,450 17,100 10,763 10�9 0.75

Comp 408,448 275,581 147,343 128,304 10�17 0.85

3-EP 7403 8051 4295 5500 10�4 0.66

4-EP 26,715 20,430 16,445 13,568 10�9 0.73

5-EP 76,608 57,518 42,778 29,454 10�10 0.75

6-EP 175,908 120,504 80,940 56,283 10�15 0.83

7-EP 380,600 237,965 157,755 118,065 10�19 0.87

The p value is from the two-tailed Mann–Whitney U test. Where

p\0:05, the effect size from the Vargha-Delaney A test is shown;

large effect sizes (A[0:71) are shown in bold

136 T. Atkinson et al.

123

number of evaluations) required. Additionally, they offer

strong evidence for the claim that there are some neutral

rule-sets which may generally improve performance for a

wide range of problems, particularly evidenced by the

DMN and ID rule-sets.

We identify DMN and ID as the best performing rule-

sets; each of these yield significant improvements in per-

formance across all but one problems (the exceptions being

Comp and DeMux, respectively), and on those single

problems that they fail to improve upon, their inclusion

does not lead to significant detriment in performance. For

this reason, these rule-sets are the subject of further anal-

ysis in Sect. 8.

8 Analysis

8.1 Neutral drift or neutral growth?

Analysis of the runtime of EGGP augmented with the

DMN and ID neutral rule-sets reveals their bias towards

searching the space of larger solutions. When we refer to

larger solutions, given that EGGP uses fixed-size repre-

sentations, we refer to the proportion of the individual

graph which is active, defined by the number of nodes to

which there is a path from an output node. We demonstrate

this with the results given in Table 5. Here, we measure the

average (mean) size of the single surviving member

throughout evolutionary runs on the 3-Add and Comp

problems and give the median and interquartile range of

these average sizes over 100 runs. The size of an individual

is the number of active function nodes (those which are

reachable from output nodes) contained within it. We give

these values for DMN, ID and EGGP alone. We use a two-

tailed Mann-Whitney U test to measure for statistical dif-

ferences between these observations. On both problems,

DMN has a higher median average size (MAS) than both

ID and EGGP alone (p\0:05) and ID also has a higher

MAS than EGGP alone (p\0:05).

This observation challenges existing ideas that increas-

ing the proportion of inactive code aids evolution (Miller

and Smith 2006). We are able to achieve improvements in

performance while effectively reducing the proportion of

inactive code. It may be the case that high proportions of

inactive code are helpful only when other forms of neutral

drift are not available.

The result that DMN and ID increase the active size of

individuals initially appears to challenge our hypothesis

that it is semantic neutral drift that aids evolution. An

alternative explanation could be that it is ‘neutral growth’,

where our neutral rule-sets increase the size of individuals,

that biases search towards larger solutions, which then

happen to be better candidates for the problems we study.

However, the CC neutral rule-set exclusively features

neutral growth and neutral shrinkage, exploiting no domain

knowledge beyond the notion that identical nodes in

identical circumstances perform the same functionality,

and featuring no meaningful semantic rewriting. We

therefore compare how CC and DMN perform with dif-

ferent numbers of nodes available, to determine whether

Table 4 Results from digital circuit benchmarks for the various proposed neutral rule-sets

Circuit Neutral ruleset

DM DMN ID CC

ME p A ME p A ME p A ME p A

1-Add 8950 10�7 0.72 9893 10�5 0.68 9093 10�7 0.71 8275 10�7 0.72

2-Add 65,692 10�14 0.81 49,200 10�21 0.88 73,275 10�12 0.79 103,393 10�5 0.68

3-Add 255,003 10�19 0.87 186,647 10�25 0.93 279,140 10�18 0.86 592,815 0.09 –

2-Mul 19,853 0.36 – 16,680 0.01 0.60 13,312 10�7 0.71 19,995 0.29 –

3-Mul 955,418 10�3 0.63 678,403 10�11 0.77 591,748 10�22 0.89 975,558 10�4 0.65

DeMux 19,633 10�5 0.68 16,678 10�12 0.79 29,700 0.59 – 19,098 10�5 0.67

Comp 542,290 10�3 0.63 453,730 0.44 – 298,758 10�4 0.66 576,263 10�4 0.64

3-EP 6283 0.05 – 5248 10�3 0.61 5990 10�3 0.61 5860 0.08 –

4-EP 23,828 0.06 – 20,278 10�5 0.66 18,745 10�6 0.69 20,295 10�3 0.62

5-EP 57,333 0.01 0.60 58,408 10�3 0.62 43,313 10�10 0.76 60,087 0.01 0.60

6-EP 129,910 10�5 0.67 134,770 0.03 0.58 104,392 10�9 0.74 113,037 10�6 0.68

7-EP 232,735 10�9 0.75 330,572 0.05 0.58 221,790 10�12 0.78 219,237 10�12 0.78

The p value is from the two-tailed Mann–Whitney U test. Where p\0:05, the effect size from the Vargha–Delaney A test is shown; large effect

sizes (A[0:71) are shown in bold

Evolving graphs with semantic neutral drift 137

123

larger solutions are indeed better candidates for the studied

problems.

We run DMN, CC and standard EGGP on the 2-Add,

3-Add and Comp problems, with fixed representation sizes

of 50, 100 and 150 nodes. If it is the case that larger

solutions are better candidates, and that our neutral rule-

sets bias towards neutral growth, then we would expect to

see degradation of performance (more evaluations needed)

with a size of 50, and improvements (fewer evaluations

needed) with a size of 150, over a baseline size of 100.

The results of these runs are shown in Fig. 8. For 2-Add

and 3-Add with the DMN neutral rule-set, performance

actually degrades when increasing the fixed size from 100

to 150, while remaining relatively similar when decreasing

the size to 50. For EGGP alone and for the CC neutral rule-

set, performance remains relatively similar when increas-

ing the fixed size from 100 to 150, but degrades when

decreasing the size to 50. These observations imply that the

DMN rule-set is not simply growing solutions to a more

beneficial search space, since it performs better when

limited to a smaller space. Therefore, on these problems,

there is some other property of the DMN rule-set that is

benefiting performance.

For the Comp problem, trends remain similar for EGGP

alone and the CC neutral rule-set. However, the perfor-

mance of the DMN rule-set degrades when the fixed size is

decreased from 100 to 50. This suggests that the Comp

problem is in some way different from the other problems.

Further, when DMN is run on the Comp problem, the

average proportion of active code is nearly 100%. This

may offer an explanation to why the DMN rule-set strug-

gles to outperform standard EGGP on the Comp problem,

which has more than twice as many outputs (18) as the next

nearest problem (8, DeMux). DMN’s bias towards growth

paired with the high number of outputs may give some of

the problem’s many outputs little room to change and

configure to a correct solution.

8.2 DMN and ID in combination

We investigate the effect of using DMN and ID, our two

best performing neutral rule-sets, in combination. This

combined set, which we refer to as DMID, consists of the

following logical equivalence laws:

DeMorganF1;DeMorganF2;

DeMorganR1;DeMorganR2;

ID-ANDF; ID-ANDR;

ID-ORF ; ID-ORR;

ID-NOTF and ID-NOTR:

We use this set under the same experimental conditions

described in Sect. 6 to produce the results given in Table 6.

In Table 6 we provide p and A values in comparison to the

DMN and ID results in Table 4 and the EGGP results in

Table 3.

The DMID rule-set significantly outperforms DMN on 7

of the 12 problems, and shows no significant difference for

the other 5 problems. DMID significantly outperforms ID

on 5 problems (notably the n-Bit Adder problems), shows

no significant difference on 3 problems, and is significantly

outperformed by ID on 4 problems (notably the 3-Mul,

Comp and 7-EP). DMID significantly outperforms EGGP

without neutral rule-sets on all but 1 problem, with the

exception being the Comp problem that DMN also fails to

find significant benefits on. These results position DMID

and ID on a Pareto front of studied problems, with DMID

effectively dominating DMN but neither DMID nor ID

universally outperforming each other.

8.3 {AND, OR, NOT}: A harder function set?

In Table 3 we show that solving problems with the func-

tion set {AND, OR, NOT} is significantly more difficult than

when using the function set {AND, OR, NAND, NOR}. We

justify using the former function set over the latter in our

experiments as it lends itself to known logical equivalence

laws despite costing performance. When we introduce

these logical equivalence laws to the evolutionary process

with the {AND, OR, NOT} function set, this ‘cost’ no longer

universally holds. We identify 3-Add, 3-Mul, Comp and 7-

EP as the 4 hardest problems, based on the median number

of evaluations required to solve them, Table 3. EGGP with

the {AND, OR, NOT} function set and augmented with the

Table 5 Observed average solution size of the surviving population for the DMN rule-set, ID rule-set and EGGP without a neutral rule-set

Problem DMN ID EGGP p

MAS IQR MAS IQR MAS IQR DMN versus ID DMN versus EGGP ID versus EGGP

3-Add 96.9 1.3 92.3 1.2 50.8 2.6 10�33 10�34 10�34

Comp 99.3 95.6 92.3 0.5 67.0 2.3 10�34 10�34 10�34

Results are for the 3-Bit Adder (3-Add) and 4 � 1-Bit Comparator (Comp) problems. For each result, the Median Average Size (MAS) and

Interquartile Range (IQR) are given. The p value is from the two-tailed Mann–Whitney U test

138 T. Atkinson et al.

123

DMID neutral rule-set significantly (p\0:05) outperforms

EGGP with the {AND, OR, NAND, NOR} function set on

two of the problems.

These two are the 3-Add (p ¼ 10�10, A ¼ 0:76) and 3-

Mul problems (p ¼ 10�5, A ¼ 0:68). In contrast, the

reverse holds for Comp (p ¼ 10�18, A ¼ 0:85) and 7-EP

(p ¼ 10�14, A ¼ 0:80). Note that for 3 of these circum-

stances (excluding 3-Mul), the significant difference occurs

with large effect size ðA[0:71Þ.
Figure 9 shows the number of evaluations across 100

runs for the 3-Mul and Comp problems, for (A) EGGP with

the {AND, OR, NOT} function set and augmented with the

DMID neutral rule-set and (B) EGGP with the {AND, OR,

NAND, NOR} function set. Here the difference in medians

and interquartile ranges for these two evolutionary algo-

rithms can be clearly seen; with EGGP with the DMID

neutral rule-set requiring a median evaluations outside of

the interquartile range of EGGP with the {AND, OR, NAND,

NOR} function set for the 3-Mul problem. In stark contrast,

the third quartile of evaluations required for the Comp

problem lies below the first quartile of EGGP with the

DMID neutral rule-set.

This offers an interesting secondary result: there are

circumstances and problems where it may be beneficial to

choose representations that on their own would yield

detrimental results, if that decision then facilitates the

inclusion of semantic neutral drift, which may in combi-

nation provide enhanced performance over the original

representation.

9 Conclusions and future work

We have investigated the augmentation of a genetic pro-

gramming system for learning digital circuits with

semantic neutral drift. From our experimental results, we

can draw a number of conclusions both for our own

specific setting and for the broader evolutionary

community.

Firstly, we offer further evidence that there are cir-

cumstances where neutral drift aids evolution, building

upon existing works that offer evidence in this direction.

Additionally, the precise nature of our neutral drift by

design offers evidence that neutral drift on the active

component of individuals, rather than the intronic compo-

nents, can aid evolution. For every benchmark problem

studied, at least one neutral rule-set was able to yield sig-

nificant improvements in performance.

Secondly, we have shown that by using graphs as a

representation and graph programming as a medium for

mutation, it is possible to directly inject domain knowledge

into an evolutionary system to improve performance. The

Fig. 8 Results of running DMN, CC and EGGP on a 2-Add, b 3-Add

and c Comp problems. The y axis gives the median evaluations

required to solve each problem across 100 runs. The x axis groups

setups by algorithm and then lists the observed median evaluations

when running that algorithm with 50, 100 or 150 nodes as the fixed

representation size

Evolving graphs with semantic neutral drift 139

123

application of DeMorgan’s logical equivalence laws to

graphs with sharing is non-trivial, but becomes immedi-

ately accessible in our graph evolution framework. Our

ability to design complex domain-specific mutation oper-

ators supports the view that that the choice of representa-

tion of individuals in an evolutionary algorithm matters.

This injection of domain knowledge has been shown to

offer benefits beyond simple ‘neutral growth’.

Thirdly, while the approach we have proposed here

offers promising results, the specific design of neutral drift

matters. There are neutral rule-sets that appear to dominate

each other, as is found comparing the DMID rule-set to the

DMN rule-set. There are also neutral rule-sets which out-

perform each other on different problems, as is demon-

strated comparing the DMID rule-set to the ID rule-set. As

we highlighted in comparing DMID to EGGP with what

initially appeared to be a preferential function set, there are

circumstances where a GP practitioner may want to

deliberately degrade the representation in order to access

beneficial neutral drift techniques. There are also other

circumstances where the cost of incorporating these tech-

niques may outweigh their immediate benefits.

There are a number of immediate extensions to our work

that we believe should be investigated. Firstly, the use of

the complete function set fAND; OR; NAND; NOR; NOTg
alongside the DMID semantics preserving mutations and

additional mutations for converting between AND and OR

Table 6 Results from digital

circuit benchmarks for the

DMID neutral rule-set

Problem DMID versus DMN versus ID versus EGGP

ME IQR p A p A p A

1-Add 7415 5756 10�4 0.64 0.02 0.60 10�12 0.78

2-Add 43,633 29,065 0.13 – 10�8 0.73 10�23 0.91

3-Add 162,568 112,074 0.02 0.60 10�11 0.77 10�28 0.95

2-Mul 12,020 8761 10�3 0.63 0.30 – 10�8 0.73

3-Mul 604,480 471,956 0.51 – 0.04 0.59 10�13 0.80

DeMux 20,938 11,040 10�3 0.63 10�6 0.69 10�5 0.68

Comp 399,140 315,459 0.45 – 10�4 0.66 0.95 –

3-EP 3930 3105 10�3 0.60 10�3 0.61 10�7 0.71

4-EP 16,778 10,730 0.02 0.59 0.13 – 10�9 0.75

5-EP 52,868 31,445 0.29 – 10�3 0.61 10�5 0.66

6-EP 121,978 90,429 10�3 0.61 0.11 – 10�6 0.68

7-EP 326,040 224,121 0.95 – 10�7 0.70 0.05 0.58

The p value is from the two-tailed Mann–Whitney U test. Where p\0:05, the effect size from the Vargha–

Delaney A test is shown; large effect sizes (A[0:71) are shown in bold. Statistics are given in comparison

to the DMN and ID neutral rule-sets and EGGP

Fig. 9 Box-plots showing observed evaluations required to solve a 3-

bit multiplier and b 4 � 1-bit comparator problems using EGGP

augmented with the DMID neutral rule-set (DMID) and EGGP with

the {AND, OR, NAND, NOR} function set (AONN). Vertical jitter is

included for visual clarity

140 T. Atkinson et al.

123

gates and their negations via NOT should be investigated. It

may be the case that this overall combination yields better

results than either of the function sets and semantics pre-

serving mutations we have covered in this work. Addi-

tionally, while semantics preserving mutations have

generally improved performance with respect to the

number of evaluations required to solve problems, it would

be worthwhile to measure the clock-time cost of executing

these transformations in every generation. Then it would be

possible to study the trade-off between gained efficiency

and additional overhead. Future work should also investi-

gate the potential use of our proposed approach in CGP and

tree-based GP as discussed in Sect. 5.1.

While we do not address theoretical aspects of SND

here, it may be possible to prove convergence of evolu-

tionary algorithms equipped with SND under certain

properties, such as the completeness of the semantics

preserving mutations used with respect to equivalence

classes.

There are a number of application domains to investi-

gate for future work: hard search problems where indi-

vidual solutions may be represented by graphs and where

there are known semantics-preserving laws. A primary

candidate is the evolution of Bayesian Network topologies,

a well-studied field (Larrañaga et al. 2013), as there are

known equivalence classes for Bayesian Network topolo-

gies (Chickering 2002). A secondary candidate is learning

quantum algorithms using the ZX-calculus, which repre-

sents quantum computations as graphs (Coecke and Dun-

can 2011), and is equipped with graphical equivalence laws

that preserve semantics.

Fig. 10 A P-GP 2 program InitCircuit for generating digital

circuits. The program repeatedly probabilistically applies a

add node fx rule (see Fig. 11 as long as possible, probabilistically

connecting each newly added function node to the existing graph with

the connect node rule until the node’s function arity is satisfied.

Once the add node rules are no longer applicable, the

connect output rule is applied as long as possible to connect the

outputs to the rest of the graph. Finally remove counter cleans the

graph up, removing the blue marked counter node. The generated

graph must be acyclic, as edges are only created outgoing from nodes

with no incoming edges. (Color figure online)

Fig. 12 The initial graph to be used as input to the program in Fig. 10.

Applying the program InitCircuit to this graph will generate

acyclic graphs with 3 inputs, 2 outputs and 100 function nodes

Fig. 11 A P-GP 2 rule for adding a node of some function fx. For the

label of node 2 on the right-hand-side and a specific function fx, a

unique string representation of fx replaces ‘½fx�’ and the arity of fx
replaces ‘½ax�’. The blue marked node counter is decreased, and the

created function node is marked red so that its edges can be inserted.

(Color figure online)

Evolving graphs with semantic neutral drift 141

123

Acknowledgements Timothy Atkinson is supported by a Doctoral

Training Grant from the Engineering and Physical Sciences Research

Council (EPSRC) Grant no. (1789003) in the UK.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix: EGGP programs

InitCircuit

The program InitCircuit in Fig. 10 generates EGGP

individuals for the digital circuit problems described in this

work. This program is defined abstractly, for some function

set F. The actual form of the first rule-set call is instantiated

for a specific function set F where each function fx has a

corresponding version of the rule add node fx shown in

Fig. 11.

This program expects the a problem-specific variant of

the graph given in Fig. 12, where there are i input nodes

and o output nodes and the blue node is labelled with

n where n is an integer representing the number of nodes

generated individuals should contain. The specific graph in

Fig. 12 will generate circuits with 3 input nodes, 2 output

nodes and 100 function nodes.

MutateNode

The program MutateNode in Fig. 13 mutates EGGP indi-

viduals’ function nodes for the digital circuit problems

described in this work. This program is defined abstractly,

for some function set F. The actual form of the first rule-set

call is instantiated for a specific function set F where each

function fx has a corresponding version of the rule

mutate node fx shown in Fig. 14.

References

Atkinson T, Plump D, Stepney S (2018a) Evolving graphs by graph

programming. In: Proceedings of 21st European conference on

genetic programming (EuroGP 2018), LNCS, vol. 10781.

Springer, pp 35–51. https://doi.org/10.1007/978-3-319-77553-

1_3

Atkinson T, Plump D, Stepney S (2018b) Probabilistic graph

programs for randomised and evolutionary algorithms. In:

Proceedings of 10th international conference on graph transfor-

mation, LNCS, vol. 10887. Springer, pp 63–78. https://doi.org/

10.1007/978-3-319-92991-0_5

Banzhaf W (1994) Genotype–phenotype-mapping and neutral varia-

tion—a case study in genetic programming. In: Proceedings of

3rd international conference on parallel problem solving from

nature, LNCS, vol. 866. Springer, pp 322–332. https://doi.org/

10.1007/3-540-58484-6_276

Barnett L (1998) Ruggedness and neutrality; the NKp family of

fitness landscapes. In: Proceedings of 6th international

Fig. 13 A P-GP 2 program MutateNode for mutating function nodes

of digital circuits. The program probabilistically applies a

mutate node fx rule (see Fig. 14 to mutate a node’s function and

mark that node red. In a similar manner to the edge mutation program

in Fig. 3, all nodes with a directed path to the mutating node are

marked blue by mark output applied as long as possible. Then

add edge and delete edge can be applied as long as possible to

ensure that the node’s outgoing edge’s respect its new function’s

arity. Additionally, the fact that all nodes which would introduce a

cyclic if tareted are now marked blue ensures that applying add edge

cannot introduce a cycle. Finally unmark node is used to return the

graph to an unmarked state. (Color figure online)

Fig. 14 A generic P-GP 2 rule for mutating a function node to some

function fx. For the label of node 1 on the right-hand-side and a

specific function fx, a unique string representation of fx replaces

‘½fx�’ and the arity of fx replaces ‘½ax�’

142 T. Atkinson et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-77553-1_3
https://doi.org/10.1007/978-3-319-77553-1_3
https://doi.org/10.1007/978-3-319-92991-0_5
https://doi.org/10.1007/978-3-319-92991-0_5
https://doi.org/10.1007/3-540-58484-6_276
https://doi.org/10.1007/3-540-58484-6_276

conference on artificial life. MIT Press, pp 18–27. http://dl.acm.

org/citation.cfm?id=286139.286143

Chickering DM (2002) Learning equivalence classes of Bayesian-

network structures. J Mach Learn Res 2:445–498

Coecke B, Duncan R (2011) Interacting quantum observables:

categorical algebra and diagrammatics. New J Phys

13(4):043016. https://doi.org/10.1088/1367-2630/13/4/043016

Collins M (2006) Finding needles in haystacks is harder with

neutrality. Genet Program Evolvable Mach 7(2):131–144.

https://doi.org/10.1007/s10710-006-9001-y

Downing RM (2005) Evolving binary decision diagrams using

implicit neutrality. In: Proceedings of 2005 IEEE congress on

evolutionary computation, vol. 3. IEEE, pp 2107–2113. https://

doi.org/10.1109/CEC.2005.1554955

Downing RM (2006) Neutrality and gradualism: encouraging explo-

ration and exploitation simultaneously with binary decision

diagrams. In: Proceedings of 2006 IEEE congress on evolution-

ary computation. IEEE, pp 615–622. https://doi.org/10.1109/

CEC.2006.1688367

Galván-López E, Poli R, Kattan A, O’Neill M, Brabazon A (2011)

Neutrality in evolutionary algorithms: What do we know? Evol

Syst 2(3):145–163. https://doi.org/10.1007/s12530-011-9030-5

Habel A, Kreowski HJ, Plump D (1988) Jungle evaluation. In: Recent

trends in data type specification (WADT’87), selected papers,

LNCS, vol. 332. Springer, pp 92–112. https://doi.org/10.1007/3-

540-50325-0_5

Hahn MW (2007) Toward a selection theory of molecular evolution.

Evolution 62(2):255–265. https://doi.org/10.1111/j.1558-5646.

2007.00308.x

Harvey I, Thompson A (1997) Through the labyrinth evolution finds a

way: a silicon ridge. In: Proceedings of 1st international

conference on evolvable systems, LNCS, vol. 1259. Springer,

pp 406–422. https://doi.org/10.1007/3-540-63173-9_62

Hu T, Banzhaf W (2009) Neutrality and variability: two sides of

evolvability in linear genetic programming. In: Proceedings of

the 11th annual conference on genetic and evolutionary compu-

tation, GECCO ’09. ACM, pp 963–970. https://doi.org/10.1145/

1569901.1570033

Hu T, Banzhaf W (2018) Neutrality, robustness, and evolvability in

genetic programming. Springer, pp 101–117. https://doi.org/10.

1007/978-3-319-97088-2_7

Husa J, Kalkreuth R (2018) A comparative study on crossover in

Cartesian genetic programming. In: Proceedings of European

conference on genetic programming, EuroGP 2018, LNCS, vol.

10781. Springer, pp 203–219

Kimura M (1983) The neutral theory of molecular evolution.

Cambridge University Press, Cambridge

Koza JR (1992) Genetic programming: on the programming of

computers by means of natural selection. MIT Press, Cambridge

Larrañaga P, Karshenas H, Bielza C, Santana R (2013) A review on

evolutionary algorithms in Bayesian network learning and

inference tasks. Inf Sci 233:109–125. https://doi.org/10.1016/j.

ins.2012.12.051

López EG, Rodrı́guez-Vázquez K (2007) Multiple interactive outputs

in a single tree: an empirical investigation. In: Proceedings of

10th European conference on genetic programming (EuroGP

2007), LNCS, vol. 4445. Springer, pp 341–350. https://doi.org/

10.1007/978-3-540-71605-1_32

Mann HB, Whitney DR (1947) On a test of whether one of two

random variables is stochastically larger than the other. Ann

Math Stat 18(1):50–60

Miller JF (ed) (2011) Cartesian genetic programming. Springer,

Berlin. https://doi.org/10.1007/978-3-642-17310-3

Miller JF, Smith SL (2006) Redundancy and computational efficiency

in cartesian genetic programming. IEEE Trans Evol Comput

10(2):167–174. https://doi.org/10.1109/TEVC.2006.871253

Miller JF, Thomson P (2000) Cartesian genetic programming. In:

Proceedings of 3rd European conference on genetic program-

ming (EuroGP 2000), LNCS, vol. 1802. Springer, pp 121–132.

https://doi.org/10.1007/978-3-540-46239-2_9

Moraglio A, Krawiec K, Johnson CG (2012) Geometric semantic

genetic programming. In: Parallel problem solving from

nature—PPSN XII, LNCS, vol. 7491. Springer, pp 21–31.

https://doi.org/10.1007/978-3-642-32937-1_3

Nguyen QU, Nguyen XH, O’Neill M (2009) Semantic aware

crossover for genetic programming: the case for real-valued

function regression. In: Proceedings of European conference on

genetic programming, EuroGP 2009, LNCS, vol. 5481. Springer,

pp 292–302. https://doi.org/10.1007/978-3-642-01181-8_25

Pham TA, Nguyen QU, Nguyen XH, O’Neill M (2013) Examining

the diversity property of semantic similarity based crossover. In:

Proceedings of European conference on genetic programming,

EuroGP 2013, LNCS, vol. 7831. Springer, pp 265–276

Plump D (2012) The design of GP 2. In: Proceedings of workshop on

reduction strategies in rewriting and programming (WRS 2011),

EPTCS, vol. 82, pp 1–16. https://doi.org/10.4204/EPTCS.82.1

Plump D (2017) From imperative to rule-based graph programs. J Log

Algebraic Methods Program 88:154–173. https://doi.org/10.

1016/j.jlamp.2016.12.001

Poli R (1997) Evolution of graph-like programs with parallel

distributed genetic programming. In: Proceedings of interna-

tional conference on genetic algorithms. Morgan Kaufmann,

pp 346–353

Poli R (1999) Parallel distributed genetic programming. In: New ideas

in optimization. McGraw-Hill, pp 346–353

Turner AJ, Miller JF (2015a) Introducing a cross platform open

source cartesian genetic programming library. Genet Program

Evolvable Mach 16(1):83–91. https://doi.org/10.1007/s10710-

014-9233-1

Turner AJ, Miller JF (2015b) Neutral genetic drift: an investigation

using cartesian genetic programming. Genet Program Evolvable

Mach 16(4):531–558. https://doi.org/10.1007/s10710-015-9244-6

Vanneschi L, Pirola Y, Mauri G, Tomassini M, Collard P, Verel S

(2012) A study of the neutrality of Boolean function landscapes

in genetic programming. Theor Comput Sci 425:34–57. https://

doi.org/10.1016/j.tcs.2011.03.011

Vanneschi L, Castelli M, Silva S (2014) A survey of semantic methods

in genetic programming. Genet Program Evolvable Mach

15(2):195–214. https://doi.org/10.1007/s10710-013-9210-0

Vargha A, Delaney HD (2000) A critique and improvement of the CL

common language effect size statistics of McGraw and Wong.

J Educ Behav Stat 25(2):101–132

Vassilev VK, Miller JF (2000) The advantages of landscape neutrality

in digital circuit evolution. In: Proceedings of 3rd international

conference on evolvable systems, LNCS, vol. 1801. Springer,

pp 252–263. https://doi.org/10.1007/3-540-46406-9_25

Walker JA, Miller JF (2008) The automatic acquisition, evolution and

reuse of modules in cartesian genetic programming. IEEE Trans

Evol Comput 12(4):397–417. https://doi.org/10.1109/TEVC.

2007.903549

Yu T, Miller J (2002) Finding needles in haystacks is not hard with

neutrality. In: Proceedings of 5th European conference on

genetic programming, LNCS, vol. 2278. Springer, pp 13–25.

https://doi.org/10.1007/3-540-45984-7_2

Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol

Evolut 18(6):292–298. https://doi.org/10.1016/S0169-

5347(03)00033-8

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Evolving graphs with semantic neutral drift 143

123

http://dl.acm.org/citation.cfm?id=286139.286143
http://dl.acm.org/citation.cfm?id=286139.286143
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1007/s10710-006-9001-y
https://doi.org/10.1109/CEC.2005.1554955
https://doi.org/10.1109/CEC.2005.1554955
https://doi.org/10.1109/CEC.2006.1688367
https://doi.org/10.1109/CEC.2006.1688367
https://doi.org/10.1007/s12530-011-9030-5
https://doi.org/10.1007/3-540-50325-0_5
https://doi.org/10.1007/3-540-50325-0_5
https://doi.org/10.1111/j.1558-5646.2007.00308.x
https://doi.org/10.1111/j.1558-5646.2007.00308.x
https://doi.org/10.1007/3-540-63173-9_62
https://doi.org/10.1145/1569901.1570033
https://doi.org/10.1145/1569901.1570033
https://doi.org/10.1007/978-3-319-97088-2_7
https://doi.org/10.1007/978-3-319-97088-2_7
https://doi.org/10.1016/j.ins.2012.12.051
https://doi.org/10.1016/j.ins.2012.12.051
https://doi.org/10.1007/978-3-540-71605-1_32
https://doi.org/10.1007/978-3-540-71605-1_32
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1109/TEVC.2006.871253
https://doi.org/10.1007/978-3-540-46239-2_9
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-3-642-01181-8_25
https://doi.org/10.4204/EPTCS.82.1
https://doi.org/10.1016/j.jlamp.2016.12.001
https://doi.org/10.1016/j.jlamp.2016.12.001
https://doi.org/10.1007/s10710-014-9233-1
https://doi.org/10.1007/s10710-014-9233-1
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1016/j.tcs.2011.03.011
https://doi.org/10.1016/j.tcs.2011.03.011
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/3-540-46406-9_25
https://doi.org/10.1109/TEVC.2007.903549
https://doi.org/10.1109/TEVC.2007.903549
https://doi.org/10.1007/3-540-45984-7_2
https://doi.org/10.1016/S0169-5347(03)00033-8
https://doi.org/10.1016/S0169-5347(03)00033-8

	Evolving graphs with semantic neutral drift
	Abstract
	Introduction
	Neutral drift in genetic programming
	Graph programming with P-GP 2
	Evolving graphs by graph programming (EGGP)
	Introduction to EGGP
	Evolving digital circuits as graphs

	Semantic neutral drift
	The concept
	Designing semantic neutral drift
	Variations on our approach

	Experimental setup
	Results
	Analysis
	Neutral drift or neutral growth?
	DMN and ID in combination
	{AND, OR, NOT}: A harder function set?

	Conclusions and future work
	Acknowledgements
	Appendix: EGGP programs
	{\texttt {InitCircuit}}
	{\texttt {MutateNode}}

	References

