
Chemical reaction network designs for asynchronous logic circuits

Luca Cardelli1,2 • Marta Kwiatkowska2 • Max Whitby2

Published online: 22 December 2017
� The Author(s) 2017. This article is an open access publication

Abstract
Chemical reaction networks (CRNs) are a versatile language for describing the dynamical behaviour of chemical kinetics,

capable of modelling a variety of digital and analogue processes. While CRN designs for synchronous sequential logic

circuits have been proposed and their implementation in DNA demonstrated, a physical realisation of these devices is

difficult because of their reliance on a clock. Asynchronous sequential logic, on the other hand, does not require a clock,

and instead relies on handshaking protocols to ensure the temporal ordering of different phases of the computation. This

paper provides novel CRN designs for the construction of asynchronous logic, arithmetic and control flow elements based

on a bi-molecular reaction motif with catalytic reactions and uniform reaction rates. We model and validate the designs for

the deterministic and stochastic semantics using Microsoft’s GEC tool and the probabilistic model checker PRISM,

demonstrating their ability to emulate the function of asynchronous components under low molecular count.

Keywords Chemical reaction networks � Chemical circuits � Chemical reaction network validation � Chemical reaction

network simulation � Asynchronous circuit design

1 Introduction

Chemical Reaction Networks (CRNs) are traditionally used

to capture the behaviour of inorganic and organic chemical

reactions in a well-mixed solution. Recently, a paradigm

shift in the scientific community has seen the use of CRNs

extend to that of a high-level programming language for

molecular computing devices (Cook et al. 2009), where the

fundamental computational process differs from conven-

tional digital electronics in that it involves transformation

of input chemicals into output via reaction rules, as

opposed to processing discrete signals (voltage bands)

interpreted as Boolean values. Several digital and analogue

circuits (Magnasco 1997; Soloveichik et al. 2008) have

been designed in CRNs and their computational power

studied (Soloveichik et al. 2010; Chen et al. 2013). It has

also been demonstrated in principle that any CRN can be

physically realised in DNA (Soloveichik et al. 2010; Car-

delli 2010; Chen et al. 2013). CRNs are therefore partic-

ularly attractive as a programming language for use in

nanotechnology and biomedical applications, where it is

difficult to integrate traditional electronics.

Chemical systems can store and process information in

several ways. We focus on finite systems of molecules

interacting in a well-mixed solution under mass-action

kinetics and emulate Boolean circuits by encoding infor-

mation through molecular concentrations reaching a par-

ticular threshold. The computation proceeds by

transforming input species concentrations into outputs

according to the reactions of a finite CRN. It is known that

the computational power of CRNs is affected by the choice

of the semantics, deterministic or stochastic. In particular,

assuming a small probability of error, (finite) stochastic

CRNs have been shown to be Turing universal (Solove-

ichik et al. 2008). The deterministic semantics interprets

the reactions as a system of differential equations, which

describe the evolution of the system as a vector of real-

valued species concentrations over time (Chen et al. 2013).

The stochastic semantics, on the other hand, views the state

This research is supported by a Royal Society Research Professorship

and ERC AdG VERIWARE.

& Max Whitby

max.whitby@cs.ox.ac.uk

Luca Cardelli

luca@microsoft.com

Marta Kwiatkowska

marta.kwiatkowska@cs.ox.ac.uk

1 Microsoft Research, Cambridge, UK

2 Department of Computer science, University of Oxford,

Oxford, UK

123

Natural Computing (2018) 17:109–130
https://doi.org/10.1007/s11047-017-9665-7(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8753-4229
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-017-9665-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-017-9665-7&amp;domain=pdf
https://doi.org/10.1007/s11047-017-9665-7


of the system as a vector of (non-negative) integer

molecular counts and state transitions as a reaction which

has a non-zero probability of occurring (Cook et al. 2009).

The stochastic evolution of the system over time is

obtained as a solution of the Chemical Master Equa-

tion (CME) (Kampen 1992). It is well known that the

deterministic semantics is not accurate for small popula-

tions. While the stochastic semantics is exact, it is infea-

sible for large molecular counts. One scalable alternative is

the Linear Noise Approximation, which is a real-valued

approximation of the CME (Cardelli et al. 2015). The

correctness of the behaviour of a circuit described by a

finite CRN can be analysed by inspecting its stochastic and

deterministic evolution over time. In addition, techniques

such as model checking can be employed to analyse the

temporal ordering of events.

While CRN designs for synchronous sequential logic

circuits have been proposed, to mention (Magnasco 1997;

Soloveichik et al. 2010, 2008), a physical realisation of

these devices is challenging because of their reliance on a

clock to synchronise events in order to ensure the correct

temporal order of the phases of the computation. Clocks

are difficult to make, since they arise from unique condi-

tions of chemical concentrations and kinetic constants, and

must control a large number of events. In electronics, an

alternative circuit design technology is asynchronous

sequential logic (Spars and Furber 2002; Myers 2004),

which instead of a clock relies on handshaking protocols to

synchronise events. Asynchronous circuits are widely used

for low-power microprocessor designs, e.g., by ARM,

though require a larger circuit area. The key component is

the Muller C-element, which is used to synchronise mul-

tiple independent processes in a manner insensitive to the

delays on wires and individual components. To ensure

Turing completeness of asynchronous circuits, we also

require an isochronous fork in addition to the Muller

C-element. An isochronous fork is a component which

produces a fan-out of signals that reach the target at vir-

tually the same time. This assumption is difficult to achieve

in conventional electronics, because of the need to make

the wires the same length, but is straightforward in

chemical kinetics because of the well-mixed assumption.

This paper provides novel CRN designs for the con-

struction of an asynchronous computing device based on a

bi-molecular reaction motif inspired by the Approximate

Majority network (Angluin et al. 2008; Cardelli and Csi-

kász-Nagy 2012). The motif employs catalytic reactions to

achieve bistable switching of molecular concentrations,

which emulates high and low voltage signals in digital

electronics. All components are produced with simple

reactions and uniform reaction rates, where we assume a

well-mixed solution under mass action kinetics, and are

independent of a universal clock. Moreover, any design

provided in this paper could in principle be realised as a

DNA strand displacement device (Cardelli 2010). We work

with the dual-rail design methodology and employ a vari-

ant of the diagrammatic language of Cardelli (2014) to

represent the designs at the high level. Starting from the

Muller C-element, we design the main components of a

complete asynchronous computing device in terms of

CRNs in a principled way, including logic gates, control

flow and basic arithmetic, as well as more complex struc-

tures such as queues. We validate the designs by exploring

their time evolution for all possible combinations of inputs

using Microsoft’s Visual GEC tool,1 with the latter also

approximated using an experimental implementation of the

Linear Noise Approximation (LNA) of Cardelli et al.

(2015) provided by Visual GEC that offers better scala-

bility. We use the LNA to highlight a flaw with a key

design component. Further, we demonstrate the correct

behaviour of the circuits against temporal logic specifica-

tions with the probabilistic model checker PRISM2

(Kwiatkowska et al. 2011). Our designs constitute the first

feasible implementation of asynchronous computational

components as CRNs, and are relevant for a multitude of

applications in synthetic biology and biosensing.

This paper is an extended version of the conference

paper Cardelli et al. (2016).

2 Related work

The computational power of Chemical Reaction Networks,

viewed as a programming language for engineering bio-

chemical systems, has been studied by a number of authors,

to mention Cook et al. (2009) and Chen et al. (2013).

There are a number of ways in which chemical systems can

encode and process information. This includes simulating

Boolean circuits, where information is encoded in binary

form using high and low concentrations similarly to this

paper, e.g. Magnasco (1997), Soloveichik et al. (2010) and

Soloveichik et al. (2008), as well as geometric arrange-

ments, for example self-assembly (Rothemund et al. 2004)

and molecular walkers (Dannenberg et al. 2015) not con-

sidered here. Researchers have also investigated the power

of CRNs to model distributed algorithms (Angluin et al.

2008).

Regarding synchronous logic circuits, much of the work

to date considered abstract CRN schemes. One exception is

Silva and McClenaghan (2004), where a system of actual

chemical reactions is given, together with a precise

molecular implementation for gates complete with a

1 http://lepton.research.microsoft.com/webgec/ (Pedersen and Phil-

lips 2009), both for the deterministic and stochastic semantics.
2 www.prismmodelchecker.org.

110 L. Cardelli et al.

123

http://lepton.research.microsoft.com/webgec/
http://www.prismmodelchecker.org


thermodynamic analysis of how the system would evolve,

though only for simple gate designs. In Cook et al. (2009)

we see the construction and composition of simple logic

gates based upon catalytic reactions, but they do not

mention control flow or systematic component design in a

dual rail setting. In Senum and Riedel (2011) the authors

propose CRNs for an inverter, an incrementer, a decre-

menter and a copier; their designs are based on two rate

constants, ‘‘fast’’ and ‘‘slow’’, and thus are not rate-inde-

pendent, in contrast to the designs presented here.

CRNs can also be viewed as computing functions over

reals or Booleans. A single CRN computes a function over

a finite domain, which is analogous to Boolean circuits in

the sense that any given circuit computes only on inputs of

a particular size (Soloveichik et al. 2008). An implemen-

tation of dual-rail logic gates that are rate-independent is

given in Chen et al. (2014). In contrast, our designs are

composable and capable of performing non-trivial

computation.

Since the behaviour of CRNs is asynchronous, a fact

evident through their equivalence with Petri net models

(Cook et al. 2009), the main difficulty with programming

them is the need to control the order of reactions. In Cook

et al. (2009) it is suggested that this ‘‘uncontrollability’’

can be handled by changing rate constants, an idea fol-

lowed up in Napp and Adams (2013), where CRN designs

for basic arithmetic are given based on two rate constants,

‘‘fast’’ and ‘‘slow’’. Our designs, on the other hand, exploit

the asynchrony of the underlying CRN model and work

with uniform rates.

Designs for the Muller C-element, though not the

remaining components of an asynchronous device, have

been constructed from genetic logic gates (Nguyen et al.

2010) and a genetic toggle switch (Nguyen et al. 2007), but

we are not aware of any other nanoscale designs for

asynchronous circuits. Soloveichik et al. (2010) shows that

any CRN, including those presented in this paper, can

theoretically be implemented as a DNA Strand Displace-

ment device. These devices have been demonstrated in the

lab (Qian and Winfree 2011, 2011; Chen et al. 2013), and

thus provide an indication of experimental feasibility of our

designs.

3 Preliminaries

3.1 Chemical reaction networks

A Chemical Reaction Network (CRN) C ¼ ðK;RÞ is a pair of
finite sets, whereK is a set of chemical species and andR is a set

of reactions. jKj denotes the size of the set of species. Reactions
inRdescribehowspecies interact. Formally, a reaction s 2 R is

a triple s ¼ ðrs; ps; ksÞ, where rs 2 NjKj is the vector of

molecular counts of the reactants, ps 2 NjKj is the vector of

molecular counts of the products and ks 2 R[ 0 are the coef-

ficient associated to the rate of the reaction. We assume

ordering of species within vectors is alphabetical. Given a

reaction s1 ¼ ð½1; 1; 0�T ; ½0; 0; 2�T ; k1Þ, where �T is the trans-

pose of a vector, we often refer to it as s1 : Aþ B!k1 2C, where
A, B and C are generic species.

In this paper we are only concerned with uni-molecular

reactions, i.e. those which have only one reactant, and bi-

molecular, i.e. those with two reactants. The ‘‘reversible

reaction’’ notation Aþ B � 2C is a shorthand for the two

reactions Aþ B!k1 2C and 2C!k2 Aþ B, where k1 and k2 are

not necessarily equal.

We assume that the system is well stirred, that is, the

probability of the next reaction occurring between two

molecules is independent of the location of those mole-

cules, at fixed volume V and temperature; under these

assumptions a configuration or state x 2 NjKj of the CRN is

given by the number of molecules of each species. Given a

configuration x we define z ¼ x
N
, where N ¼ V � NA is the

volumetric factor, V is the volume and NA Avogadro’s

number. We write xðkiÞ for the number of molecules of ki
in the configuration x and zðkiÞ ¼ xðkiÞ

N
to denote the con-

centration of ki in the same configuration.

We will sometimes distinguish between CRNs with

different initial configurations, and to this end define a

chemical reaction system (CRS) as a tuple S ¼ ðK;R; x0Þ
where ðK;RÞ is a CRN and x0 2 NjKj represents its initial
configuration, and we sometimes use the terms CRN and

CRS interchangeably.

Diagrammatic CRN notation To better visualize a

CRN C ¼ ðK;RÞ as a circuit, we employ a directed multi-

edge graph ðK;EÞ based upon a fragment of the diagram-

matic notation for influence graphs Cardelli (2014). K, the
nodes, represent the species of the CRN C and edges E are

derived from reactions R as follows. A reaction is repre-

sented as a directed multi-edge with sets of species as

source and target. Each edge is either a pointed arrow (") or
a rounded arrow ( ), with the source represented by the flat

edge and the target represented by the arrow head. A

reaction that produces a species as a product is connected

to it by a directed edge.

All reactions within our diagrams are catalytic and are

bi-molecular reactions of the form X þ Y ! X þ Z,

meaning that Y is transformed to Z and X is a catalyst, that

is, X influences the transformation of Y to Z. The edges

represent that a source species is catalytic to a target

reaction.

Chemical reaction network designs for asynchronous logic circuits 111

123



Example 1 (CRN Diagrams Example) We illustrate the

flexibility of the diagrammatic notation with three CRN

examples. Figure 1a shows the CRN with the single reac-

tion C þ A ! C þ B. The ball ( ) indicates that C is a

catalyst to the reaction A ! B represented by the arrow (").
A species can act as both a reactant or catalyst in the same

reaction, and similarly for a product. In Fig. 1b we depict

the CRN with two reactions fAþ A ! Aþ B;Bþ
B ! Bþ Ag, in which both A and B catalyse themselves.

Figure 1c depicts the CRN with reaction set

fAþ B ! Bþ B;C þ B ! Bþ Bg, with species B cata-

lysing multiple reactions, which is represented by a mul-

tiheaded edge with multiple s. This CRN transforms

species A and C into species B.

Dual-rail representation We represent a Boolean cir-

cuit with inputs I and outputs O, denoted B(I, O), as fol-

lows. Firstly, a Boolean variable b ¼ f0; 1g could be

encoded in a single species X, where 0 would be encoded

as E½jXj� ¼ 0 and 1 as E½jXj� �M, where E[|X|] denotes an

expectation of the number of molecules of X and M is a

molecular population threshold.

The CRN computes by transforming an input concen-

tration into an output concentration, which reaches the

appropriate level upon convergence. However, since

absence of molecules cannot be measured, we employ d-

ual-rail methodology and represent every Boolean variable

with two species, denoted Xhi;Xlo. Just like we cannot

represent both 0 and 1 on an electrical wire, we restrict our

CRNs such that either E½jXhij� �M or E½jXloj� �M, but not

both, can be present when a CRN has stabilised and no

further reactions occur. We consider a high concentration

output as correct if E½jXhij�[ 0:8maxðXhiÞ � 1SDðXhiÞ,
where 0.8 is a threshold normalised between the values

[0, 1], max() is a function that returns the maximum

molecular concentration of a species within the CRN and

1SD computes 1 standard deviation from the mean con-

centration of E½Xhi�. 1SD returns 0 under the deterministic

semantics. Similarly, we consider a low concentration as

correct if E½jXloj�\0:2 � maxðXloÞ þ 1SDðXloÞ.
For simplicity, we apply the dual rail methodology only

to the variables in the input and output sets I and O. The

circuits may contain additional variables, which will be

considered internal and assumed not to catalyse with any

species outside of the CRN circuit. We will encode these

with single species and use the naming convention of

referring to these internal species as k; k1; � � � ; ki. When

composing two circuits B1ðI1;O1Þ and B2ðI2;O2Þ in series,

we define their composition as a circuit BðI1;O2Þ, in which

all variables in O1 [ I2 have been made internal.

Example 2 (Dual-Rail CRN ‘Motif’) We introduce a

simple two reaction CRN which forms a ‘motif’ common

to all our CRN circuit diagrams. The CRN is given by the

set of reactions fXhi þ Ylo ! Xhi þ Yhi;Xlo þ Yhi ! Xlo þ
Ylog shown in Fig. 2a, where the input set I contains Xlo

and Xhi and the output set contains Ylo;Yhi. In this CRN the

input Xlo or Xhi influences the reaction Ylo � Yhi to produce

as output the same Boolean value. We also include a dia-

grammatic CRN showing the composition of two such

motifs in series. Here the inputs are Xhi;Xlo and outputs

Yhi; Ylo.

Example 3 (Dual-rail CRN with Internal (k) Species) The
CRN shown in Fig. 3 represents a circuit B(I, O) with

internal species k which does not belong to the set I [ O.

Therefore dual rail methodology is not used for k as it is

not catalytic to any species outside of this CRN circuit. I

comprises Xlo;Xhi and O comprises Yhi; Ylo. The CRN is

simplified to fXhi þ k ! Xhi þ Yhi;Xlo þ k ! Xlo þ
Ylo; kþ Yhi ! k þk; kþ Ylo ! kþ kg. This CRN converts

Yhi and Ylo to k, assuming a non-zero initial concentration

of molecules, unless there is either Xlo or Xhi present, in

which case a deadlock occurs. We use the term conversion

to mean the occurrence of a reaction where there are non-

zero molecular counts of reactants present.

Deterministic semantics Let C ¼ ðK;RÞ be a CRN.

The net change associated to a reaction s 2 R is defined by

ts ¼ ps � rs. The deterministic semantics models the con-

centration of the species in K over time as a set of auton-

omous polynomial first order differential equations

(ODEs):

Fig. 1 Diagrammatic notation for CRNs. a CRN with the single

reaction C þ A ! C þ B, in which species C catalyses the reaction

A ! B. b CRN with reactions fAþ A ! Aþ B;Bþ B ! Bþ Ag, in

which species A and B are both reactants, products and catalysts. c
CRN with reactions fAþ B ! Bþ B;C þ B ! Bþ Bg, which

demonstrates that B can be catalytic to multiple reactions

112 L. Cardelli et al.

123



dUðtÞ
dt

¼

FðUðtÞÞ ¼
X

s¼ðrs;ps;ksÞ2R
tr � ks

YjKj

i¼1

UiðtÞrs;i
 !

:
ð1Þ

where function U : R� 0 ! RK describes the behaviour of

the system assuming a continuous state-space semantics,

and therefore UðtÞ 2 RjKj is the vector of the species

concentrations at time t and F is simply the derivative of U
with respect to time. Assuming t0 ¼ 0, the initial condition

is Uð0Þ ¼ ½x0�, where x0 is the initial configuration (vector

of concentrations of molecules) of the CRN. It is well

known that the deterministic semantics may be imprecise

for low molecular counts, but is accurate in the limit for

high populations Kampen (1992). However, the determin-

istic semantics produces the same proportion of molecules,

regardless of total concentration.

Stochastic semantics The stochastic semantics is rep-

resented through a continuous-time Markov chain

(CTMC), whose transient evolution can be given via the

Chemical Master Equation (CME) (Kampen 1992). Let

C ¼ ðK;RÞ be a CRN. The propensity rate as of a reaction
s is a function of the current configuration of the system x

such that asðxÞdt is the probability that a reaction event

occurs in the next infinitesimal interval dt. We assume

mass action kinetics, therefore asðxÞ ¼ ks

QjKj
i¼1

ri;s!

N jrs j�1

QjKj
i¼1

xðkiÞ
ri;s

� �
; where ri;s is the i-th component of the

vector rs and jrsj ¼
PjKj

i¼1 ri;sAnderson and Kurtz (2011).

We define a time-homogeneous CTMC ðXCðtÞ; t 2 R� 0Þ
with state space Q � NjKj as follows. Given x0 2 Q, where

x0 is the initial configuration of the system, then

PðXCð0Þ ¼ x0Þ ¼ 1. The transition rate from state xi to

state xj is defined as rðxi; xjÞ ¼
P

fs2Rjxj¼xiþvsg NasðxiÞ.
XCðtÞ describes the stochastic evolution of the molecular

populations of each species in C at time t. For x 2 Q, we

define PðtÞðxÞ ¼ PðXðtÞ ¼ xjXð0Þ ¼ x0Þ, where x0 is the

initial configuration. The CME describes the time evolution

of X as:

d

dt
PðtÞðxÞ
� �

¼
X

s2R
Nasðx�tsÞPðtÞðx�tsÞ�NasðxÞPðtÞðxÞ
n o

:

ð2Þ

The solution of the CME is computed through numerical

simulation or discretisation techniques such as uni-

formization (Kwiatkowska et al. 2007), and is generally

feasible only for small populations. The CTMC is often

represented as a Q� Q rates matrix, which can be viewed

as a state transition graph and subjected to model checking

against temporal logic properties (Kwiatkowska et al.

2011).

Linear noise approximation The LNA approximates

the CTMC as a continuous-state Gaussian process, given in

the form of a set of ODEs that describe the time evolution

of expectation and variance of the species. The error of

approximation is dependent upon the volumetric factor N,

the structure and the rates of the CRN. Given a CRN C ¼
ðK;RÞ with initial configuration x0 2 NjKj and in a system

of volume size N, we define the stochastic process

Y ¼ N � Uþ
ffiffiffiffi
N

p
� Z, where U is the deterministic process

given in Eq. 1, and Z is a zero-mean Gaussian process

(since we assume the initial condition is a fixed value), and

with covariance C[Z(t)] described by the solution of the

following ODEs with initial condition C½Zð0Þ� ¼ 0:

Fig. 2 a The CRN ‘motif’, in which the input Xlo or Xhi influences the

reaction Ylo � Yhi to produce as output the same Boolean value. b
CRN obtained by composing two ‘motif’s depicted in a in series. The

inputs are now Xhi;Xlo, outputs Yhi; Ylo, and the remaining species

have been made internal through renaming with k.

Fig. 3 Example CRN with internal k species, which converts outputs

Yhi and Ylo to k, assuming a non-zero initial concentration of

molecules, unless there is input Xlo or Xhi present

Chemical reaction network designs for asynchronous logic circuits 113

123



dC½ZðtÞ�
dt

¼F0ðUðtÞ;C½ZðtÞ�Þ

¼JFðUðtÞÞC½ZðtÞ� þ C½ZðtÞ�JTF ðUðtÞÞ þWðUðtÞÞ
ð3Þ

where JFðUðtÞÞ is the Jacobian of FðUðtÞÞ, JTF ðUðtÞÞ its

transpose, and

WðUðtÞÞ ¼
X

s2R
tsts

Tks
Y

S2K
UrS;s

S ðtÞ:

Expected value and covariance matrix of Y(t) are com-

pletely characterized by UðtÞ and C[Z(t)] since E½YðtÞ� ¼
NUðtÞ and C½YðtÞ� ¼

ffiffiffiffi
N

p
C½ZðtÞ�

ffiffiffiffi
N

p
¼ NC½ZðtÞ�.

The LNA requires solving a number of ODEs quadratic

in the number of species (Cardelli et al. 2015) and is

therefore a scalable alternative to the solution of the CME.

In contrast to the deterministic semantics, which considers

average concentrations, the LNA does not compromise

stochasticity.

Tool support A number of software tools exist for

examining the behaviour of CRNs. We employ Microsoft’s

Visual GEC, which provides a programming language,

LBS, for designing and simulating a given CRN under the

deterministic or stochastic semantics, including also the

LNA approximation of the stochastic semantics. The tool is

capable of producing plots of expected or average species

concentrations over time. This functionality is used

extensively within this paper to validate our circuit designs.

In addition, Visual GEC exports models to the probabilistic

model checker PRISM (Kwiatkowska et al. 2011), which

then enables verification of the induced continuous-time

Markov chain against temporal logic properties. We use

PRISM to verify the correctness of the temporal ordering

of events occurring as the CRN circuit executes.

Example 4 (CRN Validation Under Different Semantics)

We show the operation of our dual-rail CRN ‘motif’ given

in Example 2 under the deterministic and stochastic

semantics. The input configuration is jXhij ¼ 10 molecules

and output jYloj ¼ 10 molecules. Figure 4 demonstrates

that, after 0.4 s, the CRN stabilises reaching the concen-

trations of jYhij ¼ 10 and jYloj ¼ 0 as desired. With regards

to simulations provided, concentrations (given in

nanomolars) are directly correlated to concentrations as we

assume the volumetric factor N is fixed.

3.2 Asynchronous hardware

Asynchronous computation is a model of computation that

relies on transitions via local input signals rather than

transitions via a global clock. Asynchronous computation

(Spars and Furber 2002), just like its synchronous coun-

terpart, is Turing complete (Manohar and Martin 1996),

meaning that any bounded-tape Turing machine can be

implemented with an asynchronous circuit, providing that

the implementation of that circuit has isochronous forks.

An isochronous fork is the propagation of a signal from a

Fig. 4 Simulation of the motif given in Example 2 under different

semantics. The input is initially Xhi and the output is Ylo, both starting

at a concentration of 10 molecules. In a, b, c we respectively show the

deterministic solution, stochastic simulation and LNA plot with

variance, where Ylo is seen in blue and Yhi is seen in yellow. We can

observe that in all cases Yhi is present after 0.4 s. In d we show the

state transitions of the induced CTMC that correspond to the output

switching from Ylo to Yhi. The computation reaches the correct output

state and stabilises, with no more transitions enabled. (Color

figure online)

114 L. Cardelli et al.

123



single source to multiple receivers, with the important

constraint that the signal must reach the receivers at pre-

cisely the same time. In classical digital circuitry this

corresponds to the propagation of a signal down wires of

exactly the same length from one component to another. In

CRNs this could be seen as two species reaching a

threshold N at precisely the same time.

Asynchronous circuits, which are designed based upon

the theoretical principles of asynchronous computation, are

widely used for low-power microprocessor designs, e.g., by

ARM, and are increasing in popularity with the increase in

distributed computing (Myers 2004). Asynchronous

designs offer a number of advantages, the main one being

correctness independent of timing, although they require a

greater overhead in terms of silicon area.

We illustrate the principles of asynchronous circuit

design by describing its key component called the Muller

C-element and showing how it is used to construct a

pipeline that propagates signals.

Muller C-element The cornerstone of asynchronous

computation is the Muller C-element. A Muller C-element

has two Boolean inputs, X and Y, and one output Z. By

definition these inputs can either be low or high (repre-

sented by 0 or 1). When both inputs are low the output is

low. Similarly, when both inputs are high the output is

high. The variation from a classical logic gate, however, is

that if the inputs are high, or low, and one of them changes,

it ‘remembers’ the last state. In other words, it retains the

last 0 or 1 state. This is summarised in Fig. 5a. An

important property of the C-element is that it allows an

observer to conclude on seeing output change from 0 to 1

that both inputs are now 1, and similarly for input change

from 1 to 0.

The table specification indicates that asynchronous cir-

cuits exhibit concurrency and causality, and hence their

specifications need to reflect these characteristics. A com-

mon way is as a timing diagram, seen in Fig. 5d for the

C-element, which represents a set of signals and their

interactions over time. Each row of a timing diagram

represents one signal and how it switches from low to high

over time. If a signal displays a change before another

signal on another line then this signal must precede the

other. An arrow represents that one signal change triggers

the change of another. In the C-element diagram, note that

X and Y have to precede Z, both in the transition to 1 and

down to zero. However, there is no causal dependency

between X and Y.

Asynchronous diagrams, and in particular the C-ele-

ment, are accurately described using Petri nets (Spars and

Furber 2002, p. 86) or process algebras (Wang and

Kwiatkowska 2007). We present a (1-bounded) Petri net

Fig. 5 Four specifications of a C-element with inputs X, Y and an

output Z. a Conventional logic table, where ‘unchanged’ means that

the state of the output is the last stable configuration of 1 or 0. b State

graph, in which each state denotes a configuration and a transition is

caused by the presence of a signal, where * indicates that the signal is

excited. c 1-bounded Petri net specifying the Muller C-element.

d Timing diagram for the C-element

Chemical reaction network designs for asynchronous logic circuits 115

123



for the C-element in Fig. 5c, in which transitions are

interpreted as signal transitions and places and arcs capture

the causal relations between the signal transitions. Fol-

lowing the usual convention, the Petri net is drawn in

simpler form where most places have been omitted. We

can observe that both tokens are needed in order to excite

the transitions that cause the event Zhi, which in turn will

require the events Xhi and Yhi to be triggered. The same is

true for Zlo.

When considering circuit synthesis, we typically employ

a state graph specification, which can be obtained from the

Petri net representation (Myers 2004) and is given for the

C-element in Fig. 5b. The values in each state correspond

to the values of inputs X, Y and output Z, respectively. A *

symbol indicates that the corresponding variable is excited

by the outgoing transition (and will be changed in the

following state). Observe how we can only transition to a

state 1�1�1 from a state 110� requiring X as 1 and Y as 1.

Because this is derived from a 1-bounded Petri net, we can

assume that the transitions 0�10 ! 110� and 10�0 ! 110�
do not conflict.

Muller C-pipeline In order to replace the need for a

global clock, asynchronous computation relies on ‘local

cooperation’ in the form of handshaking protocols. These

protocols exchange completion signals in order to establish

when a computation has terminated. These handshaking

protocols rely heavily on the C-element described above.

The Muller pipeline, shown in Fig. 6, is constructed by

the composition of Muller C-elements (depicted by the gate

symbol labelled with C) and classical NOT-gates, which

receive and send data to/from the environment (Left, Right

in the figure). Its function is to propagate a high and low

signal along the pipeline, emulating the ‘wave’ of high and

low signals of a classical synchronous clock. Initially, all

C-elements are set to a value of 0. The ith C-element C[i]

will propagate a 1 from its predecessor, C½i� 1�, only if its

successor, C½iþ 1�, is 0. Similarly, it will propagate a 0

from its predecessor only if its successor is 1. Eventually

the first request initialised on the left hand side of our

pipeline is propagated to the final request on the right.

The protocol enacted upon this pipeline uses request and

acknowledge rails that can be set to high or low. The

Muller pipeline implements a basic four phase protocol,

which is as follows. Firstly, the sender sends data and sets

request to high, viewed in Fig. 6 as the signal Req being

high. The receiver then records this data and sets

acknowledge to high (Ack). Then the sender responds by

setting request to low (Req), and finally the receiver

acknowledges this by setting acknowledgement to low

(Ack). If at any point a handshake along the pipeline is

slower than another, the pipeline will behave like a FIFO

queue with data preserved. Herein lies the important pur-

pose of the pipeline: it allows for the delay-insensitive

transfer of information from one place to another. In

combination with a latch we can create the propagation of

information across latches using the pipeline as a control

structure.

The construction of data storage and control structures

such as queues and adders is similar to the Muller pipeline.

Timing properties of asynchronous circuits Asyn-

chronous circuits can be classified as being self-timed,

speed independent or delay-insensitive, depending upon

delay assumptions that are made. Assume a circuit is

composed of gates and wires. A self-timed circuit operates

correctly if both gates and wires experience measurable

and fixed delays. A speed independent circuit operates

correctly if gates exhibit some unknown time delay within

gates but exhibits no time delay on wires. A delay-insen-

sitive circuit operates correctly if there is both unknown

delay within gates but also unknown delay within wires.

The set of delay insensitive circuits is small, essentially

those built from the Muller C-element and NOT gates, and

so a broader class of quasi-delay insensitive circuits are

identified. Quasi-delay insensitive circuits, which can be

composed of purely C-elements, NOT-gates and forks, are

Turing complete Manohar and Martin (1996). They are not

possible to achieve without an isochronous fork.

4 Asynchronous circuit designs as chemical
reaction networks

In this section we present our dual-rail designs for an

asynchronous computing device in CRNs. The key com-

ponent is the Muller C-element, whose design is inspired

by the well known Approximate Majority (AM) CRN

(Angluin et al. 2008). We begin by providing a detailed

justification for our C-element design, and then describe

the remaining simple components, including latches, logic

gates and control flow. Finally, we present complex circuits

such as the pipeline, queue and adder.

To justify the designs, we demonstrate that each com-

ponent we design exhibits correct behaviour. Considering

as an example the C-element, this amounts to working with

an informal specification of the C-element in terms of high/

Fig. 6 Muller pipeline. Signals are propagated from left to right using

request and acknowledge signals. The pipeline effectively queues

data, only allowing a transition to occur when a further signal has

been acknowledged

116 L. Cardelli et al.

123



low signals as in Fig. 5, and then showing that our (con-

tinuous) CRN empirically satisfies that specification

according to appropriate thresholding for high/low signals,

as normally done in electronics for transistor logic. To this

end, we explore the time evolution of the components

under the deterministic and stochastic semantics, including

also LNA for scalability. We additionally employ proba-

bilistic model checking with PRISM, where temporal logic

is used to express the temporal ordering of events. We

remark that, although we validate the components for all

possible input configurations, this does not amount to full

verification of the correctness of the designs. We discuss

the challenges of achieving full verification in Sect. 6.

4.1 Muller C-element as a CRN

The C-element design is based on the AM CRN, which

computes the majority of two finite populations by con-

verting the minority population into the majority popula-

tion, so that a single population emerges as output. It uses a

third ‘undecided’ state of the population, from where

catalysis can drive the individuals into either of the final

states. Interestingly, since approximate majority cannot be

exactly computed by a bi-molecular CRN with less than 4

reactions (Mertzios et al. 2014), below we present the bi-

molecular AM CRN with exactly four reactions:

X þ Y ! X þ k

Y þ X ! Y þ k

X þ k ! X þ X

Y þ k ! Y þ Y

where X, Y are both the input and output species and k is

the aforementioned catalytic driver. The intuition behind

this reaction network is that we have two competing initial

populations of X and Y, both of which try to eliminate the

other by transforming their counterpart into the interme-

diary k. If k then interacts with X, it transforms itself into X,

else into Y. Presented below in Fig. 7a is the same AM

CRN in our diagrammatic notation.

Deconstructed, if we consider the left-hand side of the

diagram, the reaction X ! k is catalysed by the species Y

and so yields the bi-molecular reaction Y þ X ! Y þ k.
Similarly, X catalyses the reaction k ! X in the other

direction and yields the reaction X þ k ! X þ X. On the

right-hand side of the diagram, k is again catalysed by

X and Y to produce Y, yielding the other two reactions from

the AM CRN. The CRN in Fig. 7b, with inputs X and Y and

outputs W, Z, is similar to the AM CRN, except that we

produce new arbitrary outputs W, Z instead of producing

greater quantities of X and Y.

Since we wish to apply the dual-rail methodology, we

represent each signal as a pair of species and encode the

value 1 (0) as a molecular population of at leastM for some

population threshold M (population 0). We thus present in

Fig. 8a a dual-rail CRN which computes approximate

majority with four inputs Xhi;Xlo; Ylo; Yhi and outputs

Zhi; Zlo. Like before, our input catalyses an intermediary

species k, but this is split over two reactions. In addition,

Zlo and Zhi catalyse with reactions Zlo � k and Zhi � k.
This has the effect that, if there are larger numbers of either

Zlo or Zhi, the network enlarges its majority by converting

the other into k. Two rounded arrows ( ) over a reaction

(") indicates that either species can act as a catalyst to that

reaction. We demonstrate this AM effect in Fig. 8b, where,

given the initial configuration of inputs Xlo; Ylo of 10

molecules and output Zhi, we observe under deterministic

semantics that, because jXloj; jYloj[ jXhij; jYhij, an output

of Zlo where jZloj ¼ 10 molecules and jZhij ¼ 0 is produced

after 0.5 s.

We now need to justify the correctness of the design

against the C-element specification in Fig. 8a. Given a

starting configuration of input X, Y both 1, and any starting

output, the C-element should eventually output 1. Simi-

larly, if X, Y are both 0, on any initial output our final

output should be 0. For any other configuration of X, Y, the

output signal should remain the same. Thus, given an input

Xhi; Yhi, and crucially any starting output configuration Z,

we wish to reach a state where Zhi has at least M molecules

where M is a population threshold, and Zlo has 0 molecules.

Similarly, for Xlo; Ylo and any Z we should to see a presence

of Zlo after some time t. For all other configurations of the

inputs we wish the output species to remain the same.

When validated against this informal specification with

a starting configuration of Xlo; Yhi at 10 molecules and Zhi
at 10 molecules, our CRN unfortunately fails, seen in

Fig. 9. More specifically, we observe that species Zhi is at a

concentration of 6 molecules and k has a concentration of 4

molecules after 0.3 s. This simulation was produced using

LNA, see Sect. 3.1, which outputs standard deviation of the

mean concentrations of species, seen in the shaded regions.

This output configuration is incorrect since Zhi is below the

required threshold, see Sect. 3.1, of 8 molecules to repre-

sent an output of Z ¼ 1.

Fig. 7 Two diagrammatic CRNs

which are capable of computing

Approximate Majority Angluin

et al. (2008). In a we present the
original in which the inputs

X, Y, dependent on which spe-

cies has the majority, influence

outputs X, Y. b Shows a similar

AM circuit, but now the input

species are catalysed to arbitrary

output species W, Z

Chemical reaction network designs for asynchronous logic circuits 117

123



We present an amended CRN that resolves this issue in

Fig. 11a. This CRN is composed of two approximate

majority circuits connected to each other, with the outcome

of the first AM amplifying the outcome of the second. As

we can see from the plot in Fig. 9, we need to amplify the

Zhi species and suppress the k species. The second AM

corrects exactly this issue. Figure 11b is a simulation with

inputs Xlo; Yhi at 10 molecules and output Zhi at 10 mole-

cules. Here we can see that all three species are now at 10

molecules throughout the duration of the simulation.

To strengthen the validation of the final C-element

design, we provide two further plots for selected initial

configurations. We include in Fig. 11c a deterministic plot

with starting configuration of input Xlo; Ylo at 10 molecules

and output Zhi at 10 molecules. After 1 s the system con-

verges to output Zlo at 10 molecules. Figure 11d shows an

LNA simulation with starting configuration of input Xhi; Yhi
at 10 molecules and output Zlo at 10 molecules. After 1 s

we reach output Zhi with probability 	 1. Both these

simulations show that our output changes if both inputs

change. From Fig. 11b we observe that the output does not

change if both inputs are different.

An issue to address is the use of dual-rail systems in

which our chemical output is precisely a value of 0

molecules or K molecules, where K is the largest number of

molecules achievable by a population in the system. In

reality, a species may not reach its maximum population

and, due to variance, we may have a situation, as seen in

Fig. 9, where one species has moderate probability of

being higher than the output species we wish to present.

Fortunately, we can use our approximate majority circuit to

boost species. Figure 10 shows an example where species

Xhi and Yhi are weak, but the output is boosted by the

C-element back to the maximum output of 10 molecules.

The gates are also reusable: specifically, in Fig. 11d we can

observe the inherent reusability of the C-element because

the output reacts to the change in input.

4.2 Latch design

A latch is a device used in electronics to store a logical 0 or

1, which therefore needs to have at least two stable states

that are cycled between. Latches are used in asynchronous

computing both for storage and for synchronisation pur-

poses. When an input of 1 is received a latch will ideally

display an output of 1, and likewise for an input of 0. We

present two latch designs in Fig. 12, each intended to

interface in a specific way when used within a larger

Fig. 8 A dual-rail Approximate Majority CRN. a Circuit diagram.

b Deterministic simulation of the CRN in a. Given inputs Xlo;Ylo at

10 molecules and output Zhi, we observe that, because

jXloj; jYloj[ jXhij; jYhij, an output of Zlo where jZloj ¼ 10 molecules

(seen in blue) and jZhij ¼ 0 (seen in red) is expected to be produced

after 0.5 s. (Color figure online)

118 L. Cardelli et al.

123



system. The first simple latch, shown in Fig. 12a(i), has

input Xlo;Xhi and output species Ylo; Yhi, the intuition being

that either Xlo catalyses Yhi to Ylo or Xhi catalyses Ylo to Yhi.

There are also two additional reactions that catalyse Ylo to

itself and Yhi to itself, creating a feedback loop. These

additional reactions ensure that, if there is a drop in the

molecular concentrations of input species, the latch retains

its state. For some larger systems we may need the output

state of a latch to be neither Ylo nor Yhi, to signify that no

value is stored within the latch, known as a neutral state in

electronics. A reset wire, to reset a latch to neutral state, is

also commonly used in circuits. To this end, the latch in

Fig. 12a(ii) has an input Rhi;Rlo used to reset the latch to a

central state k, as well as the standard inputs Xhi;Xlo and

outputs Yhi; Ylo. The advantage of this central state, k, is
that the latch can be in a state where neither Yhi nor Ylo are

present, which is useful if these reactions are catalytic to

any other component, in which case they will not be trig-

gered directly. A comparison of the behaviour of the two

latches is displayed in Fig. 12b, c. With the same initial

conditions Xhi and output Ylo at 10 molecules, the latch in

Fig. 12a(ii) produces an output Yhi at 10 molecules in 0.2 s.

We contrast this with the latch in Fig. 12c, which outputs

Yhi at 10 molecules in the slower time of 0.5 s.

4.3 AM as a control flow element

An arbiter is used to decide an output signal based on

which signal arrived first or if one signal is dominant over

another. They are used in error correction where a signal

may have degraded. Essentially, an arbiter computes the

well known function maxðjX1j; jX2jÞ for two inputs. In

terms of CRNs, this can be seen as either one species

arriving before another or having higher molecular con-

centration. Since the AM circuit computes the

maxðjX1j; jX2jÞ function, as one population is biased over

another depending upon which has the majority, it there-

fore serves as an appropriate candidate for an arbiter. The

Fig. 9 LNA plot for the

candidate CRN for the dual-rail

Muller C-element design in

Fig. 8. With a starting

configuration of inputs Xlo; Yhi
at a concentration of 10

molecules and output Zhi at a

concentration of 10 molecules,

we can observe that after 0.3 s

Zhi (seen in red) is at a

concentration of 6 molecules

and k is at a concentration of 4

molecules (seen in green). The

shaded regions represent

standard deviation. As we can

see, with a non-zero probability

we cannot distinguish the

signals. (Color figure online)

Chemical reaction network designs for asynchronous logic circuits 119

123



proposed arbiter design, seen in Fig. 13a, is the same as our

AM CRN presented in Fig. 8a, except that there are two

inputs, Xhi and Xlo, and two outputs, Yhi and Ylo, instead of

four inputs. This works as desired since the output Yhi; Ylo
begins to be converted from k as soon as either of Xhi;Xlo

arrives, therefore automatically biasing whichever species

is present first. The ability for approximate majority to

reach a consensus means that this circuit can deal with

stochastic fluctuations in input. Although, within electronic

circuits, an arbiter outputs which signal arrived first, we

assume that this information is revealed through the pro-

motion of an output species linked to an input species.

In Fig. 13b we demonstrate the operation of this arbiter

by LNA simulation on inputs of Xhi at a concentration of 5

molecules and Xlo with a concentration of 0 molecules.

After 0.4 s we see Yhi (in red) at a concentration of 10

molecules, representing the majority.

4.4 Other control flow circuits

Control flow is used to mediate or propagate the flow of

information throughout the computing device. In digital

circuitry forks and joins, both control flow elements, are

naturally implemented using wires. Unfortunately, there is

no natural fork or join within CRNs and consequently we

present designs for them. The fork, shown Fig. 14a, is used

to split signals. It has two input species Xhi;Xlo and four

output species, Yhið1Þ; Yhið2Þ to represent the splitting of

Xhi and Yloð1Þ; Yloð2Þ to represent the splitting of Xlo. The

join, see Fig. 14b, joins two input signals to create one

output signal. There are 4 inputs Xhið1Þ;Xhið2Þ with output

Yhi to represent the merging of the two input signals and

Xloð1Þ;Xloð2Þ to merge to an output Ylo.

4.5 Dual rail asynchronous logic gate designs

Although gate designs for Boolean operators have been

proposed in CRNs (Soloveichik et al. 2008), we present

Fig. 10 LNA simulation

demonstrating two weak input

signals, Xhi and Yhi at 6 and 4

molecules respectively, boosted

by the C-element with an output

Zhi at 10 molecules

120 L. Cardelli et al.

123



Fig. 11 Simulation of the final dual-rail Muller C-element design on

selected input configurations. a Dual-rail AM circuit which is our

final C-element design. b Deterministic simulation with inputs Xlo;Yhi
at 10 molecules and Zhi at 10 molecules, which does not exhibit any

change over time. c Deterministic simulation resulting in Zlo (seen in

light blue) based on the initial configuration Xlo; Ylo at 10 molecules

and initial output Zhi at 10 molecules. d LNA simulation resulting in

Zhi (seen in yellow) based on the initial configuration of input Xhi;Yhi
at 10 molecules and initial output Zlo at 10 molecules. Note that some

plots are overlayed but are either set to 0 or 10 molecules. (Color

figure online)

Chemical reaction network designs for asynchronous logic circuits 121

123



dual-rail implementations of logic gates in line with other

designs proposed within this paper. In contrast to the gates

in Soloveichik et al. (2008), our gates account for all inputs

Xhi;Xlo, Yhi; Ylo and outputs Zhi; Zlo. They are also reusable

and respond to changes in input.

The simplest gate, NOT, in Fig. 15a(i), inverts the

inputs Xhi;Xlo to outputs Ylo; Yhi. The AND-gate, shown in

Fig. 15a(iii), has initial concentrations of k1; k2 as well as

input concentrations. With a presence of species Yhi we can

catalyse k2 into the state k1, and with the species Xhi we can

catalyse k1 to Zhi; thus both species are needed for the gate

to output the signal Zhi. The state Zhi catalyses a reaction

between species Zlo and k3, therefore showing that only one
output signal can be present at any time. Conversely, with

either Xlo; Ylo we can convert k3 to Zlo, which in turn can

convert Zhi back to k2 and k2 to k1. Using a similar trail of

thought we can see how the other gates are devised, with

OR (Fig. 15a(ii)) having initial concentrations of k2; k3,

Fig. 12 Two latch designs and their comparison. a(i) Simple latch with two feedback loops. a(ii) Latch with reset to a neutral state.

b Deterministic plot of simple latch in a(i). c Deterministic plot of the latch in a(ii) which shows faster convergence

Fig. 13 Arbiter circuit design

and its simulation. a The arbiter

CRN with inputs Xhi and Xlo and

outputs Yhi and Ylo. The output

reflects the input with the higher

concentration of molecules (or

which ever species appeared

first). b LNA simulation of the

arbiter, demonstrated with an

input of Xhi at a concentration of

5 molecules and Xlo with a

concentration of 0 molecules.

After 0.4 s we see Yhi (in red) at

a concentration of 10 molecules,

representing the majority input.

(Color figure online)

122 L. Cardelli et al.

123



NOR (Fig. 15a(vi)) having initial concentrations of k2; k3
and NAND (Fig. 15a(iv)) having initial concentrations of

k1; k2. We provide an example, showing a deterministic

simulation of the AND gate, seen in Fig. 15b, in which

inputs Xhi; Yhi at 10 molecules and initial output Zlo is

converted to Zhi after 0.8 s.

XOR is slightly different. XOR, traditionally a gate that

requires a composition of many other logic gates, has to be

constructed with all combinations of inputs considered.

The XOR gate (Fig. 15a(v)) has initial concentrations of

k1; k2; k3; k4. In Fig. 16 we show an example validation of

the XOR gate for all four input configurations using LNA.

4.6 Muller C-pipeline

We construct a CRN to emulate the behaviour of the

C-pipeline outlined in Sect. 3.2. The pipeline is a mecha-

nism to relay handshakes between components, for exam-

ple latches to store data. We construct the pipeline by

placing three of our C-element CRNs, shown Fig. 11a, in

series. At each intermediate stage between the C-elements

we add a fork. One path of the fork is negated and fed back

into the previous C-element, and the other path is fed into

the new C-element. The key interaction between the

components of the C-pipeline is that no C-element can

Fig. 14 CRNs for control flow

components. a The fork used to

split a signal into two. b The

join used to merge signals

Fig. 15 a Dual-rail logic gate designs: we present a NOT (i), OR (ii), AND (iii), NAND (iv), XOR (v) and NOR (vi) over inputs X, Y and output

Z. b Deterministic simulation for AND on inputs Xhi;Yhi at 10 molecules and initial output Zlo, which is converted to Zhi after 0.8 s (seen in grey)

Chemical reaction network designs for asynchronous logic circuits 123

123



output a positive species or negative species without the

previous displaying a positive or negative one.

The inputs to the C-pipeline CRN are Reqhi;Reqlo;Acchi
and Acclo. The only output is Chi;Clo, which is the output

species of the third C-element. However, for the sake of

Fig. 16 XOR gate validation demonstrated using LNA for all input

combinations and k1; k2; k3; k4 having initial concentrations of 10

molecules. In a we demonstrate that XOR on an input configuration

Xlo; Ylo at 10 molecules produces an output Zlo (seen in grey) at 10

molecules after 0.4 s. d A similar plot on input Xhi;Yhi, which results

in output Zlo (seen in grey). In b, c we show that both Xhi; Ylo and

Xlo; Yhi demonstrate the correct output of Zhi (seen in pink). (Color

figure online)

124 L. Cardelli et al.

123



clarity, we also include four other species Ahi;Alo corre-

sponding to the output of the first C-element and Bhi;Blo

corresponding to the second. On an input of Reqhi at 10

molecules we would expect to see that Ahi, Bhi and Chi are

all at 10 molecules after a staggered amount of time. If we

then changed the input to Reqlo we would expect to see Ahi,

Bhi, Chi diminish with Alo, Blo, Clo, reaching 10 molecules

to reflect the change in input. This is seen as a ‘wave’

through the pipeline propagating a high signal and then a

low signal.

We design an experiment, see Fig. 17, where we ini-

tialise the pipeline with the input species Reqhi at 10

molecules, and all C-elements are initialized with the

intermediary species k at 10 molecules such that no C-

element yet outputs a species. From both the deterministic

and LNA simulations of this we can observe how the

species Ahi;Bhi;Chi approach 10 molecules one after

another, showing that indeed the value of Reqhi is being

propagated along the pipeline. In order to show that our

pipeline design is continuously reactive, we convert all of

the species Reqhi to Reqlo via the introduction of a reaction

Reqhi ! Reqlo. This effect occurs at around 1 s and we can

observe that the pipeline responds by reducing the species

Ahi;Bhi;Chi to a molecular count of 0. We also observe (not

shown on the simplified plot) that the species Alo;Blo;Clo

reach 10 molecules at the same time as Ahi;Bhi;Chi reach 0

molecules (2 s). The LNA plot reveals that all output

species are separated by a significant time difference such

that no two species can be conflated.

In addition to simulation experiments which plot

expected concentrations of species over time, we also

check temporal properties concerning the interactions

between species and components. Using the PRISM model

checker we interrogate the CTMC models of the pipeline

with specific queries. We give some important examples of

such queries in Table 1, which are verified by PRISM as

being true with very high probability by checking 20 paths

against the property. ‘‘Th’’ refers to the required population

threshold which can be set by the user. PRISM also has the

ability to track and plot concentrations of species over

specific time intervals and number of samples. For exam-

ple, for the C-pipeline we may wish to focus specifically on

species concentrations of the second C-element whilst

ignoring the others. We can isolate the species in question

starting at a time [ 0 and simulating only the species of

the second C-element. We demonstrate this property on the

pipeline with initial input species Reqhi at 10 molecules in

Fig. 18.

4.7 Queue

We have also designed and validated a queue, the sche-

matic for which is shown in Fig. 19, built by the addition of

latches at each C-element block to the Muller pipeline. The

queue is used in electronics to regulate and store the flow of

information. The asynchronous queue uses the pipeline as a

control mechanism to propagate signals between the

Fig. 17 Validation of the Muller C-pipeline. The input request signal,

encoded by the species Reqhi, is propagated to the end of the pipeline

(represented by the species Ahi;Bhi;Chi); we then set the request

signal to low. The pipeline then responds by the presence of Ahi;Bhi

and Chi diminishing to zero. In b we show that the variance is low,

even for low molecular counts

Chemical reaction network designs for asynchronous logic circuits 125

123



latches. We use the latch with reset seen in Fig. 12 for this

purpose. As the species Reqhi is propagated along the

pipeline, it sends a signal to the queue to read and store the

value in the next latch along. Each latch represents some

computation that could be completed within each time

interval.

For the latches of our queue we have input species Amhi

and Amlo and output species Amshi;Bmshi;Cmshi repre-

senting the output of each latch. Deterministic simulation

the queue pipeline is shown in Fig. 19. In this experiment

we propagate a 1 (represented as Amhi at 10 molecules)

followed by 0 (Amlo at 10 molecules). We can observe the

species Amshi;Bmshi, which represent the outputs of the

first and second latches, noting an oscillatory pattern of

cycling between 1 and 0.

4.8 Adder

We have also designed a three bit ripple-carry adder, which

operates in a similar fashion to the queue but instead of

latches we compose adders in series, seen in Fig. 20b. An

adder, the circuit design for which is seen in Fig. 20a, is a

composition of two XOR gates, two OR gates and an AND

gate. The adder produces two outputs, the value of the

summation and the carry. Within the ripple-carry adder, the

carry output of each adder is fed into the next adder, which

outputs the sum and a carry. In this way, with three adders,

we can add three two-bit numbers together.

Our ripple-carry CRN has four input species per adder

representing the two inputs, and two output species repre-

senting the output. In Fig. 21 we show that the adder

exhibits correct behaviour by producing the desired output

species for a specific input, where each sum is calculated

only in the next stage in the pipeline. If we view each C-

element and adder as one stage in the pipeline, labelled A,

B and C, then we can view the output species of each adder

as a bridge to the next adder. The six output species, rep-

resenting the carry-bit output, are denoted by

AabridgeOneOut;BbbridgeOneOut;CcbridgeOneOut and AabridgeZeroOut;

BbbridgeZeroOut;CcbridgeZeroOut . In order to show correct

operation the output of the adders (represented in this case

by 10 molecules) should be interleaved with the control

species of the C-pipeline (Ahi;Bhi;Chi), allowing time for

the carry species to catalyse with the input of the following

adder.

Table 1 Temporal properties for the C-pipeline verified by the PRISM model checker. Each property was checked on 20 paths for the pipeline

with inputs at 10 molecules

Property in English Initial condition PRISM query Prob. of

Success

‘‘Probability that the first C-element always outputs a high signal before the

second within 3 s’’

Reqhi [Th P ¼ ?½ðBhi\ThÞU½0;3�

ðAhi [ThÞ�
0.97

‘‘Probability that the C-element only changes when both inputs change

within 10 s’’

(1) ReqhiAcclo

(2) ReqloAcchi

(3) ReqhiAcchi

P ¼ ?½trueU½0;10�Zhi [Th� 0.96

‘‘Probability that the species Ahi reach their maximum population within

10 s’’

Ahi\Th P ¼ ?½trueU½0;10�Ahi [ ¼ Th� 1

‘‘Probability that request signal is propagated to the end of the pipeline

within 10 s’’

Reqhi [Th,

Ahi [Th
P ¼ ?½F½0;10�Chi [Th� 1

Fig. 18 The expected

concentration of species Bhi, Blo

and intermediary k plotted over

time for the C-pipeline under

the stochastic semantics using

reward structures within

PRISM. Each data point is the

expectation over 20 samples.

We start at t = 0.2. With an

initial condition of Reqhi, we

can see (in blue) that species Bhi

is output from the second C-

element at t[ 1:25. (Color
figure online)

126 L. Cardelli et al.

123



Whilst a simulation provides the intuition behind the

ripple-carry adder, using the PRISM model checker we can

query the output of all three adders after 10 s to confirm if

the correct output is present. We have four input species

per adder, excluding the carry, which represent two num-

bers. We expect one species from each adder as output,

representing the addition of two inputs, plus the carry. The

third adder relies on the previous adder’s carry being cor-

rect. We therefore only need to look at the desired output of

each adder plus the carry of the final adder. We summarise

this with the following example PRISM property:

P ¼ ?½trueU\ ¼ 10ððAabridgeOneOut [ThÞand
ðBbbridgeZeroOut [ ThÞandðCcbridgeOneOut [ThÞand
ðCcbridgeCarryOneOut [ ThÞÞ�

With this example we can only satisfy these three outputs

and the carry, by seeing each of their molecular concen-

trations rise above the threshold Th, based on a specific

input configuration. This particular input are the species

representing 0 and 1 for the first adder (for example

AaOneZeroIn and AaTwoOneIn), the species representing inputs

1,1 for the second adder and 1,1 for the third adder. 0þ 1

in the first adder should give us an outcome of 1 carry 0 and

so satisfies AabridgeOneOut [ Th. 1þ 1 plus the 0 carry from

the first adder gives an output of 0 carry 1, and so satisfies

BbbridgeZeroOut [ Th. An input of 1 ? 1 plus 1 carry from the

second adder means that our output should be 1 as well as

the final carry should be 1, represented by CcbridgeOneOut

[ Th and CcbridgeCarryOneOut [ Th. Our adder satisfies this

property based upon the inputs given and therefore shows

correct operation for an adder.

5 Experimentation

All designs3 presented in this paper have been validated

using both Microsoft’s Visual GEC tool (Pedersen and

Phillips 2009) and the PRISM model checker

Fig. 19 Deterministic simulation of the queue pipeline. We propagate

a value of 1 through the queue. The species Amshi;Bmshi represent the
outputs of the first and second latches. Note that through oscillatory

patterns generated by the pipeline we can mimick properties of a

synchronous system

Fig. 20 a Circuit diagram for a ripple-carry adder. b Three adders in series controlled by the C-pipeline. A carry-bit output from one adder is fed

into the next as part of the input

3 Available from https://github.com/max1s/CRNcode.

Chemical reaction network designs for asynchronous logic circuits 127

123

https://github.com/max1s/CRNcode


(Kwiatkowska et al. 2011), both for the deterministic and

stochastic semantics of the CRNs. Visual GEC provides a

programming language, LBS, for designing and simulating

any given CRN. We systematically tested each component

in isolation by simulating its behaviour against all input

and output configurations. Next, we examined how a

component might behave in a larger system, where it will

be exposed to a change in input. To this end, we introduced

new reactions to emulate a signal change. For instance, if

we wished to change a carrier signal from high to low, we

would introduce an additional reaction Xhi!
k
Xlo, which

converts all of the signal Xhi into a signal Xlo while the

component is operating.

Since deterministic semantics is not accurate for low

molecular populations, we additionally explored stochastic

semantics. Visual GEC exports models to the probabilistic

model checker PRISM, which then enables verification of

the induced continuous-time Markov chain against tem-

poral logic properties. This allows one to check that the

circuits ensure the correct temporal ordering of the events,

for example, for the Muller pipeline seen in Fig. 6, that the

species in the first stage of the pipeline is present before the

species in the second, i.e. with probability 1, and that the

signal is eventually propagated to the end of the pipeline.

PRISM implements numerical solution of the CME, which

is exponential in the initial number of molecules and hence

not scalable, and analysis based on stochastic simulation,

which is time consuming. We thus additionally used an

experimental implementation of the LNA within Visual

GEC, based on Cardelli et al. (2015). As well as being

capable of checking temporal logic properties (Cardelli

et al. 2015; Bortolussi et al. 2016), the LNA can plot the

species concentration over time together with standard

deviation, and is fast and reasonably accurate even for low

molecule counts. Moreover, compared to the deterministic

semantics, LNA provides important information about

stochasticity that may affect the robustness of the circuits,

and which can be explored further with CME, stochastic

simulation, or verifying that the circuit converges with

probability 1 to a single value.

6 Discussion

When modelling asynchronous circuits as a chemical sys-

tem, the wires are chemical species from the output set of

one gate component to the input set of another. We cannot

bound the time for a gate to transform an input species to

an output species. This excludes the class of self-timed

circuits. Under deterministic semantics, we could guaran-

tee an isochronous fork since two chemical species, either

high or low, could theoretically reach the threshold M at

precisely the same time given equal rates and initial

Fig. 21 Deterministic simulation of the ripple-carry adder circuit

responding to various inputs. We plot the output species from each

section of the pipeline used to coordinate the output from each adder.

The carry-bit output from each adder is represented by

AabridgeOneOut;BbbridgeOneOut and CcbridgeOneOut . The output of the C-

element (Ahi;Bhi;Chi) arrives strictly before the output from the adder.

The logical input for a is 1 and 0 for the first adder, 1 and 0 for the

second adder, and 1 and 0 for the third adder. In b we show the

computation on different inputs, namely 1 and 0 for the first adder, 0

and 0 for the second adder, and 1 and 0 for the third adder. The

crossover in the concentrations of output species of the C-element and

the logical output of 1 (resulting from inputs 0, 1 and carry of 1) in the

third adder (plots Chi and CcsOneOut) indicates faster convergence but

does not affect the results in further stages of the pipeline

128 L. Cardelli et al.

123



concentrations, and therefore under deterministic semantics

we have a Turing-complete method of computation. We

cannot guarantee this under stochastic semantics (Cook

et al. 2009). This is because there is a non-zero probability

that one species could reach M before the other. We thus

conclude that our circuits, at worst, can be classified as

speed independent. We can calculate approximately the

delay on wires based upon rates and concentrations for

each semantics.

Direct chemical implementations of CRNs have been

theorised and realised, but involve complicated reaction

mechanisms (Shin 2011). The most common substrate for

chemical kinetics is DNA strand displacement (DSD),

which involves the displacement of DNA strands in solu-

tion. These strands are labelled with the chemical species

and, once the reaction has taken place, an outputting strand

represents an output from the CRN that the strand dis-

placement system is trying to emulate. DNA strand dis-

placement has been shown to be a universal substrate for

chemical kinetics, specifically for bi-molecular reactions

used here (Soloveichik et al. 2010). Most importantly, the

AM circuit seen in Fig. 8b has been implemented as a

strand displacement device (Lakin et al. 2012). However, a

potential difficulty with this approach is scalability: as the

number of components increases, the number of chemical

species representing them also increases. Large numbers of

chemical species result in large numbers of DSD com-

plexes in solution, and consequently crosstalk needs to be

accounted for. Fortunately, a recent experiment with the

implementation of a square-root circuit in solution pro-

vided a new experimental ceiling on the number of species

that can be used (Qian and Winfree 2011).

Another challenge is to provide formal verification of

the correctness of the designs. We remark that, although we

have validated the behaviour of the components for all

possible input configurations and verified that correct out-

puts are produced and in the correct order using simulation

and simulation-based probabilistic model checking with

PRISM, this does not amount to full verification. Asyn-

chronous diagrams are represented using a variety of

notations, see Fig. 5, and correspond to certain classes of

(safe) Petri nets (Myers 2004) known as Signal Transition

Graphs (STGs), representing the rise and fall of signals.

Our designs are systems containing many molecules which

exhibit stochastic behaviour. Firstly, one would need to

show that our CRN designs meet the specification given as

a Petri net, which would involve relating the two formally

via a refinement relation, where one needs to relate struc-

tures with many molecules of a given a species to struc-

tures with at most one. This presents us with two major

challenges: scalability and stochasticity. Scalability can be

addressed using compositional verification, which has been

developed for (non-probabilistic) process algebraic

specifications of asynchronous circuits (Wang and Kwiat-

kowska 2007) (equivalent to STGs) and it would be

interesting to see if they can be applied in this setting.

However, no probabilistic extension of this approach is

known. Another possibility is to capture stochasticity by

employing stochastic Petri nets to model the designs as

done for molecular walkers in Barbot and Kwiatkowska

(2015), and then perform temporal logic verification using

the tool Cosmos. Cosmos relies on an implementation of

statistical model checking that exploits parallelism of the

Petri net specifications and achieves greater scalability than

PRISM.

7 Conclusion

We have proposed a novel design for an asynchronous

computing device based on Chemical Reaction Networks.

CRNs are inherently asynchronous, and thus particularly

well suited to this computational paradigm. Our designs are

based on a simple, bi-molecular reaction motif inspired by

Approximate Majority (Angluin et al. 2008; Cardelli and

Csikász-Nagy 2012), employ catalytic reactions and

assume well-mixed solution and constant, uniform rates.

Moreover, they do not rely on the universal clock which is

difficult to realise. Since an arbitrary CRN can be physi-

cally realised using DNA strand displacement (Soloveichik

et al. 2010), as recently demonstrated experimentally in

Chen et al. (2013), the proposed designs are in principle

implementable, and we have confirmed this in theory by

modelling them in the two-domain setting (Cardelli 2010)

using Visual DSD (Phillips and Cardelli 2009; Lakin et al.

2011). Our designs are the first feasible implementation of

an asynchronous computing device in chemical kinetics

and are relevant for a multitude of applications in nan-

otechnology and synthetic biology. As future work we

would like to investigate alternative experimental settings.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Anderson DF, Kurtz TG (2011) Continuous time Markov chain

models for chemical reaction networks. In: Design and analysis

of biomolecular circuits. Springer, pp 3–42

Angluin D, Aspnes J, Eisenstat D (2008) A simple population

protocol for fast robust approximate majority. Distrib Comput

21(2):87–102

Chemical reaction network designs for asynchronous logic circuits 129

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Barbot B, Kwiatkowska M (2015) On quantitative modelling and

verification of DNA walker circuits using stochastic Petri nets.

In: Devillers R, Valmari A (eds) Application and theory of Petri

nets and concurrency, vol 9115 of Lecture notes in computer

science. Springer International Publishing, New York, pp 1–32

Bortolussi L, Cardelli L, Kwiatkowska M, Laurenti L (2016)

Approximation of probabilistic reachability for chemical reac-

tion networks using the linear noise approximation. In: Proceed-

ings 13th international conference on quantitative evaluation of

systems (QEST 2016), LNCS. Springer. To appear

Cardelli L (2010) Two-domain DNA strand displacement. Dev

Comput Models 26:47–61

Cardelli L (2014) Morphisms of reaction networks that couple

structure to function. BMC Syst Biol 8(1):84

Cardelli L, Csikász-Nagy A (2012) The cell cycle switch computes

approximate majority. Sci Rep 2:656

Cardelli L, Kwiatkowska M, Laurenti L (2015) Stochastic analysis of

chemical reaction networks using linear noise approximation. In:

Computational methods in systems biology. Springer, pp 64–76

Cardelli L, Kwiatkowska M, Whitby M (2016) Chemical reaction

network designs for asynchronous logic circuits. In: Proceedings

of 22nd international conference on DNA computing and

molecular programming (DNA22), LNCS. Springer

Chen H-L, Doty D, Soloveichik D (2013) Deterministic function

computation with chemical reaction networks. Nat Comput

13(4):517–534

Chen H-L, Doty D, Soloveichik D (2014) Rate-independent compu-

tation in continuous chemical reaction networks. In: Proceedings

of the 5th conference on Innovations in theoretical computer

science. ACM, pp 313–326

Chen Y-J, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik

D, Seelig G (2013) Programmable chemical controllers made

from DNA. Nat Nanotechnol 8(10):755–762

Cook M, Soloveichik D, Winfree E, Bruck J (2009) Programmability

of chemical reaction networks. In: Algorithmic bioprocesses.

Springer, pp 543–584

Dannenberg F, Kwiatkowska M, Thachuk C, Turberfield AJ (2015)

DNA walker circuits: computational potential, design and

verification. Nat Comput 14(2):195–211

de Silva AP, McClenaghan ND (2004) Molecular-scale logic gates.

Chem A Eur J 10(3):574–586

Kwiatkowska M, Norman G, Parker D (2007) Stochastic model

checking. In: Formal methods for performance evaluation.

Springer, pp 220–270

Kwiatkowska M, Norman G, Parker D (2011) Prism 4.0: verification

of probabilistic real-time systems. In: Computer aided verifica-

tion. Springer, pp 585–591

Lakin MR, Parker D, Cardelli L, Kwiatkowska M, Phillips A (2012)

Design and analysis of DNA strand displacement devices using

probabilistic model checking. J R Soc Interface, page

rsif20110800

Lakin MR, Youssef S, Polo F, Emmott S, Phillips A (2011) Visual

DSD: a design and analysis tool for DNA strand displacement

systems. Bioinformatics 27(22):3211–3213

Magnasco MO (1997) Chemical kinetics is Turing universal. Phys

Rev Lett 78:1190–1193

Manohar R, Martin AJ (1996) Quasi-delay insensitive circuits are

Turing complete. In ASYNC ’96: proceedings of the 2nd

international symposium on advanced research in asynchronous

circuits and systems. IEEE Computer Society

Mertzios GB, Nikoletseas SE, Raptopoulos CL, Spirakis PG (2014)

Determining majority in networks with local interactions and

very small local memory. In: International colloquium on

automata, languages, and programming. Springer, pp 871–882

Myers CJ (2004) Asynchronous circuit design. Wiley, New York

Napp NE, Adams RP (2013) Message passing inference with

chemical reaction networks. In: Advances in neural information

processing systems, pp 2247–2255

Nguyen N-P, Myers C, Kuwahara H, Winstead C, Keener J (2010)

Design and analysis of a robust genetic Muller C-element.

J Theor Biol 264(2):174–187

Nguyen N-PD, Kuwahara H, Myers CJ, Keener JP (2007) The design

of a genetic muller c-element. In: 13th IEEE international

symposium on asynchronous circuits and systems, 2007.

ASYNC 2007. IEEE, pp 95–104

Pedersen M, Phillips A (2009) Towards programming languages for

genetic engineering of living cells. J R Soc Interface

Phillips A, Cardelli L (2009) A programming language for compos-

able DNA circuits. J R Soc Interface 6(Suppl 4):S419–S436

Qian L, Winfree E (2011) Scaling up digital circuit computation with

DNA strand displacement cascades. Science

332(6034):1196–1201

Qian L, Winfree E (2011) A simple DNA gate motif for synthesizing

large-scale circuits. J R Soc Interface rsif20100729

Rothemund PW, Papadakis N, Winfree E (2004) Algorithmic self-

assembly of DNA sierpinski triangles. PLoS Biol 2(12):e424

Senum P, Riedel M (2011) Rate-independent constructs for chemical

computation. PLoS ONE 6(6):e21414

Shin SW (2011) Compiling and verifying DNA-based Chemical

Reaction Network implementations. Ph.D. thesis, California

Institute of Technology

Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with

finite stochastic chemical reaction networks. Nat Comput

7(4):615–633

Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal

substrate for chemical kinetics. Proc Nat Acad Sci

107(12):5393–5398

Spars J, Furber S (2002) Principles asynchronous circuit design.

Springer, New York

Van Kampen NG (1992) Stochastic processes in physics and

chemistry. Elsevier, London

Wang X, Kwiatkowska M (2007) On process-algebraic verification of

asynchronous circuits. Fundamenta Inf 80(1–3):283–310

130 L. Cardelli et al.

123


	Chemical reaction network designs for asynchronous logic circuits
	Abstract
	Introduction
	Related work
	Preliminaries
	Chemical reaction networks
	Asynchronous hardware

	Asynchronous circuit designs as chemical reaction networks
	Muller C-element as a CRN
	Latch design
	AM as a control flow element
	Other control flow circuits
	Dual rail asynchronous logic gate designs
	Muller C-pipeline
	Queue
	Adder

	Experimentation
	Discussion
	Conclusion
	Open Access
	References




