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Abstract
Synthetic biology aims to engineer and redesign biological systems for useful real-world applications in biomanufacturing,

biosensing and biotherapy following a typical design-build-test cycle. Inspired from computer science and electronics,

synthetic gene circuits have been designed to exhibit control over the flow of information in biological systems. Two types

are Boolean logic inspired TRUE or FALSE digital logic and graded analog computation. Key principles for gene circuit

engineering include modularity, orthogonality, predictability and reliability. Initial circuits in the field were small and

hampered by a lack of modular and orthogonal components, however in recent years the library of available parts has

increased vastly. New tools for high throughput DNA assembly and characterization have been developed enabling rapid

prototyping, systematic in situ characterization, as well as automated design and assembly of circuits. Recently imple-

mented computing paradigms in circuit memory and distributed computing using cell consortia will also be discussed.

Finally, we will examine existing challenges in building predictable large-scale circuits including modularity, context

dependency and metabolic burden as well as tools and methods used to resolve them. These new trends and techniques

have the potential to accelerate design of larger gene circuits and result in an increase in our basic understanding of circuit

and host behaviour.

Keywords Cellular computing � Synthetic biology � Genetic circuit � Genetic logic gates � Analog computation �
Biodesign automation

1 Introduction

In order to survive and reproduce, cells must sense a wide

variety of inputs both external and internal. In response

they compute and actuate a number of output functions

such as changes to cell morphology (Goranov et al. 2013),

or production of proteins and small molecules (Williams

et al. 2016). We can exploit these changes for desirable

functions such as the manufacture of valuable products or

sensing of dangerous environmental toxins (Ro et al. 2006;

Wang et al. 2013a; Bereza-Malcolm et al. 2015; Machado

et al. 2016; Bernard and Wang 2017). Many of these

properties have useful real-world functions and it is

desirable to manipulate them for our own goals.

Historically, the approach to the workflow in biotech-

nology has been based on bespoke, unique solutions. Often

this results in laborious ad-hoc laboratory processes which

result in an inability to port solutions from one problem to

another, and a missed opportunity to retain valuable

information learned through the process. There exists no

one precise universally accepted definition of synthetic

biology although most do overlap strongly. One definition

states that synthetic biology is ‘the design and engineering

of biologically based parts, novel devices and systems as a

well as the redesign of existing, natural biological sys-

tems,’ (Clarke and Kitney 2016). Broadly speaking, syn-

thetic biology is a rational approach to biotechnology

inspired by ideas from engineering and aims to make

designing biology easier, faster and more predictable. Key
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concepts in this pursuit are standardization, modularity,

characterization and orthogonality (Andrianantoandro et al.

2006). The field has attempted to create libraries and

repositories of biological parts (Knight 2003), and incor-

porated the engineering design-build-test-learn (DBTL)

workflow in various parts of the literature (Paddon and

Keasling 2014; Hutchison et al. 2016; Clarke and Kitney

2016; Cox et al. 2018), industry (Anne Ravanona 2015;

Siliconreview Team 2017), and government (Si and Zhao

2016). Ideally one could dependably generate entirely new

systems with novel functions and predictable behaviour

from a standardized parts list.

A major focus in the field has been on cellular computing,

in which response pathways can be co-opted to produce

useful biological computing devices which can produce

programmable and predictable outputs in response to diverse

input signals. One design paradigm has been to use gene

circuits to regulate behaviour, of which two methods are

digital binary-like and analog models. Other models such as

DNA computing through tiling, hybridisation, self-assembly

or recombination exist, but this review will focus on genetic

circuits. A review covering other aspects of computing with

biological parts was done by Moe-behrens (2013).

Digital-like biological parts often resemble logic gates

and their discrete binary states found in silicon transistors

such as the 1-bit full adder; comprising 5 logic gates wired in

3 layers with 3 inputs and 2 outputs (Fig. 1). Here there is a

high contrast between high levels and low levels of output,

corresponding to a discrete binary ON or OFF state respec-

tively. As seen in Fig. 2a this means a high and sharp change

in the output signal over a small change in the input signal

once it hits a threshold level (represented by a hill coeffi-

cient[ 1). Often these circuits will be described by Boolean

logic, in which all values are reduced to either TRUE (1) or

FALSE (0) (Bradley et al. 2016a). Logic operations like

AND (where output is TRUE only if both inputs are TRUE),

can be represented by a Boolean truth table as well as circuit

symbols adapted from electronics as shown in Fig. 2a. Ide-

ally, both the input and the output must be able to be con-

nected to and interact with upstream and downstream

components and operate in the intended fashion (be modu-

lar), the signal output must be stable, exhibit low noise

(random unintended fluctuations), and have a large ON:OFF

ratio, or dynamic range (Bradley and Wang 2015). This

prevents the signal from being degraded as it propagates

through a system. Digital logic is particularly useful in a

decision-making circuit such as in natural cell differentiation

or apoptosis. The strong state change is ideal for reliable state

transitions and signal integration as digital circuits are rela-

tively robust to noise. Early instances included the gene

toggle switch (Gardner et al. 2000), the repressilator

(Elowitz and Leibler 2000), and the autoregulator (Becskei

and Serrano 2000). From there on, binary-like logic gates

such as AND (Anderson et al. 2007; Wang et al. 2011), OR

(Mayo et al. 2006), andNOR (Guet 2002; Tamsir et al. 2011)

were built and combined into more complex circuits, for

instance a 4 input AND gate (Moon et al. 2012).

In contrast, analog responses are designed to give a con-

tinuous output changing dynamically according to the input.

Good transfer functions of analog computation are clear and

Fig. 1 Programmable cellular computation with scalable signal

processing capacity. To achieve large-scale control of cellular

behaviour, an expanded library of versatile orthogonal genetic

regulatory blocks and associated wiring principles are needed. For

example, a genetic 1-bit full adder program adds binary numbers, it

has 3 inputs and 2 outputs, and can be constructed from 5 modular

logic gates that are wired in 3 layers and selected from well-

characterized orthogonal gate libraries. The genetic circuits can be

coupled to modular input genetic sensors and output actuators to

achieve complex decision making for a variety of human desired

applications
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well defined, responding to a large range of input, as well as

exhibiting low noise and being reliable andmodular, again as

shown in Fig. 2a. Analog computation is particularly

resource efficient, good at generating small autonomous

responses to temporal differences, autoregulation and

interaction with host metabolism, although analog circuits

are susceptible to disruption from noise and temporary per-

turbations in input (Sarpeshkar 2014). Examples of analog

circuits include amplifiers for scaling transcriptional signals

in cascaded gene networks (Wang et al. 2014), comparators

that convert signals from analog to digital (Rubens et al.

2016) and networks that allow for reconfigurable inversion

of the network transfer function (Lewis et al. 2018).

Potential applications for gene circuits have been hinted

at with the proof-of-concept arsenic biosensors (Wang

et al. 2013a), and the cancer killing 3-input NOR gate

‘‘classifier circuit’’ (Xie et al. 2011). Cell consortia have

been used to build an analog to digital converter detecting

smell using olfactory receptors (Müller et al. 2017) whilst

memory engineered commensal E. coli was able to

Fig. 2 Versatile cellular computing paradigms enabled by synthetic

biology. a A two-input AND gate using the r54-dependent HrpR/

HrpS hetero-regulation module and the corresponding truth table. The

HrpS and HrpR enhancer-binding proteins expressed from separate

inducible input promoters bind to form a heteromeric complex which

activates the output r54-dependent hrpL promoter. Also shown is a

graph with representative transfer functions of digital (grey) and

analog (green) signal responses. Digital signals have a steep

sigmoidal response with a large change in expression over a small

change in input. Analog signals have a much more graded response.

b An analog transcriptional signal amplifier designed based on the hrp

gene regulation module from plant pathogen P. syringae. The

amplifier achieves different gains and input dynamic ranges by

varying the expression levels of the underlying ligand-free ultrasen-

sitive activator proteins (HrpRS) in the device. HrpV binds and

sequesters HrpS so that it can no longer bind its co-activator HrpR

and is used to modulate the intensity of the amplified signal output.

c A recombinase-based state machine. Depending on if the att sites

face in the same direction or towards each other, recombinases can

excise or invert pieces of DNA respectively. By doing so they can

record events, and with the correct elements can modulate gene

expression. Striped arrows represent post inversion, the new site is

sequentially different from the old one. d CRISPR-based memory

storage. Oligos are sequentially incorporated into CRISPR arrays in

the genome by the cas1–cas2 complex. Each oligo encodes informa-

tion in the DNA sequence. The sequence at which oligos are ordered

can be controlled by spacing addition over time. e Spatially

distributed gates can reuse parts and signalling molecules, using

proximity as a way to insulate signal propagation. Here 3 NOR gates

effectively replicate a XOR gate using the inducers arabinose (Ara)

and anhydrotetracycline (aTc). Signal lines green and yellow

represent the quorum sensing molecules N-3-oxo-dodecanoyl-ho-

moserine lactone (3OC12-HSL) and N-butyryl-homoserine lactone

(C4-HSL) respectively and the output is yellow fluorescent protein

(YFP). (Color figure online)
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function for six months in a mouse gut, sensing and

reporting on the presence of inflammation-indicating

tetrathionate (Riglar et al. 2017).

Many of the early examples were small in scale and

design, often with few synthetic parts. Gander et al. (2017)

reviewed the literature and found some of the largest cir-

cuits in recent publications only had 7 parts and 6 con-

nections. This is roughly in line with Privman et al. (2008)

who surmised that under optimal conditions going over 10

processing steps would be difficult using methods available

at the time and would require new noise reduction para-

digms. Recently larger circuit examples have been

emerging, advances in characterization techniques and the

expansion of the library of functional parts has promised a

much larger space in which to build more complex circuits.

RNA based parts enabled construction of a substantial

12-input disjunctive normal form circuit (Green et al.

2017), whilst a 6-input 1-output Boolean logic look-up

table circuit was also demonstrated in mammalian cells.

The group created a circuit which receives 4 selection

inputs and 2 data inputs, the selection inputs determine

which one of sixteen 2 data input logic functions the circuit

uses allowing switching of logic in cells on the fly. By

normalizing the promoter and recombinases used, they

were able to generate 113 circuits, of which 109 were

working, the largest collection of functionally unique logic

circuits in mammalian cells as of publication (Weinberg

et al. 2017). Another large circuit, the 1-bit full adder was

functionally constructed in mammalian consortia incorpo-

rating 22 separate gates distributed amongst 9 specialized

cell types in a complex three-dimensional environment

(Ausländer et al. 2017). However construction of such

large scale genetic circuits are uncommon, large numbers

of logic gates in single cells are scarce and require sig-

nificant amounts of time and effort to work through an

iteration of the design-build-test-learn cycle.

In this article, we will discuss the tools and challenges

surrounding the construction of large-scale gene circuits.

We will decompose this into the DBTL cycle for clarity:

design—the arrangement of reusable components to pro-

duce biological programs, build—large scale DNA

assembly, test—high throughput characterization and

debugging tools, learn—modelling and circuit design

automation. We will review common methods enabling

control of genetic circuitry and DNA assembly. The latest

in advanced characterization and debugging methods using

cell free systems, microfluidics, and ribonucleic acid

(RNA) sequencing (RNA-seq) will be discussed. We will

give insights into automated gene circuit design software

and examine the implementation of more complex com-

puting paradigms such as distributed computing and

memory integration. Although most of the work has been

directed towards genetic circuits in single cells, there has

been a significant body of work that has experimented with

using cell consortia, separating out circuits into many hosts

(Regot et al. 2011; Macı́a et al. 2012). Integration of

memory enables a move away from just combinatorial

logic (in which the output is a function of the present

inputs), making sequential logic possible (Siuti et al. 2013;

Purcell and Lu 2014; Roquet et al. 2016). The challenges in

scaling up circuit design and the techniques used to tackle

them will be discussed. Focus will be on the obstacles to

modularity as well as context effects and metabolic burden.

2 Design: expanded toolbox for engineering
complex gene regulation programs

The construction of any large-scale circuit requires a large

library of well characterized, orthogonal and modular gates

comprising the ‘building blocks’ of the system. Since the

beginning of the field there has been a significant and

promising expansion of the molecular toolbox. A large

variety of repurposed biochemical tools have been

demonstrated to admit some degree of control over cellular

state. Many of these tools co-opt biology’s central dogma,

the expression of a gene and the information flow from

DNA to RNA to proteins. These can be broadly grouped

into three types; control of DNA transcription, messenger

RNA (mRNA) translation or protein–protein interactions.

Many of these methods are shown in Fig. 3.

Inducible parts provide useful externally mediated

control of systems whilst customizable DNA sequence

binding enables a significant expansion of the number of

orthogonal parts available for large circuits (Garg et al.

2012; Lohmueller et al. 2012; Qi et al. 2013; Kiani et al.

2014; Nielsen and Voigt 2014; Li et al. 2015).

Control of expression using RNA tends to be less bur-

densome on host metabolism and can be governed by

cleavage (Qi et al. 2012), pair binding (Rinaudo et al. 2007;

Anderson et al. 2007; Xie et al. 2011; Wroblewska et al.

2015) or secondary structure (Sharma et al. 2008; Aus-

lander and Fussenegger 2014; Myhrvold and Silver 2015;

Chappell et al. 2015; Karagiannis et al. 2016), as folding

has been proved to be moderately predictable using soft-

ware such as NUPACK (Zadeh et al. 2011; Wang and Buck

2012). Protein–protein interactions such as those in the hrp

(hypersensitive response and pathogenicity) gene regula-

tion system can be utilized to generate versatile multi-input

genetic logic gates (Wang et al. 2011; Wang and Buck

2014). Artificially or naturally split inteins can integrate

signals (Schaerli et al. 2014) and different proteins can

even be fused to each other in order to have hybrid prop-

erties (Wang et al. 2013b).

The expansion of parts has been enabled by a variety of

tools; genomic part mining was successful in building a
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library of 16 orthogonal strongly repressing TetR family

repressors (Stanton et al. 2013), 4 different T7 polymerases

(Temme et al. 2012) and 20 different sigma factors (Rho-

dius et al. 2013). Chen et al. (2013) characterized 582

terminators whilst a protein engineering approach using

bioinformatics and site directed mutagenesis generated

different DNA binding specificities in the cAMP receptor

protein (CRP) family (Desai et al. 2009). However, it is

likely that the predictable natures of customizable DNA

binding proteins and RNA secondary structure-based tools

will provide the largest number of orthogonal parts.

Didovyk et al. (2016) generated 633 possible orthogonal

(to host and circuit) guide RNA’s for CRISPR/Cas9

mediated gene regulation through computational screening

whilst 180 TALE effectors were designed by Garg et al.

(2012). Other studies developed 26 toehold switches

(Green et al. 2014), 4 RNA riboregulator/genetic switch-

board pairs (Callura et al. 2012), 6 RNA-IN-RNA-OUT

families (Mutalik et al. 2012), 5 zinc fingers (Khalil et al.

2012), and 20 sigma factors (Rhodius et al. 2013). From

here, one can determine that there is a significant number

of parts, far more than is needed than for most current

circuits and yet circuit size has not increased in proportion

to the size of the library.

Finally, there is a variety of tuning ‘knobs’ which

although not able to provide control themselves, can be

used to adjust the dynamic properties of a system to

respond effectively to expected inputs and produce desired

outputs depending on the need. These include changing the

strength of the promoter sequence, hybrid combinations of

promoter sequences (Chen et al. 2018), operator site

modification (Ang et al. 2013), ribosome binding site

(RBS) modification (Salis et al. 2009), altering plasmid

copy number (Guido et al. 2006), using decoy DNA

operators (Lee and Maheshri 2012), RNA interference

(RNAi), degradation tags (Bonger et al. 2011), or co-ex-

pression with sequestering proteins or molecules (Wang

et al. 2014). Cooperativity has been improved using

oligomerization domains (Hou et al. 2018). Positive feed-

back loops and signal cascades have improved the ON/OFF

ratio in digital-like circuits which is often poor due to an

inherent basal level of ‘leaky’ gene expression even

Fig. 3 Expanded toolbox for

engineering complex gene

regulation programs. These

include using proteins that

affect DNA transcription and

RNA translation through

protein-DNA and protein-RNA

base pair binding. Also shown is

the ability to use RNA

secondary structure and base

pair binding to control mRNA

translation initiation. Protein

activity can also be controlled

by other proteins, through

protein–protein interactions or

enzymatic reactions that

modulate activity. The activity

of many regulators can be

controlled by small molecule

ligands/cofactors. (r = sigma

factors, STARs = small

transcriptional activating RNAs,

siRNA = small interfering

RNA,

TALE(N)s = transcription

activator-like effector

(nuclease)
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without the presence of activators or in the presence of

repressors (Bradley et al. 2016a). A informative review of

available control and tuning methods was covered by Ang

et al. (2013), Bradley and Wang (2015) and Bradley et al.

(2016b).

3 Build: standard large-scale DNA assembly

Although genes can be chemically synthesized, it is still an

expensive solution despite the recent drop in cost and

importantly does not incorporate any standardization. Ide-

ally all parts would be characterized, stored in a library and

then manipulated at will using a common scalable DNA

assembly protocol. Initial attempts were based on lengthy

stepwise restriction enzyme mechanisms such as in Bio-

BricksTM (Shetty et al. 2008). The latest methods are ter-

med ‘one pot’ as multiple fragments can be assembled at

once in a defined order saving many man-hours in the

laboratory. These include Golden Gate and its derivations;

MoClo (modular cloning) and Goldenbraid (Engler et al.

2008; Sarrion-Perdigones et al. 2011; Weber et al. 2011).

Gibson assembly (2009), the most popular non-synthesis

based method (Kahl and Endy 2013), uses homology of

overlapping single stranded DNA which also avoids the

necessity of removing forbidden sequences (such as

restriction enzyme sites) in the sequences being assembled.

Unfortunately, the superseding of BioBricks with formats

such as Gibson assembly has moved parts back towards

non-modular tailored solutions. Assembled parts cannot be

ported to another assembly without new specific primer,

and each new PCR reaction itself has bespoke conditions

affecting assembly success due to the lack of standardiza-

tion in flanking sequences. This can also have ramifications

in terms of genetic context (discussed later on), and

libraries of parts become more complex to reuse. Efforts

have been made to add modular prefixes and suffixes;

Casini et al. (2014) developed a strategy named MODAL

(Modular Overlap-Directed Assembly with Linkers) and

similar methods were published elsewhere (Torella et al.

2014). Woodruff et al. (2017) used unique flanking

sequences acting as a barcode in a pool of collected con-

structs that can be retrieved using PCR and subsequently

assembled using Golden gate assembly. Biopart Assembly

Standard for Idempotent Cloning (BASIC) assembly

exploits orthogonal linkers to avoid PCR entirely and

achieved over 90% accuracy with a 7-part reaction.

Devised a hybrid method, Golden Gate-Gibson (3G)

combines overhang assembly with Golden Gate style part

libraries (Halleran et al. 2018). Despite the relatively rapid

speed of modern assembly methods, construction of large

libraries of clones can still take a significant amount of

time. It is here that automated construction methods using

robotics or microfluidics (discussed later), would greatly

aid in speeding up the process as they can potentially run

many assemblies at once 24 h a day with minimal human

supervision.

4 Test: high-throughput circuit
characterization

After the ‘build’ part of the cycle, the next part is to ‘test’;

quantifying the characteristics and dynamics of the circuit

to inform on future designs and find solutions to any fail-

ures that have been encountered (debugging). Scalability in

characterization is largely determined by the feasibility of

running many concurrent experiments at once, measuring

many different properties and gathering precise data from

the samples reducing the time needed to complete the

DBTL cycle.

Traditionally, this has been dominated by fluorescent

gene reporters such as green fluorescent protein (GFP) and

red fluorescent protein (RFP). These proteins are used to

measure gene expression and quantified using a plate

reader or a fluorescent microscope. Beyond measurement

of the regulatory sequences of gene expression, they can be

fused to other proteins to study protein localization and

interaction through Förster resonance energy transfer

(FRET) (Selvin 2000). The advent of flow cytometry has

enabled the simultaneous measurement of multiple cellular

properties in every cell, such as size, granularity and flu-

orescence analysis through multiple lasers fed by a small

current of cells suspended in fluid. Flow cytometers can

even separate cells by fluorescence levels known as fluo-

rescent activated cell sorting (FACS) (Tracy et al. 2010).

This analysis of single cell data offers a much more precise

view of cell state and reveals a much deeper relationship

between host-circuit physiology, such as the relationship

between fluorescence and cell volume, something that is

much more difficult in population level measurements.

Measurement of the fluorescence of a protein encoded

downstream of a regulatory sequence is equivalent of

measuring the final product of gene expression. This

expression measurement combines both transcription and

translation together and doesn’t differentiate between the

two. Pothoulakis et al. (2014) developed the ‘spinach’

RNA aptamer which fluoresces in the presence of the flu-

orophore, 3,5-difluoro-4-hydroxybenzylidene imidazoli-

none (DFHBI), and is consequently a good option to

measure transcription separately. Another limitation is the

incorporation of undesirable genetic context (discussed in

more detail later on) such as variable untranslated regions

(UTR) of DNA that can form secondary structures dis-

rupting translation though themselves not being translated,

this can be addressed through the use of insulators that
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reduce context effects such ribozymes that cleave the 50

UTR (Lou et al. 2012). The expression of these protein can

also cause variable metabolic load (Bentley et al. 1990),

making it hard to measure the expression of many genes in

parallel and minor variations in experimental conditions

can cause large changes in expression (Kelly et al. 2009;

Rudge et al. 2016). To solve this issue, Kelly et al. (2009)

normalized promoter activity using a reference promoter

resulting in the relative promoter unit (RPU), and Rudge

et al. (2016) compared the output of reporter genes con-

currently with a control plasmid to find the intrinsic pro-

moter activity, reducing the variance due to extrinsic

factors to less than 4%.

High throughput experiments allow us to repeat many

experiments in parallel that gather a greater quantity of

data in a shorter space of time whilst genome and proteome

wide techniques offer a wider view of cell state that sin-

gular gene expression experiments cannot practically offer.

For example, using RNA-seq we can get a non-invasive

snapshot measurement of the RNA levels of single cells

and populations, enabling complete analysis of changes

when implementing genetic circuits. Based on next gen-

eration sequencing, mRNA is cut into small sections and

turned into complementary DNA (cDNA) through reverse

transcription before sequencing and alignment. RNA-seq

has been used to analyze the transcriptome of cells and has

been demonstrated to work in situ in mammalian tissues

(Lee et al. 2014). Liao et al. (2017) used RNA-seq to

determine changes in the host cell transcriptome when an

AND-gate circuit is designed under different circuit com-

positions and in different plasmid copy numbers; finding

that higher copy number decreased the orthogonality

between the circuit and host gene expression in addition to

increasing metabolic load and causing imbalance among

the circuit components. Gorochowski et al. (2017) used

RNA-seq to measure simultaneously part performance and

the state of a three-input one-output circuit comparing 46

parts. They were able to debug failures in the circuit due to

antisense promoters, terminator malfunction and media

related failure and make informed design decisions, such as

including a bi-directional terminator to cease antisense

transcription. Limitations in terms of cost and library

preparation time are being addressed with simplifying

techniques such as RNAtag-seq whereby DNA barcodes

are uniquely tagged to allow early pooling of samples

before the preparation of the library (Shishkin et al. 2015).

Other methods include single molecule RNA fluorescence

in situ hybridisation (smFISH), used by Nielsen et al.

(2016) to quantify mRNA levels of yellow fluorescent

protein (YFP). 25 oligonucleotide probes, each 20 bases in

length were fluorescently labelled with TAMRA (car-

boxytetramethylrhodamine), and binding of multiple

probes enables sufficient fluorescence to detect and localize

target mRNA. Similarly whole cell mass spectrometry can

be used to attempt to identify changes in the proteome

(Ouedraogo et al. 2013).

Prototyping gives meaningful biological information

towards the design of the final system yet can be assembled

and tested much more quickly. Cell free in vitro systems

have all the machinery necessary for basic protein

expression but do not require long culturing times, often

also omitting the complexity of full host metabolism and

thereby being significantly easier to model. They also offer

options to monitor dynamics of the system in real time with

fluorescent RNA aptamers (Niederholtmeyer et al. 2013)

and FRET probes (Norred et al. 2015), also facilitating

direct reaction sampling into a HPLC or MS machine

(Heinemann et al. 2017). Drawbacks include being much

more lacking in some shared cellular resources (Gyorgy

and Murray 2016), as well as having potential energy

consumption imbalances (Garamella et al. 2016). One

example is the E. coli transcription-translation based cell

free system (TX-TL) which has successfully been used for

prototyping promoters (Iyer et al. 2013) and negative

feedback loops (Karig et al. 2012). Further advances

enabled use of linear DNA through protection from

degradation by RecBCD through the addition of GamS

protein (Sun et al. 2014). Using this method a 4-piece

genetic switch was assembled within 8 h (1 working day),

using simple Golden Gate assembly and polymerase chain

reaction (PCR) to create 4 linear sequences directly used

for testing, although in this case there was a lack of cor-

relation between in vivo and in vitro results (Sun et al.

2014). Another example built on the concept of using

whole cell extracts by using microbial consortia to obtain

purified translational machinery (Villarreal et al. 2017).

Pardee et al. (2014) demonstrated freeze dried paper based

cell free systems containing gene networks that can be

rehydrated when needed.

A different way to increase scale is to minimize the

resource consumption of each experiment and to automate

physical tasks. The field of microfluidics deals with the

precise manipulation of small amounts of fluids in the

micro and nanoliter scale. Discrete volumes of liquid can

be packaged into droplets and controlled automatically

either as a solution or individually, each droplet function-

ing as an independent reaction mix with the small scale

enabling conserved use of reagents and biological material.

Typically these methods are either continuous; using oil

and water to generate a controllable liquid stream, or dig-

ital; using voltage to control the movement of individual

droplets on a conductive material (Huang and Densmore

2014). Shih et al. (2015) demonstrated that it was possible

to concurrently run several assemblies at once (Golden

Gate, Gibson and yeast), using a hybrid of both microflu-

idic technologies, assembling a library of 16 plasmids and
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performing on chip electroporation into bacteria and yeast.

Other systems demonstrated heat shock transformation and

the capability to culture the cells on chip (Gach et al.

2016). Analogous to FACS, Baret et al. (2009) sorted cells

by fluorescence through fluorescent activated droplet sort-

ing (FADS). Procedures have been developed that can trap

single cells in droplets, and provide them with all the

nutrients needed to be incubated for days, permitting longer

study and performance that cannot be obtained through

FACS (Bennett and Hasty 2009).

Uniting cell free and microfluidic technologies can

combine the benefits of both, for example, generating many

artificial cell-free entities, prototyping in parallel. By

example, Schwarz-Schilling et al. (2016) produced func-

tional AND gates and sender circuits in droplets containing

cell free systems and bacteria. Fan et al. (2017) use droplet

microfluidics to print accurate and small quantities of cell

free systems to measure interactions between three genetic

factors at a synthetic promoter and used this data generate a

model. Wang et al. (2018) used a similar method, only

combining a locked nucleic acid probe (measuring mRNA

levels) with fluorescent proteins enabling simultaneous

measurement of transcription and translation in massively

parallel cell free droplet experiments.

5 Learn: biological circuit design
automation and modelling

The synthetic biology community has developed software

tools that aim to replicate the success of computer aided

design (CAD) used in electronic circuit engineering.

Design automation has the potential to accelerate biologi-

cal design by allowing designers to access existing

knowledge of biological parts, arrange parts into circuits,

design experiments, store and visualise experimental data,

and potentially make predictions about circuit behaviours.

For circuit construction (build), it could plan out assembly

of the physical DNA sequence from the given starting

material and include the experimental protocol needed to

do so. For testing, software might enable experiments to be

designed and simulate a computational model of the sys-

tem, allowing costly and time-consuming experiments to

be replaced, but still give insight into how a system might

behave and identify which experiments are critical or

contain the most information for guiding design decisions.

Several software tools have emerged over the last

10 years that seek to deliver some of these features,

including Genocad (Czar et al. 2009), CellDesigner (Fu-

nahashi et al. 2008), Biojade (Goler et al. 2008), SynbioSS

(Hill et al. 2008), Tinkercell (Chandran et al. 2009), Visual

GEC (Pedersen and Phillips 2009) and Cello (Nielsen et al.

2016), although many of the former projects are dormant.

Some software forgoes biological part data and only

operates at the abstracted design level (Bhatia et al. 2017),

whilst others are primarily concerned with data storage

standards, such as DICOM-SB (Sainz De Murieta et al.

2016), many instances of software use the Synthetic Biol-

ogy Open Language (SBOL), an open standard for the

representation of genetic parts, with common formats for

both data and visual symbols (Roehner et al. 2016). Most

also offer the export of the models via the Systems Biology

Markup Language (SBML) (Finney and Hucka 2003;

Hucka et al. 2003), which enable model analysis in more

general software platforms, such as Matlab and Copasi.

Cello, one of the latest iterations of gene circuit design

software enables circuits to be constructed that compute

specified logic functions. The Verilog logic programming

language is used to describe circuit function, and a user

constraints file to specify parts and organisms to create a

searchable design space. Circuits are modified to be com-

patible with a library containing NOR and NOT gates

based on repression. The system is simulated to predict

circuit performance, factoring in load, population vari-

ability, growth, and connectivity in terms of RNA poly-

merase (RNAP) flux. Finally, the physical component is

designed for assembly, i.e. the circuit contained in one

plasmid and the reporter on another with appropriate pro-

moters, terminators and other gene regulatory elements on

each (Nielsen et al. 2016).

Figure 4 shows a representative gene circuit design

automation flow, inspired by electronic circuit design

automation, for an exemplar 3-input and 2-output 1-bit full

subtractor that comprises 7 logic gates wired in 5 layers.

Initially there would be an abstract level of input of the

circuit function, such as using a graphical user interface

(GUI,) a truth table, or Boolean algebra, before an opti-

mization of the overall design to reduce the number of parts

to a minimum whilst retaining the desired function. Sub-

sequently, logic synthesis would be performed to transform

the expression into desired gate level format before tech-

nology mapping all the possible circuits from standard well

characterized libraries of logic gates and parts, such as the

open iGEM parts registry (Mitchell et al. 2011) or Syn-

BioLGDB (Wang et al. 2015b). Potential systems would be

modelled for functionality and ranked accordingly, and

genetic assembly constructs would be designed for

assembly.

One of the major challenges for design automation

software is the difficulty in producing mathematical models

that are predictive of circuit function. This is challenging

for several reasons. The first major challenge is that it is

difficult to know how to even write down a mathematical

model that captures the nonlinear features of the bio-

chemical interactions of a given circuit. To model a system

mechanistically (as opposed to purely statistical models),
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the main elements of the system should be known and their

interactions with the genetic and protein elements of the

cell specified directly (the intricacy of which depends on

the scope of the model). This requires either prior knowl-

edge or the mining of interaction databases, though these

are far from exhaustive at present. There is also the con-

sideration of chemical diffusion and spatial arrangement

(Endler et al. 2009). Subsequently mathematical formulae

can be determined to describe the system. Beyond intrinsic

circuit interactions there are also interactions between

circuit components and host resources (which we return to

later in this review).

Another challenge relates to the fact that chemical

reactions are discrete and stochastic, although modelling

these variations can be computationally burdensome. In

some cases, deterministic approximations can be sufficient

depending on the scope of the answer desired. Simpler still,

Boolean approximations can be very effective for

describing gene networks where the gene is notionally

simply on or off, and when intermediate expression is not

functionally relevant. Models could be based on, amongst

others, ordinary differential equations (ODEs), partial dif-

ferential equations (PDEs), stochastic differential equations

(SDEs), reaction–diffusion equations, and either stochastic

sampling or integration of the chemical master equations

(CME) (Chandran et al. 2008; Marchisio and Stelling 2009;

MacDonald et al. 2011). How to assess which model

structures are most appropriate (multimodel selection) is a

problem known to be extremely challenging, even when it

is possible to perturb and directly measure many of the

circuit components (Marbach et al. 2010; Hayden et al.

2016). Nevertheless, approximate Bayesian methods are

gaining traction for deciding between a set of similar

models (Toni et al. 2009).

A related (simpler) problem to model selection that is

still of practical utility is the problem of inferring model

parameters (of a fixed model structure), given observation

data (Toni et al. 2009; Golightly and Wilkinson 2011).

After all, to make accurate predictions about circuit beha-

viour, the parameter values must surely be known to some

level of accuracy. However, the majority of biological

components described thus far in this review have not been

characterized in sufficient detail to enable predictive

modelling to be commonplace in synthetic biology. With

recent advances in machine learning, there are now meth-

ods emerging that can handle high-dimensional parameter

inference problems, though require the use of large-scale

computing resources. Nevertheless, such methods enable

us to determine the relationship between the sequence of

DNA parts (Alipanahi et al. 2015; Kreimer et al. 2017), and

their quantitative behaviour in the cell, including the RBS

calculator described above (Salis et al. 2009), but also more

generally how protein expression depends on the whole 50

untranslated region (Cuperus et al. 2017). But all circuits

also incorporate other modes of biochemical regulation

(e.g. protein turnover, ligand binding, translocation), which

means that methods for inferring parameters for models of

specific circuits is just as important. Characterizing sets of

related circuits simultaneously is beginning to enable

model parameterizations from no prior quantitative infor-

mation directly from measurements, enabling design

Fig. 4 Towards large-scale genetic circuit design automation. Rep-

resentative design flow of an exemplar digital logic gene circuit is

shown. Design input in an abstracted format, in this case a truth

table and a Boolean logic expression (SOP = sum of products). The

system then performs an optimization in Boolean algebra for the 1-bit

full subtractor. Logic synthesis is performed to design the most

efficient circuit using a set of preferred types of logic gates; parts and

devices are assigned from a characterized gate library (mapping) and

modelled to assess feasibility of implementation. The genetic

sequences are deconstructed and reconstituted into an optimal

sequence design to be used in the target host organism. These are

then ranked using important factors when implementing in vivo.

Examples used in this case are toxicity effects on the host in terms of

percentage growth reduction and dynamic range of the output for the

circuit, measured in fold change between the ON and the OFF states
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optimisations to be generated (Huynh and Tagkopoulos

2014, 2016; Grant et al. 2016).

6 Towards advanced paradigms in cellular
computing

6.1 Memory and data storage

Memory in cells relies on permanent cellular changes in

response to temporary inputs, normally genetic, this

enables sequential logic over common combinatorial logic.

One of the earliest reported devices was the bistable toggle

switch, containing two stable gene expression states

(Gardner et al. 2000). Subsequent work used recombinases,

enzymes that can catalyze DNA excision or flipping

depending on the direction of the corresponding attachment

(att) sites that flank the DNA sequence of interest (Bonnet

et al. 2012). Some recombinases are bidirectional, either

inherently or alongside a co-expressed Recombinase

Directionality Factor (RDF). However, often permanent

reactions are preferred thanks to their inherent stability.

Reading the output can be as easy as basic sequencing.

Alternatively, there is a possibility of enclosing parts such

as promoters and gene coding sequences which can be

flipped in and out of the correct gene coding orientation

enabling circuit integration for sequential logic. Siuti et al.

(2013) were able to create 16 two-input Boolean functions

using recombinases that surrounded genetic elements such

as promoters and terminators, demonstrating memory

stable for 90 cell generations and Yang et al. (2014)

reached a recording capacity of 1 byte.

State machines can be one of a number of finite states at

any given time, with access to states dependent on prede-

termined sequence of events triggered by various condi-

tions. A basic 3-state version is shown in Fig. 2c, and the

most complex reported has 16 different positions (Roquet

et al. 2016). A version of this machine was used to record

temporal events in a population, with the distribution of

final cell states and spatial location recording the dynamics

of any inducer response including pulses (Hsiao et al.

2016). Another example created analog-like memory by

generating graded expression of single stranded DNA in

response to various signals, co-expressed with a corre-

sponding recombinase targeting specific genomic sites

resulting in a mutational response in the genome propor-

tional to the duration and magnitude of the input (Farzad-

fard and Lu 2014). As mentioned in the introduction,

Weinberg et al. (2017) used recombinases to build over 100

different types of multi-input multi-output circuits that

include a 1-bit full adder, by taking advantage of recom-

binases they were able to combine computation into a

single layer.

The natural CRISPR (Clustered Regularly Interspaced

Short Palindromic Repeats) and CRISPR associated protein

(Cas) system stores DNA from invading species in the

genome to generate an immune response. Memory can also

be stored by co-opting this approach as shown in Fig. 2d.

Recoverable via sequencing, Shipman et al. (2017)

assigned colours to the sequences and by distributing the

system amongst many cells, they were able to construct a

simple image recorder, with a capacity of 2.6 kilobytes.

Akin to this method, another group recorded the occurrence

of certain metabolites by initiating production of trigger

DNA in their presence (Sheth et al. 2017), others modified

the sequence of recorder plasmids, shifting and measuring

the ratio between modified and unmodified plasmids (Tang

and Liu 2018). Another recent example used DNA

methylation to record events; repressed by a zinc finger in

the off state, induction by heat methylates the DNA and

prevents binding thereby activating permanent expression

(Maier et al. 2017).

6.2 Distributed computing

Most of the circuits have thus far been localized in a single

cell. However natural systems can organize around dif-

ferent cells by using intercellular communication. Analo-

gously much work has also gone into spatially distributing

gene circuits across multiple cells, replacing the intracel-

lular ‘wires’ with synthetic intercellular signalling path-

ways as seen in Fig. 2e. This allows components to be

reused whilst avoiding any potential ‘cross talk’, enabling

scale up of vastly larger systems from a much smaller

library of parts (Macı́a et al. 2012) as combining the out-

puts of separate gates can functionally recreate the logic

behaviour of a single more complex one (Regot et al. 2011;

Macı́a et al. 2012).

In bacteria, signal propagation between cells can be

achieved by adapting the quorum sensing molecules, n-acyl

homoserine lactones (AHLs), natural molecules secreted

by cells that allows for coordinated activity such as biofilm

formation based on cell density (Tamsir et al. 2011). Early

circuits were small (Regot et al. 2011) but recent ones are

much larger, such as the 6-input multiplexer (Macia et al.

2016) and the most complex system to date, a 1-bit full

binary adder; incorporating 22 separate gates distributed

amongst 9 specialized mammalian cell types in a complex

three dimensional environment (Ausländer et al. 2017).

Guiziou et al. (2018) created an automated design frame-

work that did not require cell to cell communication using

integrase networks distributed across multiple cells.

Memory, like other functions, can also be distributed into

different cells, the bistable toggle switch was effectively

replicated by two cells containing a NOT logic gate, each

gate repressing the other when activated, communicating
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through inter-cellular signalling (Urrios et al. 2016). This

level of distributed computing can be applicable to meta-

bolic engineering for synthetic product production where

different populations each handle a different part of the

pathway in a division of labour (Tsoi et al. 2018). Other

potential applications include using cell–cell signalling to

induce structural self-organisation of tissues (Toda et al.

2018) and pattern formation (Basu et al. 2005; Karig et al.

2018).

7 Challenges and outlooks

There are number of challenges which become especially

relevant when scaling up the size and complexity of gene

circuits for useful functions. Namely the ability of a circuit

to sense inputs and generate useful outputs, manage

resource consumption, and maintain modularity of parts. In

particular, modularity faces challenges in orthogonality,

retroactivity and avoiding undesirable behaviour arising

from genetic and cellular context. Each problem will be

defined, its importance explained, the current state of the

art and future prospects examined.

7.1 Modular, robust and well characterized parts

Generally, larger circuits contain more parts with each part

and connection representing another point of failure.

Therefore parts must be well characterized with robust and

predictable behaviour regardless of context, enabling the

design of large-scale circuits to be fast, predictable and

reliable. Essentially this refers to modularity, whereby

parts retain their inherent function and behavioural char-

acteristics irrespective of the conditions that they are

placed in Sauro (2008). This enables two key processes to

occur, the decomposition of a system into individual parts

which can be constructed and tested separately and the

subsequent construction of larger systems and from a

library of smaller well understood pieces which generate

predictable functions. Modularity is difficult because of

several overlapping yet distinct challenges common to

biological systems: connectivity, retroactivity, orthogo-

nality, and context effects.

Connectivity in this scenario refers to the ability of parts

to communicate reliably with other parts, robust signal

propagation down a system is important to generate a

consistent output, if a signal degrades due to noise or is

unable to be propagated it can disrupt function. Therefore it

is desirable to protect circuits by maintaining good

connectivity.

Context dependency is the phenomena whereby part

behaviour becomes dependent or affected by unwanted

interactions from the host, environment, or even its own

composition (Cardinale and Arkin 2012). Unlike in elec-

tronic circuit design modules are linked by discrete wires,

which when layered correctly are unidirectional and do not

propagate signals to unintended recipients and have mini-

mal interaction with the surrounding environment. This

trait is increasingly important as circuits get larger and

more complex, as cross talk leads to noise and unpre-

dictability. Functionality can break down due to these

unwanted interactions with the host, system and environ-

ment (Kwok 2010; Wang et al. 2011; Wang and Buck

2012; Liu et al. 2018a, b). A part that does not interact

significantly with this context can be surmised to be

orthogonal (Liu et al. 2018a). Orthogonality therefore, is

important for both functionality and modularity.

The problem of context runs deep, even genetically

identical cells in the same environment can show variable

phenotypes; attributed in part to stochastic gene expression

due to the variable nature of small numbers of interacting

molecules (Munsky et al. 2012). Synthetic pathways can

elicit responses in the host such as stress or simply display

toxicity and circuit performance is tied closely to the health

of the host, its physiology, the growth rate, and (discussed

later) the availability of resources both internal and exter-

nal, cell volume and even division state (Cardinale and

Arkin 2012; Brophy and Voigt 2014; Liao et al. 2017).

Context can also extend into environmental factors such as

pH or media (Wang et al. 2011). Temperature in particular

has been shown to affect the rate of transcription and the

secondary structure of DNA and RNA (Cardinale and

Arkin 2012). There is also genetic context; expression can

be disturbed by the composition of the adjacent DNA

sequences resulting in UTRs affecting the secondary

structure and translation rate of the mRNA (Reeve et al.

2014). The size and copy number of the host plasmid can

also affect behaviour (Liu et al. 2018b). DNA folding and

spacing can affect the steric (spatial) ability for transcrip-

tion factors to bind, sequence homology can cause dele-

terious effects and even the orientation of genes on the

plasmid can modulate expression levels (Yeung et al.

2017). Since replication of the DNA must occur, there will

be errors and possible rendering of parts non-functional.

Because many parts have a negative effect on cell health

and growth, eventually populations will incorporate an

increasingly large subsection of non-functional circuits,

this is known as genetic instability (Zhang et al. 2016).

This is in spite of selection methods with, for example,

antibiotics as the cells will still evolve to only retain the

minimum number of genes required.

Retroactivity specifically, was defined by Jayanthi et al.

(2013) as ‘‘the phenomenon by which a downstream sys-

tem changes the dynamic state of an upstream system in the

process of receiving information from the latter’’. In this

case, downstream and upstream are relative to the intended
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flow of information (Del Vecchio et al. 2008). Essentially,

this means that attaching example part B to receive the

output of example part A will change the way part A

behaves, this of course scales as a problem the more con-

nections there are. In biology this can occur when upstream

regulatory factors bind their downstream targets. This gets

worse as the ‘load’ increases (the number of sites relative

to factors), and is magnified in larger circuits, as when

signalling molecules are bound they can no longer transfer

information.

The question of context, orthogonality, signal strength

and modularity, although distinct are also overlapping

challenges and have interacting solutions. One of the best

ways to maintain a robust signal in digital like circuits is to

maintain a large dynamic range, that is, a large difference

or ratio between the ON and OFF state. Although by nature

analog graded responses are more vulnerable to noise as

they have continuous outputs, this remains true for both as

a large dynamic range means the relative effect of any

noise is smaller providing the scale of noise remains the

same. This protects the signal from degradation as it

propagates throughout a system, which itself lends itself to

modularity, as a strong signal can mean behaviour remains

robust throughout different environments. The tuning tools

discussed earlier in Sect. 2 are the often used in adjusting

response curves and in optimisation to ensure the output of

one part can be received and function as a relevant input

for the downstream part. They can also affect the dynamic

range as well as modulate retroactivity by increasing

expression of the component, (Brophy and Voigt 2014).

Alternatively, signal strength can be modulated by the

addition of other parts such as amplifiers (Wang et al.

2014).

Other solutions to retroactivity have been attempted by

borrowing of concepts from control theory and the subse-

quent addition of feedback and feed forward loops for

insulation, although the latter can only be used based on

how the disturbance affects the system, thereby being a

much more specialized solution (Del Vecchio et al. 2016).

The ideal insulator has zero retroactivity to the input and is

not functionally affected in terms of output after taking on

the load. One possibility is to use phosphorylation-de-

phosphorylation cycles since they work on a much faster

timescale and do not place a large metabolic burden on the

host (Del Vecchio et al. 2008).

To avoid crosstalk within a circuit, we must minimize

unwanted interaction with the host and other sections of the

circuit. This generally means avoiding repeat use of the

same parts, in turn requiring proportionally more parts to

increase the complexity and scale of a system making the

expansion of the library of well characterized orthogonal

parts essential. Alternatively, the circuit can be insulated

from unwanted interactions, for example, the circuit can be

constructed as to not rely on the host transcriptional

machinery (Liu et al. 2018a) or follow the multicellular

distributed approach mentioned previously. The former has

gained some traction within the community. The phagemid

T7 RNAP has been co-opted to separate the transcriptional

machinery from the bacterial host Temme et al. (2012).

Chan et al. (2005), refactored the T7 RNAP itself by iso-

lating genes through physical separation, removing or

standardizing adjacent sequences to the coding region

whilst retaining functionality, making it much simpler to

model and easier to manipulate. This has further led to the

idea of an entirely orthogonal central dogma, conceptual-

ising the addition of orthogonal DNA polymerases,

aminoacyl-tRNA synthetases, and ribosomes for replica-

tion and translation respectively, (Liu et al. 2018a). Cello

has incorporated into its design space strong terminators

preventing RNAP read-through and ribozyme binding

sequences and secondary structures that can cleave off the

UTR to standardize context (Lou et al. 2012; Nielsen et al.

2016). Carr et al. (2017) developed a degenerate insulator

screening (DIS) technique to determine exact levels of

insulation desired for bacterial promoters. Lengthy DNA

sequences can be compressed by sharing regulatory parts,

though paradoxically this will take it out of the genetic

context it was characterized in, adding more uncertainty

(Brophy and Voigt 2014). Lowering expression of and

reducing resource consumption as well as reducing the

number of repeated sequences and using inducible pro-

moters can provide a reduction in genetic instability, as

well as tying the function of the circuit to host health

thereby making it advantageous to host survival (Sleight

et al. 2010). Noise can be resisted with negative feedback,

as well as from feed forward loops which incorporate both

positive and negative regulation, whilst cell–cell commu-

nication has also been suggested to have robustness to

noise (Zhang et al. 2016).

Understandably, for large scale gene circuits, all of these

issues are proportionally magnified. The more parts the

more points of failure. Ideally, there would be a large

number of highly modular components that could easily be

assembled together with predictable behaviour, in a sense

‘plug in and play’. However this is far from the case:

despite the wide array of parts that have been described in

the literature many of them are not well characterized

enough to facilitate easy reuse. Simply put, the behaviour

of many components becomes less predictable as they ta-

ken are taken further away from their original context. This

is partly down to a lack of standardization in characteri-

zation. Protocols vary across groups, equipment also differs

and characterization will be subject to a host of specific

design factors such as plasmid, strain and reporter choice

which often we do not understand well enough to reliably

predict behaviour when they are changed. The latter
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problem is a result of our general lack of knowledge

regarding basic biological system behaviour. Whilst map-

ping out potential cross reactivity between a small libraries

of parts is reasonably feasible, mapping all potential con-

nections and determining all possible interactions with the

host is an order of magnitude more complex and can be

even higher if accounting for changing environments and

different species across time and space. Not only would

this be computationally burdensome and difficult to

mathematically model, it would also require a heavy

amount of accurate and precise data that simply does not

exist in the required scale.

Although optimisation steps listed above are possible,

the time cost of performing optimization steps in multiple

components is vast and any cross talk only increases the

time needed as parts respond to multiple unwanted factors

and become more difficult to adjust. In a recent pressure

test where organisms were to be engineered to produce 10

molecules unknown in advance, Casini et al. (2018)

noticed that literature searches and database entries did not

produce actionable data,and even standard procedures such

as sequence verification and plasmid/oligo design became

bottlenecks. In addition, they had to wait 3-8 weeks for

DNA synthesis further reducing available bench time

suggesting that there is room for improvement across the

board.

The solution to these problems will lie in more accurate

and standardized initial characterization of parts, improved

understanding of basic circuit–circuit and circuit-host

interactions to predict behaviour under different conditions

and the reduction of man-hours required using high

throughput automated design, construction and characteri-

zation methods. It is in this context that large scale circuits

could benefit from the scale up and automation of

microfluidics for tasks such as genetic assembly and high

throughput characterization experiments that gather precise

single cell data (which offers a much deeper understanding

of host-circuit physiology than population averages), cell

free systems enabling rapid prototyping, and methods such

as RNA-seq giving us a much wider view of cell state. The

resulting data can then be fed into computational simula-

tions and models in order to be fed into the next round of

the DBTL cycle. This will result in a positive feedback

loop of knowledge; as circuits become better characterized,

our understanding of systems will increase, further

informing our design, our ability to model and predict

behaviour and subsequently reducing the time needed to

complete the DBTL cycle.

7.2 Generating relevant inputs and outputs

For circuits to have pertinent real-world applications, they

must be able to sense relevant phenomena such as the

intracellular concentration of a metabolite or extracellular

factors such as heavy metals, RNA, DNA, protein, pH,

light, oxygen or heat. In addition they must actuate outputs

that are valuable to human endeavour. By doing so gene

circuits can make the leap from interesting academic

problems to useful biotechnological applications.

The generation of novel functional parts often finds its

inspiration in already existing natural systems, although a

degree of characterization and refining of these parts is

necessary to add them to the toolbox (Wang et al. 2015a).

Existing proteins have been engineered to sense new

metabolites through directed evolution (Collins et al. 2006;

Taylor et al. 2016) and some hybrids with novel function

have also been developed. A synthetic light-sensitive sen-

sor kinase (Cph1–EnvZ) was made in E. coli by fusing the

photoreceptor domain of the phytochrome Cph1 protein

from Synechocystis to the intracellular signal transduction

domain of the E. coli EnvZ kinase, yielding a functional

sensor chimera (Tabor et al. 2009). Antibody domains have

been fused with DNA binding domains and activated via

ligand induced dimerization to enable sensing of new

molecules (Chang et al. 2018) and chimeric custom pro-

teins have also been demonstrated with modified Notch

receptors (Morsut et al. 2016). In some cases sensors can

be modified to work in different hosts, as demonstrated

with the retooling of TetR family repressors, to work in

human embryonic kidney (HEK293) and Chinese hamster

ovary (CHO) cells (Stanton et al. 2014). Examples of

outputs include useful biological or small molecule prod-

ucts (Paddon and Keasling 2014), simple signalling

responses to difficult to detect stimuli (Wang et al. 2013a;

Bereza-Malcolm et al. 2015), to the cancer targeting clas-

sifier circuits that secrete apoptotic proteins (Xie et al.

2011).

Larger scale circuits will likely include a greater number

of these unique sensing and output parts that will enable

complex programmable functionality. For example, a

bioremediation based system could potentially monitor

many environmental inputs and secrete specific enzymes

that degrade waste products in response. Circuits would

benefit then, from a larger library of unique well charac-

terized and modular parts, the general challenges and

solutions of which have already been discussed. In partic-

ular, the ability to link novel inputs and outputs would

benefit strongly from improved protein engineering tech-

niques in modifying existing functionality or the building

of chimeric proteins. In turn this would strongly benefit

from deep structure function understanding to avoid time

consuming trial and error experimentation (Wang et al.

2013b). Bioinformatics may be able to play a strong role

too, in estimating structure and function of candidate pro-

teins from their genetic sequences to narrow the design

space (Stanton et al. 2013).
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7.3 Metabolic burden

Metabolic burden or load can be understood as the resource

consumption required by the engineered system upon the

host. The concerns of burden are often the focus of meta-

bolic engineers when optimizing a product producing

pathway, however it is also relevant in the construction of

gene circuits as resource limitation fundamentally affects

system behaviour. Cells have an upper limit of nutrient and

energy intake that limits all cellular activity, one of these

hard limits can usually be described in terms of ATP. Cells

can compensate somewhat by increasing respiration and

catabolism but under too much strain there is a sharp drop

in total protein production to near 0 and often results in the

collapse of the population (Wu et al. 2016). The effect of

foreign protein production on the host was spotted early on;

increasing amounts of foreign protein production led to

decreasing growth rate in E. coli (Bentley et al. 1990;

Bhattacharya and Dubey 1995). The amino acid content of

recombinant proteins has also been shown to affect pro-

duction levels (Bonomo and Gill 2005) whilst the amount

of free ribosomes and RNAPs is also important, itself

affected by presence of plasmid DNA (Birnbaum and

Bailey 1991). There is evidence that genetic load resembles

the equations of Ohm’s law for resistance in electrical

circuits (Carbonell-Ballestero et al. 2016). Other findings

have shown that ‘leaky’ basal levels of transcription and

high plasmid copy number contribute to the protein burden

(Lee et al. 2016), with copy number also changing gene

circuit expression as well as in the host cell. Increasing

copy number increases expression of the receptors to the

system input, thereby increasing retroactivity, decreasing

the sensitivity and dynamic range of repressor based sys-

tems given the same amount of repressor, and vice versa

for activator based systems (Wang et al. 2015a; Liu et al.

2018b).

Managing load requires accurate characterization and

calculated mitigation. The copy number and general

expression levels of the circuit should be as low as is

essential for predictable behaviour. If necessary, the circuit

can be spread into multiple cells following the principles of

distributed computing. RNA based control tends to be the

least burdensome on host metabolism; Lapique and

Benenson (2017) even combined two orthogonal binding

sites into one DNA sequence using recombinases to

reversibly express equal amounts of the forward and

reverse DNA sequence, thereby generating two separate

species of RNA, each with one functional and orthogonal

binding site. Ceroni et al. (2015) inserted a constitutively

expressed GFP element that would act as a tracker for

metabolic change in the host. The Cello design framework

manages burden through simulating the load on each cell

by factoring in the impact on growth relative to the func-

tional activity of the input promoter (Nielsen et al. 2016).

This information can be used by the designer to optimize

the circuit (Wu et al. 2016). Liao et al. (2017) created a

model that considers different RNA levels, the proteome

(dividing it into gene expression apparatus and metabolic

machinery), resource partitioning (including ATP and

amino acid synthesis) as well as other factors such as

growth, copy number and cell volume. The CRISPR-Cas

system has been used to attenuate leaky gene expression

with T7 RNAP and has been shown to improve growth in

systems with previously toxic leaky expression

(McCutcheon et al. 2018). Incoherent feedforwards loops

(iFFL) have been engineered into promoters using tran-

scription-activator-like effectors (TALEs) which stabilised

expression level at different copy numbers (Segall-Shapiro

et al. 2018) whilst Lee et al. (2016) created single copy

plasmids with stable expression.

Larger circuits mean more components and this will

inevitably have a proportionally larger effect on metabolic

load. Selecting parts that have minimal resource con-

sumption (such as RNA based tools), and reducing con-

sumption of existing through tuning will constitute a large

part of the solution. In the latter case, there are complica-

tions as once a part is modified away from its original

specifications, it will need to be characterized again. Fur-

thermore, reducing the expression level can have negative

effects on signal robustness and increase the susceptibility

towards unwanted interactions and noise. The literature has

suggested that parts with analog behaviour are significantly

more resource efficient and the authors suggest that hybrid

devices will likely be common in the future (Sarpeshkar

2014). Parts might be also arranged so as not to overlap on

the type of load they produce, for example, distributing

load across both transcription and translation, or they might

be combined into a single layer that does not require

communication between parts for sub-computation as

demonstrated earlier (Weinberg et al. 2017). However the

authors do note that this means the performance of circuits

cannot be predicted based off its constituent parts. Another

solution would be to distribute the circuit into different

consortia, as discussed earlier; likely to become a common

approach as reduction of load from individual parts cannot

decrease indefinitely.

Tools that allow us to monitor and predict load will also

become increasingly important. Here the related field of

metabolic engineering may hold some promise. High

throughput experimentation again will allow us to gather a

larger amount of data in a shorter space of time and tools

such RNA-seq or whole cell mass spectrometry that offer a

wide view of cellular gene expression and metabolism to

be key in deciphering the interactions between circuit and

host (Liu et al. 2018b). Here the related field of metabolic
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engineering holds promise, having developed tools such as

metabolic flux balance analysis to predict the distribution

of important resources such as carbon (Yang et al. 2007).

Finally, like as before, as data becomes more readily

available and accurate, computational prediction will

become increasingly important.

8 Concluding remarks

Gene circuits hold great potential for addressing real-world

challenges including applications in biomanufacturing (Si

and Zhao 2016), biosensing (Bernard and Wang 2017) and

biotherapy (Riglar et al. 2017). Larger scale systems

potentially enable more intricate control and the larger

circuits thus far discussed have been able to compute more

complex functions than the smaller ones. Circuits have

been steadily increasing in size, albeit slowly, and the

molecular toolbox available to synthetic biologists is now

larger than ever before. There has been a significant

expansion of orthogonal parts that enable a vast quantity of

versatile methods to control behaviour, providing a solid

foundation for constructing complex circuits.

However there remains a significant lack of pre-

dictability of the behaviour of parts when put together that

scales in larger systems preventing regular reuse of all but

the most basic parts. Modularity and standardization

remain issues for biological components and there are

fundamental gaps in our knowledge on basic biological

processes that prevent us from accurately predicting

changes. Recent advances in characterization techniques

enable high throughput experiments providing single cell

and genome or proteome levels of data, whilst new meth-

ods in microfluidics and cell free systems potentially allow

for high speed prototyping of systems in a matter of hours

and days instead of weeks. The increase in time efficiency

in the laboratory whilst simultaneously gathering larger

data sets promises a positive feedback loop that enables

increasingly faster iterations of the DBTL cycle that con-

currently will result in larger more robust systems as well

as a leap in our fundamental understanding of biological

interactions. Automated systems can already be seen in

industry at the start-up stage, at companies such as Ginkgo

bioworks and Zymergen (Anne Ravanona 2015; Silicon-

review Team 2017), performing industrial strain engi-

neering with heavy use of robotics, next generation

sequencing, automation and software. Some of these

companies like Ginkgo, are spin-off companies from uni-

versities seeking to capitalize on their proprietary tech-

nologies and in 2017 50 synthetic biology companies

managed to raise 1.7 billion US dollars in funding (Calvin

Schmidt 2018). Both academia and industry could benefit

from continued and potential closer collaboration.

Academia is well placed to investigate the basic bio-

chemistry of the systems it engineers, furthering under-

standing of the relationship between circuit and host and do

the groundwork that enables basic modular functional parts

whilst industry works to apply the principles to relevant

real-world applications. It would be pertinent for industry

here to establish a forum for discussion of specific prob-

lems that need to be tackled for relevant market needs that

academia could potentially cooperate on. Closer partner-

ship will require adoption of model organisms that are

more relevant for biotechnology and close collaboration

with fields such as chemical engineering that work with

relevant techniques in order to bridge the gap between

proof of concept and industrially sized production (Moser

et al. 2012).
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