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Abstract We present a transformation of membrane sys-

tems, possibly with promoter/inhibitor rules, priority rela-

tions, and membrane dissolution, into formulas of the

chemical calculus such that terminating computations of

membranes correspond to terminating reduction sequences

of formulas and vice versa. In the end, the same result can be

extracted from the underlying computation of the membrane

system as from the reduction sequence of the chemical term.
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1 Introduction

In the present paper we continue the investigations of Andrei

et al. (2006, 2007) concerning the possibility of defining the

semantics of membrane systems with rewriting logic

(Agrigoroaiei andCiobanu 2011;Andrei et al. 2006) in order

to obtain a logical description of membrane system

computations.

The direct precedent of our work is Battyányi and Vaszil

(2014) where a logical description of simple membrane sys-

tems was given using the c-calculus of Banâtre and Le

Métayer (1986) (see alsoBanâtre et al. 2005 formore details),

whose aim was to free the expression of algorithms from the

sequentiality which is not inherently present in the problem to

be solved, that is, the sequentiality which is implied by the

structure of the computational model on which the given

algorithm is to be performed. They called their calculus

chemical calculus, and the underlying computational para-

digm the chemical paradigm of computation while the exe-

cutionmodel behind themclosely resembles theway chemical

reactions take place in chemical solutions. A chemical ‘‘ma-

chine’’ can be thought of as a symbolic chemical solution

where data can be seen as molecules and operations as

chemical reactions. If some molecules satisfy a reaction

condition, they are replaced by the result of the reaction. If no

reaction is possible, the program terminates. Molecules

interact freely according to reaction rules which results in an

implicitly parallel, non-deterministic, distributed model.

Chemical solutions are represented bymultisets of abstract

objects, thus, chemical computations can be thought of as a

series of multiset transformations which is very similar to the

waywe can represent the computations ofmembrane systems,

which are abstract computing devices introduced by Păun

(2000). A membrane system consists of a structure of hier-

archically arranged membranes which delimit regions con-

taining multisets of objects from a certain object alphabet, or

they can also contain (sub)regions, delimited by other mem-

branes containing further objects inside. Objects can be

changed or moved between the regions based on object evo-

lution and communication rules which are applied to the

multisets inside the regions in parallel. The design of these
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transformation rules governing the work of the system are

based on chemical and biological principles that can be

observed inside biological cells, so the resulting distributed

and parallel computational system can also be considered to

be the realization of the chemical computing paradigm.

This close relation motivated the investigations in Bat-

tyányi and Vaszil (2014), where the chemical calculus was

used to give a logical description of the computations

performed by simple membrane systems. As both models

rely on the chemical computing paradigm, using the

chemical calculus for such a description is very natural.

In what follows, we continue these investigations by

studying the possibility of extending the logical description

to more complex types of membrane systems, in particular,

to systems where membrane dissolution is also allowed

during the computational process. Using a slightly modified

variant of the operational semantics of membrane systems

presented in Andrei et al. (2007), we show how to transform

a membrane system with rules using promoters/inhibitors

(see Bottoni et al. 2002), priorities, and also the possibility

of membrane dissolution (introduced already in Păun 2000),

into formulas of the chemical calculus, such that terminating

computations of the membrane system correspond to ter-

minating reduction sequences of formulas and vice versa.

2 Preliminaries

In this section we present the basic notions and notations

we are going to use. For a comprehensive treatment of

membrane systems ranging from the basic definitions to

their computational power, see the monographs (Păun

2002; Păun et al. 2010), for more information on the

chemical calculus, we refer to Banâtre et al. (2005, 2006).

A finite multiset over an alphabet V is a mapping M :

V ! N where N denotes the set of non-negative integers,

and M(a) for a 2 V is said to be the multiplicity of a in V .

We say that M1 � M2 if for all a 2 V , M1ðaÞ�M2ðaÞ. The
union or sum of two multisets over V is defined as

ðM1 þM2ÞðaÞ ¼ M1ðaÞ þM2ðaÞ, the difference is defined

for M2 � M1 as ðM1 �M2ÞðaÞ ¼ M1ðaÞ �M2ðaÞ for all

a 2 V . The multiset M can also be represented by any

permutation of a string w ¼ a
Mða1Þ
1 a

Mða2Þ
2 . . .a

MðanÞ
n 2 V�,

where if MðxÞ 6¼ 0, then there exists j, 1� j� n, such that

x ¼ aj. The set of all finite multisets over an alphabet V is

denoted by MðVÞ, the empty multiset is denoted by ; as in

the case of the empty set.

2.1 Membrane systems

A membrane system, or P system, has a structure repre-

sented by a set of regions (each delimited by a surrounding

membrane) arranged in a tree (cell-like Păun 2000) or a

graph form (tissue-like Martı́n-Vide et al. 2003 or neural-

like Ionescu et al. 2006). In this paper we use transition P

systems (Păun 2000) that have a cell-like structure with

each membrane having a label and enclosing a region

containing a multiset of objects and possibly other mem-

branes. The unique out-most membrane is called the skin

membrane. The membrane structure is denoted by a

sequence of matching parentheses having the same labels

as the membranes they represent. We assume the mem-

branes are labelled by natural numbers f1; . . .; ng, and we

use the notation mi for the membrane with label i. Each

membrane mi, except for the skin membrane, has its parent

membrane, which we denote by lðmiÞ. As an abuse of

notation l stands both for the membrane structure and for

the function determining the parent membrane of a mem-

brane. To facilitate the presentation we assume that

lðmjÞ ¼ mi implies i\j.

The evolution of the contents of the regions of a P

system is described by rules associated with the regions.

The system performs a computation by passing from one

configuration to another one, applying the rules syn-

chronously in each region. In the variant we consider in

this paper, the rules are multiset rewriting rules given in the

form of u ! v where u, v are multisets, and they are

applied in a maximal parallel manner, that is, as many rules

as possible are applied in each region. The end of the

computation is defined by the following halting condition:

A P system halts when no more rules can be applied in any

of the regions; the result is a number, the number of objects

in a membrane labelled as output.

A P system of degree n� 1 is a construct

P ¼ O; l;w1; . . .;wn;R1; . . .;Rn; q1; . . .; qnð Þ

where

• O is an alphabet of objects,

• l is a membrane structure of n membranes,

• wi 2 MðOÞ; 1� i� n, are the initial contents of the

n regions,

• Ri; 1� i� n; are the sets of evolution rules associated

with the regions; they are of the form u ! v where

u 2 MðOÞ and v 2 MððO� tarÞ [ fdgÞ where tar ¼
fhere; outg [ finj j 1� j� ng and d 62 O is a special

symbol,

• q1; . . .; qn are the priority rules associated with mem-

branes m1; . . .;mn.

The evolution rules of the system are applied in a non-

deterministic, maximally parallel manner to the n-tuple of

multisets of objects constituting the configuration of the

system. A configuration is the sequence C ¼
ðlC;wk1 ; . . .;wkjÞ where wki 2 O�; 1� i� j represent the
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contents of the membranes, and lC is the current mem-

brane structure. Let R ¼ R1 [ R2 [ � � � [ Rn, where Ri ¼
fri1; . . .; rikig is the set of rules corresponding to membrane

mi. The application of u ! v 2 Ri in the region i means to

remove the objects of u from ui and add the new objects

specified by v to the system. The rule application in each

region takes place in a non-deterministic and maximally

parallel manner. This means that the rule application phase

finishes, if no rule can be applied anymore in either region.

As a result, each region where rule application took place,

is possibly supplied with elements of the set O� tar. We

call a configuration which is a multiset over O [ O� tar an

intermediate configuration. If we want to emphasize that

C ¼ ðl;w1; . . .;wnÞ consists of multisets over O, we say

that C is a proper configuration. Rule applications can be

preceded by priority check, if priority relations are present.

Let qi � Ri � Ri 1� i� n be the (possibly empty) priority

relations. Then r 2 Ri is applicable only if no r0 2 Ri can

be applied with ðr0; rÞ 2 qi. We may also denote the rela-

tion ðr0; rÞ 2 qi by r0 [ r.

In the next phase the objects coming from v should be

added to the regions as specified by the target indicators

associated with them. If v contains a pair ða; hereÞ
2 O� tar, then a is placed in region i, the region where the

rule is applied. If v contains ða; outÞ 2 O� tar, then a is

added to the contents of the parent region of region i. If

mi ¼ Skin, the elements are sent to the environment and

cannot be taken into consideration by us any longer. In our

membrane systems we assume that the results are formed

in a designated membrane of the system. If v contains

ða; injÞ 2 O� tar for some region j which is contained

inside the region i (so region i is the parent region of region

j), then a is added to the contents of region j.

The symbol d marks a region for dissolution. When it is

introduced in the membrane by a rule, after having finished

the maximal parallel and communication steps, the actual

membrane disappears. Its objects move to the parent

membrane and its rules cannot be applied anymore.

To each rule r ¼ ðu ! vÞ 2 Ri we can assign promoter/

inhibitor sets, prom=inhib. The promoter/inhibitor sets

assigned to r are subsets of O. When r is going to be

applied they act as follows: r can be applied to the content

wi of membrane mi only if every element of prom is present

in w and no element of inhib can be found in w.

2.2 The chemical calculus

We give a brief summary of the chemical calculus fol-

lowing the presentation in Banâtre et al. (2005, (2006).

Chemical programming is the formal equivalent of Gamma

programming, which is a higher order multiset manipu-

lating programming language. Like Gamma programming,

the chemical calculus is also based on the chemical

metaphor: data are represented by c-terms, which are called

molecules, and reactions between them are represented by

rewrite rules. We begin with the basic definitions.

The syntactical elements of molecules, reaction condi-

tions, and patterns, denoted by M; C and P, respectively,

are defined as follows.

M :¼ true j false j x j ðM1;M2Þ j hMi j cðPÞ½C	 �M

where x is a variable standing for any molecule, true and

false are two constants, ðM1; M2Þ is a compound molecule

built with the commutative and associative ‘‘,’’ constructor

operator, hMi is called a solution, and cðPÞ½C	 �M is called

a c-abstraction with pattern P, reaction condition C, result

M. The solution hMi encapsulates the molecule M which is

inside the solution, and thus, insulated from molecules

outside the solution. The contents of solutions can only be

changed by reactions which occur inside the solution.

The c-abstraction encodes a rewriting rule: when the

pattern P is respected and the condition C is met, a sub-

stituted variant of M is created as a result. A pattern is

P :¼ x j ðP1;P2Þ j hPi;

where x matches any molecule, ðP1;P2Þ matches a com-

pound molecule, and hPi matches an inert solution, that is,

a solution where no reaction in the outermost level can

occur. (The contained solutions can still be active,

however.)

Now we define how patterns are matched, which

requires the notion of substitution. A substitution is a

mapping / from the set of variables to the set of molecules.

We define the application of a substitution / as follows:

/x ¼ /ðxÞ
/ðM1;M2Þ ¼ /M1;/M2

/hMi ¼ h/Mi
/ðcðPÞ½C	 �MÞ ¼ cðPÞ½C	 � /0M;

where /0 is obtained from / by removing from the domain

all the variables which occur in P.

The result of a match is an assignment of molecules to

variables. The first argument of match is a pattern, the

second one is a molecule, its value is a substitution. If

x denotes a variable, P a pattern, and M a molecule, then:

matchðx;MÞ ¼ fx 7!Mg
matchððP1;P2Þ; ðM1;M2ÞÞ ¼ matchðP1;M1Þ 
matchðP2;M2Þ
matchðhPi; hMiÞ ¼ matchðP;MÞprovided inertðMÞ
matchðP;MÞ ¼ fail in everyother case;

where 
 denotes the composition of substitutions provided

matchðP1;M1Þ and matchðP2;M2Þ agree on their common

variables. Otherwise, the result is undefined.

Simulating P systems with membrane dissolution in a chemical calculus 523

123



The reaction rule (c-rule) is defined as

cðPÞ½C	 �M; N ! /M;

where matchðP;NÞ ¼ / assigns values to variables in such

a way that /ðCÞ reduces to true. The abbreviation cðPÞ �M
stands for the term cðPÞ½true	 �M.

The commutativity and associativity of pairs are

expressed by the following rules (AC-rules):

ððM1;M2Þ;M3Þ ! ðM1; ðM2;M3ÞÞ;
ðM1;M2Þ ! ðM2;M1Þ:

We can also define an operator replace (cf. Banâtre

et al. 2006) which does not vanish in the course of the

reduction:

replace P byM if C � let rec f ¼ cðPÞ½C	 �M; f in f

where let rec is an expression which uses the fixed point

combinator for implementing recursion, and can be defined

similarly as in the k calculus (see, for example, Mitchell

1996 for more details).

Then the new operator obeys the following reduction

rule:

replace P byM if C; N ! replace P byM if C;/ðMÞ;

where matchðP;NÞ ¼ / and /ðCÞ reduces to true.

We would like to remark here, that the authors of

Banâtre et al. (2006) define both typed and untyped ver-

sions of the c-calculus. Hitherto we have been using the

untyped version of the calculus, although the typed version

would make it simpler to talk about Boolean valued

arithmetical relations. With some further efforts, we could

identify a subset of the untyped c-calculus (basically equal

to the untyped k-calculus) where truth values, natural

numbers, primitive recursive functions, and arithmetical

relations could be defined in the usual way. Instead of

giving these definitions, we follow another approach,

namely, we take the existence of truth values, expressions

for logical connectives, and basic arithmetical functions as

granted. Strictly speaking, this means, that we use the

typed version of the calculus, but we do this only for

notational convenience, we use types only as a shorthand to

make the presentation easier to follow.

Example 1 Consider the c-abstraction

ðcðx; yÞ½x ¼ y	 � x; 1; 2; 3; 1; 4Þ

where (x, y) is a pattern, and x ¼ y is a reaction condition.

In order for the condition to evaluate to true, the pattern

needs to be matched as / ¼ matchððx; yÞ; ð1; 1ÞÞ, thus,

/ðxÞ ¼ /ðyÞ ¼ 1, and

ðcðx; yÞ½x ¼ y	 � x; 1; 2; 3; 1; 4Þ ! ð1; 2; 3; 4Þ:

If we use the replace operator, we have

ðreplace ðx; yÞ by x if ðx ¼ yÞ; 1; 2; 3; 1; 4Þ
! ðreplace ðx; yÞ by x if ðx ¼ yÞ; 1; 2; 3; 4Þ:

3 Describing membrane system configurations
and computations

As membrane systems are based on the chemical compu-

tational paradigm, it is natural to use the chemical calculus

to describe membrane computations. A feature where the

resemblance of the two models is manifest is, for example,

the commutativity and associativity of the building of pairs

(or the construction of multisets, more generally). Usually

this kind of commutativity of the chemical calculus helps

to make the representation of membrane computations

more convenient (as in Battyányi and Vaszil 2014, for

example), but in the present paper we take another,

although less elegant approach.

The description of membrane system configurations that

we are going to present in the following, might seem to

contradict the ‘‘spirit’’ of the chemical calculus: it is

basically a numerical description based on the multiplici-

ties of the elements in the multisets (similar to the Parikh

vector of strings), it does not make use of those features of

the c-calculus that make it appealing for the description of

chemical computations in general, or membrane compu-

tations in particular. We chose to follow such a somehow

‘‘non-chemical-like’’ approach, because it seemed to be

more economical for the handling of rule priorities, pro-

moters/inhibitors, and membrane dissolution, those exten-

ded features used in membrane computations which we

would like to be able to capture in our logical description.

Thus, in some sense, we have abandoned the natural cor-

respondence between membrane configurations and the

abstract chemical solutions of the c-calculus in the favor of

including additional membrane system features in the

logical descriptions (promoters/inhibitors, rule priorities,

and membrane dissolution).

Our approach might also be justified by placing the

results of the paper in the more general context of our

investigatiosn on the relationship of membrane systems

and chemical calculi (started in Battyányi and Vaszil 2014

and carried on in the present paper) which we would like to

continue in order to show how variants of the c-calculus
can be used for the purpose of providing programming

languages for different variants of membrane systems. For

this purpose, it is important to work with chemical calculi,

especially if we also intend to give a logical formalism

which can be translated into membrane systems and the

corresponding computations.

To introduce molecules for the description of membrane

system configurations, we first need molecules being able

to represent ordered sequences. Since we use only variables

and basic values in keeping track of the computation
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sequences of a P system, we can either choose the ordered

pair construct ðA1 : A2Þ of the typed calculus, which is

related to atoms of the calculus, or we can formulate our

ordered pair. We choose the latter approach, since this

construction equally works for the untyped calculus, as

well.

Notation 1 Let ½x; y	 ¼ ðhxi; yÞ, and

½x1; . . .; xn; xnþ1	 ¼ ½½x1; . . .; xn	; xnþ1	.

Claim Let P ¼ ½x1; x2; . . .; xk	 be a pattern and M ¼
½n1; n2; . . .; nk	, where n1; . . ., nk 2 N. Then

matchðP;NÞ ¼ fxi 7! nigki¼1:

If we use a, b as variables for elements of O and r as a

rule variable, respectively, then we say that a rule r ¼
u ! v 2 Ri is valid with respect to the proper configuration

ðl;w1; . . .;wnÞ if the following conditions hold:

1. membrane structure l contains membrane mi,

2. ð8a 2 promrÞ ðwiðaÞ� 1Þ,
3. ð8a 2 inhibrÞ ðwiðaÞ ¼ 0Þ, and
4. ð8a 2 OÞ ð8 1� j� nÞ ðvða; injÞ� 1Þ implies that l

contains the membrane mj (mj is not dissolved) and

lðmjÞ ¼ mi, namely mi is the parent membrane of mj

where promr � O and inhibr � O denotes the set of pro-

moters and inhibitors associated with rule r, respectively. A

rule r is valid in an intermediate configuration C0, if there
exists a proper configuration C such that C !�

mpr C
00 !�

msg

C000 !�
d C

0 and r is valid in C. Moreover, if, for C0 ¼
ðl0;w0

1; . . .;w
0
nÞ and r ¼ u ! v, uðajÞ�w0

iðajÞ holds as well
for every element aj 2 O, then r is not only valid but also

applicable.

Assume we have a set of priority rules qi � Ri � Ri for

each membrane mi. Let C be a proper configuration. Then

r 2 Ri is q-valid in C, if the above hold for the validity of

r together with the stipulation that no r0 such that ðr0; rÞ 2
qi is applicable in C. A rule r ¼ u ! v is q-valid in an

intermediate configuration C0, if there exists a proper

configuration C such that C !�
mpr C

00 !�
msg C

000 !�
d C

0 and

r is q-valid in C. Moreover, if we have uðaiÞ�w0ðaiÞ, then
r is called q-applicable or, simply, applicable. In the future,

we do not intend to explicitly distinguish validity

and q-validity in our terminology, if no confusion occurs.

A description of a membrane system configuration as

above is a molecule of the form

Descr ¼ ½c11; . . .; c1k; . . .; cn1; . . .; cnk;
c11; . . .; c1k; . . .; cn1; . . .; cnk;

d1; . . .; dn;

p11; . . .; p1k1 ; . . .; pn1; . . .; pnkn 	;

where cij and cij are natural numbers ð1� i� n; 1� j� kÞ,
di 2 f0; 1g ð1� i� nÞ and pikj 2 f0; 1g ð1� i; j� nÞ. If N is

a description we denote by cij, cij, etc. the respective parts

of N. In what follows we explain the meaning of these parts

of a description.

Let C ¼ ðl;w1; . . .;wnÞ be an (intermediate) configura-

tion. A description corresponding to C is a description,

where cij ¼ wiðajÞ and cij ¼ wiðaj; hereÞ þ
P

p 6¼i;lðmiÞ¼mp

wpðaj; iniÞ þ
P

lðmpÞ¼mi
wpðaj; outÞ with ð1� i; p� nÞ and

ð1� j� kÞ. Here lðmpÞ denotes the parent membrane of

mp, and recall that w(a) denotes the number of elements

a in the multiset w. Intuitively, cij stands for the number of

occurrences of aj in mi, and cij denotes the number of

occurrences of aj to be added in mi according to the tar-

geted elements of O. Moreover, di ¼ 1 iff mi is dissolved or

under dissolution. The values pikj 2 f0; 1g describe the

validity of rules: a description for a proper configuration is

called proper if, for every rule rikj , the applicability and

validity coincide, that is, rikj is valid iff pikj ¼ 1 hold and

every valid rule is applicable in the same time. Observe

that if C is a proper configuration then cij ¼ 0 for every

possible i and j. The construction will be such that when a

configuration is proper, di ¼ 1 will imply wi ¼ 0. Since pikj
describe validities which, in case of intermediate configu-

rations, depend on proper configurations preceding them in

the reduction sequence, the same intermediate configura-

tion can have various descriptions depending on the rules

we actually choose for the maximal parallel steps in

advance. Hence, the descriptions corresponding to config-

urations C form a set which we denote by DescrðCÞ � pikj
taking either 0 or 1 as values.

A pattern for a description is a tuple of the form

S ¼ ½xm1a1 ; . . .; xm1ak ; . . .; xmna1 ; . . .; xmnak ;

xm1a1 ; . . .; xm1ak ; . . .; xmna1 ; . . .; xmnak ;

xd1 ; . . .; xdn ;

xr1k1 ; . . .; xrnkn 	:

ð1Þ

Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;Rn; q1; . . .; qnÞ be a P

system, and let C0 ¼ ðl0;w0
k1
; . . .;w0

kj
Þ be a proper config-

uration obtained from the initial configuration in a finite

number of computational steps, where 1� k1\. . .\kj � n.

Then a description of C0 relative to l is the description

obtained from an element of DescrðC0Þ when we set di ¼ 1

for i 62 fk1; . . .; kjg and cij ¼ 0 ð1� j� kÞ and pil ¼ 0 for

every rule ril 2 Ri. That is, we treat the missing membranes

as empty membranes. We denote the set of descriptions of

a configuration C0 relative to l by DescrlðC0Þ.

Example 2 Consider the P system P ¼ ðfa; b; c; dg;
½ ½ 	2 	1; ;; abd;R1;R2; q1; q2Þ with
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R1 ¼ fr11 : c ! ðd; hereÞg;
R2 ¼ fr21 : ba ! ðb; hereÞðc; hereÞðc; hereÞjd [ r22 : b ! dg;

where the sign[ indicates the priority between the rules of

R2, and d 2 O is a promoter: rule r21 can only be applied if

there is a d object present in the second region (in our

notation: promr21
¼ fdg).

The initial configuration is C0 ¼ ð;; abd; ½ ½ 	2 	1Þ,
which has a corresponding description

½0; 0; 0; 0; 1; 1; 0; 1;
0; 0; 0; 0; 0; 0; 0; 0;

0; 0;

0; 0; 0	 2 DescrðC0Þ;

if we assume an alphabetical ordering of the object

alphabet.

Because a description should also contain information

about the structure of the original P system itself, we

append a representation of the function l at the end of each

description. Let P be a P system of degree n as before.

Then a tuple ½p2; . . .; pn	 of length n� 1 is appended to

every description in the simulation with the following

meaning: if membrane mj has membrane mi as its parent,

then pj ¼ i. Since the Skin has no parent membrane,

numbering begins with 2. Likewise, a description pattern is

expanded with the tuple ½xp2 ; . . .; xpn 	. Since the structure of
the original P system remains the same in the course of the

simulation process, we do not indicate the appended values

for l, they are implicitly understood to be there.

With this in hand we are able to define the molecule in

charge of deciding rule validity. Let r ¼ u ! v 2 Ri, and

S be a description pattern. Then let

ValðrÞ¼ xdi ¼0^ð
^

1�j�k

ðaj2promr� xmiaj�1Þ^
^

1�j�k

ðaj2 inhibr � xmiaj ¼0Þ^
^

1�l�k

^

1� j�n

vðal; injÞ�1� xdj ¼0
� �

^

_

l0¼i[ l1[...[ ls�1[ j¼ls

^

1�t�s

xplt ¼ lt�1^
^

1�q�s�1

xdlq ¼1

 ! !!

;

ð2Þ

where ‘‘�’’ denotes logical implication. The first three rows

express the presence of promoters, the absence of inhibitors,

and the availability of the objects required by the left hand

side of the rule, respectively. The next row expresses the

property that all target membranes exist, while the last row

expresses the fact that eithermi is the parent ofmj, ormi is an

ancestor of mj and all the intermediate parent membranes

have been dissolved in the construction.

Now rule applicability can be expressed as

ValðrÞ ^
^

1� j� k

uðajÞ� xmi;aj

� �

ð3Þ

and the operator in charge for rule applicability is

RuleAppðrÞ ¼ replace ½S; 0	 by ½S½xr=1	; 0	 if

ValðrÞ ^
^

1� j� k

ðuðajÞ� xmi;ajÞ
 !

where the value 0 plays a role of synchronization to be

specified later on. We remark that if a rule r is determined to

be valid in this phase of the simulation, then r remains valid

in the course of the simulation of a maximal parallel step.

We can also incorporate in the simulation of a membrane

system the priority rules, if present. Let ðq1; . . .; qnÞ be the
tuple prescribing the priority relations in the membranes of a

given P system. We define molecules determining the

applicability of rules. For r 2 Ri, we distinguish two cases:

• There does not exist r0 2 Ri such that r0 [ r. Then

RuleAppqðrÞ is defined as RuleAppðrÞ above.
• There are rules r1; . . .; rj 2 Ri such that

rl [ r ð1� l� jÞ. Let S be a description pattern and

let ValðrÞ defined in Eq. (2). Then

RuleAppqðrÞ ¼ replace ½S; 0	 by ½S½xr=1	; 0	ð

if ValðrÞ ^
^

1� j� k

ðuðajÞ� xmi;aj

 ! !

^ xr ¼ 0 ^
^

1� l� j

xrl ¼ 0Þ;

replace ½S; 0	 by ½S½xr=0	; 0	

if xr ¼ 1 ^
_

1� l� j

xrl ¼ 1

 ! !

:

Example 3 Considering the P system of the previous

example, the applicabilty of the rules is checked as follows.

ðRuleAppq1ðr11Þ;RuleAppq2ðr21Þ;RuleAppq2ðr22Þ;
½½0; 0; 0; 0; 1; 1; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0	; 0	Þ !

ðRuleAppq1ðr11Þ;RuleAppq2ðr21Þ;RuleAppq2ðr22Þ;
½½0; 0; 0; 0; 1; 1; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0	; 0	Þ

Now we can turn to the main part of the simulation.

Keep in mind that a rule is applicable if it is valid and there

are enough elements in the membrane to be used by the left

hand side of the rule.

Definition 1 Let r ¼ u ! v 2 Ri, and let S be a

description pattern. Then the molecule describing the effect

of an execution of r is defined as
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AppðrÞ ¼ replace ½S; 1	 by ½ applyðS; rÞ; 1	 if

xr ¼ 1 ^
^

1� j� k

uðajÞ� xmi;aj

� �
 !

;

where

applyðS; rÞðxmsatÞ ¼
xmsat � uðatÞ if s ¼ i;

xmsat otherwise;

�

applyðS; rÞðxmsatÞ ¼
xmsat þ vðat; hereÞ if s ¼ i;

xmsat þ vðat; injÞ if s ¼ j 6¼ i;

xmsat þ vðat; outÞ if ms ¼ lðmiÞ;

8
><

>:

applyðS; rÞðxdjÞ ¼
1 if vðdÞ ¼ 1;

xdj otherwise;

(

applyðS; rÞðxrÞ ¼ xr:

Here we made use of the implicit stipulation that S is of

the form as in Eq. (1), which is indeed the case if we ignore

variable renaming.

Example 4 Considering the P system of our previous

examples, we have:

ðAppðr11Þ;Appðr21Þ;Appðr22Þ;
½½0; 0; 0; 0; 1; 1; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0	; 1	Þ !

ðAppðr11Þ;Appðr21Þ;Appðr22Þ;
½½0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 1; 2; 0; 0; 0; 0; 1; 0	; 1	Þ

The next group of rules is the set of communication

rules. In what follows, we define the chemical calculus

equivalents of communication steps.

Definition 2

Msg ¼ replace ½S; 2	 by ½msgðSÞ; 2	 if
_

1� i� n

_

1� j� k

xmiaj � 1

 !

;

where

msgðSÞðxmiajÞ ¼ xmiaj þ xmiaj ; for 1� i� n and 1� j� k

and

msgðSÞðxmiajÞ ¼ 0; for 1� i� n and 1� j� k:

Continuing our example, we have the following.

Example 5 Considering the P system of our previous

examples, we have:

ðMsg; ½½0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 1; 2; 0; 0; 0; 0; 1; 0	; 2	Þ
! ðMsg; ½½0; 0; 0; 0; 0; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0	; 2	Þ

At this point, we simulate the effects of membrane

dissolving. We have to make sure that only membranes not

dissolved and not under dissolution contain elements. To

this end, we define the next molecule, which moves

every element being in a membrane dissolved or under

dissolution to its parent membrane.

Definition 3

Disi ¼ replace ½S; 3	 by ½disiðSÞ; 3	 if
xdi ¼ 1^ð
_

1� j� k

xmiaj � 1

 

Þ
!

;

where

disiðSÞðxmjalÞ ¼
xmjal þ xmial if mj ¼ lðmiÞ;

0 if j ¼ i;

xmjal otherwise:

8
><

>:

We also need some auxiliary molecules to set the values

indicating the applicability of rules to zero, in order to start

a new maximal parallel step. Thus:

Definition 4

RemRuleðrÞ ¼ replace ½S; 4	 by ½S½xr=0	; 4	 if xr ¼ 1:

Example 6 Considering the P system of our previous

examples, we have:

ðRemRuleðr11Þ;RemRuleðr21Þ;RemRuleðr22Þ;
½½0; 0; 0; 0; 0; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0	; 4	Þ !

ðRemRuleðr11Þ;RemRuleðr21Þ;RemRuleðr22Þ;
½½0; 0; 0; 0; 0; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0	; 4	Þ:

After removing the rule applicabilities, the simulation of

another rewriting step can begin. The configuration corre-

sponding to the above description is ð;; bccd; ½ ½ 	2 	1Þ. Now
rule r22 becomes applicable, leading to the dissolution of

the second membrane.

ðRuleAppq1ðr11Þ;RuleAppq2ðr21Þ;RuleAppq2ðr22Þ;
½½0; 0; 0; 0; 0; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0	; 0	Þ !

ðRuleAppq1ðr11Þ;RuleAppq2ðr21Þ;RuleAppq2ðr22Þ;
½½0; 0; 0; 0; 0; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1	; 0	Þ

Now rule r22 is applied as

ðAppðr11Þ;Appðr21Þ;Appðr22Þ;
½½0; 0; 0; 0; 0; 1; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1	; 1	Þ !

ðAppðr11Þ; Appðr21Þ;Appðr22Þ;
½½0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 1	; 1	Þ;
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changing the coordinate indicating the dissolution of the

second membrane from 0 to 1.

Since there are no objects on the right side of the applied

rule, the Msg molecule has no effect on this description, so

we continue with the simulation of the dissolution of the

second membrane (see Definition 3).

ðDis1;Dis2; ½½0; 0; 0; 0; 0; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 1	; 3	Þ !
ðDis1;Dis2; ½½0; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 1	; 3	Þ:

Similarly as above, RemRuleðrÞ removes the indicators for

the applicability of rules, leaving us with the description

½0; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0	:

The whole translation is coordinated by the Sync

molecule defined below. As shorthand, we introduce the

notation [ðMi j i 2 IÞ ¼ ðMi1 ; . . .;MikÞ, where I ¼
fi1; . . .; ikg.

RuleAppq ¼
[

ðRuleAppqðrÞ jr2RÞ;
App¼

[
ðAppðrÞ jr 2RÞ;

Dis¼
[

ðDisi j i2f1; . . .;ngÞ;
RemRule¼

[
ðRemRuleðrÞ jr 2RÞ;

Sync¼ replace h½S; xsync	;Valq;App;Msg;Dis;RemRuleiby
h½S;xsync þ 1mod 5	;Valq;App;Msg;Dis;RemRulei if

_

1� i�n

xri ¼ 1;

whereS is a description pattern:

Notation 2 Let N be a molecule and let

MðNÞ ¼ ðhN;RuleAppq;App;Msg;Dis;RemRulei; SyncÞ:

As an abuse of notation, we denote by M(C, i) the term

M([D, i]) with a certain D 2 DescrlðCÞ, where the exact

value of D is not interesting for us. Thus a relation like

MðC1; iÞ ! MðC2; jÞ should be interpreted as there exists

Di 2 DescrlðCiÞ ð1� i� 2Þ such that Mð½D1; i	Þ !
Mð½D2; j	Þ. Moreover, let s be a transformation on

descriptions, that is, a function assigning a description to a

description. Then, if MðC; iÞ ¼ Mð½D; i	Þ for some

D 2 DescrlðCÞ, then MðsðCÞ; iÞ denotes the term

Mð½sðDÞ; i	Þ.

The terms of the chemical calculus, and also the con-

figurations of membrane systems can be considered as

rewriting systems. A rewriting system, as used in this

paper, is a pair A ¼ fR; ð!iÞi2Ig, where R is a set and

ð!iÞi2I is a set of binary relations defined on R. The

relations ð!iÞi2I are called reduction relations. It is sup-

posed that a reduction relation !i is compatible with the

term formation rules. Moreover, if !i is a reduction rela-

tion, we denote by !�
i its reflexive, transitive closure. We

may use the notation !¼ [i2Ið!iÞ, too. In the following,

the set R is the set of configurations of a P system or, in the

case of the chemical formalism, the set of c-terms, and !i

are the binary relations rendering configurations to con-

figurations or terms to terms, respectively. We say that

m 2 R is in normal form, if there is no n 2 R, such that

m ! n. Moreover, an m 2 R is strongly normalizable, if

every reduction sequence starting from m is finite, or

weakly normalizable, if there exists a finite reduction

sequence starting from m. We say that a molecule or a

membrane M is !i-irreducible, if there is no M0 such that

M !i M
0. In what follows, to conform to the usual mem-

brane system notation, we use ) to denote ! when we

speak of a rewriting step in a membrane computation.

Theorem 1

1. Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;Rn; q1; . . .; qnÞ be a

P system of degree n with membrane dissolution,

promoter/inhibitor sets for rules and priority relations.

Assume

C0 ¼ ðl;w1; . . .;wnÞ )� C1 ¼ l0;w0
n1
; . . .;w0

ni

� �
;

where 1� n1 � . . .� ni � n: Then

MðC0; 0Þ !� MðC1; 0Þ:

If the computation starting from C0 contains at least

one step, then the reduction sequence starting from

MðC0; 0Þ is also non-empty.

2. Let P be a P system as above. Assume

MðC0; 0Þ !� Mð½N; 0	Þ; and

assume that cij ¼ 0 for ð1� i� nÞ and ð1� j� kÞ in

N and [N, 0] is RuleAppq irreducible. Then there exists

a configuration C1 ¼ ðl0;w0
n1
; . . .;w0

ni
Þ of P such that

Mð½N; 0	Þ ¼ MðC1; 0Þ and
C0 )� C1:

Moreover, if the length of MðC0; 0Þ !� Mð½N; 0	Þ is at

least one, then the length of the computation starting from

C0 is non-zero.

In order to prove the theorem we need to state several

auxiliary lemmas.

As formulated in Andrei et al. (2006), a computational

step starting from a configuration C0 of P consists of a

maximal parallel step (mpr), a step for removing the

directions from the targeted elements (tar) and a step for

accomplishing membrane dissolution (d). In notation, if C0
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is a configuration ofP and C0 ) C1, then there are C
0
0 and,

if d is present, C00
0 such that

C0 )�
mpr C

0
0 )tar C

00
0 )d C1:

In the present paper, instead of )tar , we choose a

sequential relation (msg) defined in Definition 5 for

removing messages instead of parallel communication

rules, which equally suffices for our purposes. In what

follows, if C )s C
0 by an intermediate step, we denote by

s 2 mpr (s 2 msg; s 2 d) the fact whether s is a maximal

parallel, message removing, or membrane dissolving step,

respectively.

We verify the lemmas simultaneously by induction on

the number of intermediate steps in a computational step of

the P system and on the number of reductions in the

chemical calculus.

Notation 3 Let C0 be an (intermediate) configuration,

where C )� C0. Let D0 2 DescrlðC0Þ be a description of C0

relative to l. Then we use the notation below to extract the

corresponding values from MðC0; lÞ:
bMðC0; lÞccij ¼ D0

i�kþj ð0� i� n� 1; 1� j� kÞ;
bMðC0; lÞccij ¼ D0

ðnþiÞ�kþj ð1� i� n; 1� j� kÞ;
bMðC0; lÞcdi ¼ D0

2n�kþi ð1� i� nÞ;
bMðC0; lÞcrij ¼ D0

ð2kþ1Þ�nþk1þ...þki�1þj ð1� j� ki; 1� i� nÞ:

The next claims can be easily verified. Below, let D and

D0 denote descriptions.

Claim Let Mð½D; 0	Þ !�
RuleApp M

0. Then M0 ¼ Mð½D0; 0	Þ.

Claim Let Mð½D; 1	Þ !�
App M

0. Then M0 ¼ Mð½D0; 1	Þ.

Claim Let Mð½D; 2	Þ !�
Msg M

0. Then M0 ¼ Mð½D0; 2	Þ.

Claim Let Mð½D; 3	Þ !�
Dis M

0. Then M0 ¼ Mð½D0; 3	Þ.

In the following, we assume that every possible con-

figuration is the result of some computational sequence

starting from a fixed configuration C of the P system P ¼
ðO; l;w1; . . .;wn;R1; . . .;Rn; q1; . . .; qnÞ of degree n with

membrane dissolution, promoter/inhibitor sets for rules,

and priority relations.

We prove the two parts of the theorem by simultaneous

induction on the number of reduction steps in the chemical

calculus and computational steps in the P system,

respectively.

Lemma 1

1. Let C0 )�
mpr C

00. Then MðC0; 1Þ !�
App MðC00; 1Þ, and

conversely,

2. if we assume MðC0; 1Þ !�
App M

00, then there is C00 such

that C0 )�
mpr C

00 and M00 ¼ MðC00; 1Þ.

Proof We prove the lemma by simultaneous induction on

the lengths of the reduction sequences. Assume we know

the result for reduction sequences of lengths at most s.

1. Let C )�
mpr C

0, with C0 ¼ ðl0;w0
1; . . .;w

0
nÞ. Assume

C0 )s
mpr C

000 )r C
00, C00 ¼ ðl00;w00

1; . . .;w
00
nÞ, C000 ¼

ðl000;w000
1 ; . . .;w

000
n Þ and r ¼ u ! v 2 Ri. Since r is

applicable to C000, we have bMðC000; 1Þcr ¼ 1 and

uðajÞ�wiðajÞ, where MðC000; 1Þ stand for Mð½D000; 1	Þ
with some D000 2 DescrlðC000Þ. This means

uðajÞ� bMðC000; 1Þccij . These together imply that

AppðrÞ can be applied to MðC000; 1Þ yielding

Mð½applyðD000; rÞ; 1	Þ with D000 2 DescrlðC000Þ.

• Let bMð½applyðD000; rÞ; 1	Þcclj ¼ slj. Then slj ¼
bMðC000; 1Þ cclj � uðajÞ ¼ w000

i ðajÞ � uðajÞ, if l ¼ i,

and slj ¼ bMðC000; 1Þcclj ¼ w000
i ðajÞ otherwise.

• Let bMð½applyðD000; rÞ; 1	Þcclj ¼ tlj. Then tlj ¼
bMðC000; 1Þcclj þ vðaj; hereÞ, if l ¼ i, tlj ¼
bMðC000; 1Þcclj þ vðaj; inhÞ, if l ¼ h 6¼ i and

l000ðmhÞ ¼ mi, and tlj ¼ bMðC000; 1Þcclj þ vðaj; outÞ,
if l ¼ l000ðmiÞ. Taking these into account, tlj ¼
w00
l ðaj; hereÞ þ

P
p 6¼l;l00ðmlÞ¼mp

w00
pðaj; inl þP

l00ðmpÞ¼ml
w00
pðaj; outÞ remains valid. Here, we

made use of the fact that the membrane structure

remains unchanged during a maximal parallel step,

that is, l0 ¼ l00 ¼ l000.
• If vðdÞ ¼ 1, then bMðC00; iÞcdi is set to 1.

2. Let MðC0; 1Þ !�
App M

00, assume D0 2 DescrlðC0Þ is the
underlying description. It is enough to prove the result

for the case MðC0; 1Þ !AppðrÞ M
00, where r ¼ u ! v 2

Ri for some i. By Claim 3, M00 ¼ Mð½D00; 1	Þ. Since
AppðrÞ is applicable to MðC0; 1Þ, we have

bMðC0; 1Þcr ¼ 1. It is easy to check that this implies

the validity of r with respect to C0. Moreover,

uðajÞ� bMðC0; 1Þccij ¼ w0
iðajÞ, for every 1� j� k,

which makes r applicable to C0 yielding some inter-

mediate configuration C00. From this point on, we can

show by a reasoning similar to that of the previous

point that D00 is a description for C00, where

D00 ¼ ðapplyðS; rÞÞU, where U ¼ matchðS;D0Þ. We

omit the details. h

Instead of parallel communication as defined in Andrei

et al. (2006) we choose a simpler way which is equally

suitable to our present purposes and we define )msg as the

following set of sequential multiset transformations.

Definition 5 Let C ¼ ðl;w1; . . .;wnÞ and C0 ¼
ðl0;w0

1; . . .;w
0
nÞ.
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Then C )�
msg C

0 holds iff one of the following cases is

valid.

1. Assume that wiðaj; hereÞ[ 0. Then w0
iðajÞ ¼ wiðajÞ þ

wiðaj; hereÞ and w0
iðaj; hereÞ ¼ 0. All the other values

remain unchanged.

2. Assume wiðaj; inlÞ[ 0. Then w0
lðajÞ ¼ wlðajÞ þ

wiðaj; inlÞ and w0
iðaj; inlÞ ¼ 0. All the other values

remain unchanged.

3. Assume wiðaj; outÞ[ 0 and ml ¼ lðmiÞ is defined.

Then w0
lðajÞ ¼ wlðajÞ þ wiðaj; outÞ and w0

iðaj; outÞ ¼ 0.

If i ¼ Skin, then w0
iðaj; outÞ ¼ 0. All the other values

remain unchanged.

Lemma 2

1. Let C0 )�
msg C

00, and assume that C00 is msg-irre-

ducible. Then MðC0; 2Þ !�
Msg MðC00; 2Þ.

2. Conversely, assume MðC0; 2Þ !�
Msg M

00. Then there is

C00 such that C0 )�
msg C

00, and M00 ¼ MðC00; 1Þ.

Moreover, in both cases, if one of the transition sequences

is not empty, then its corresponding transition sequence

contains at least one step, also.

Proof

1. We prove by induction on the number of steps in

C )�
msg C

0 that, if D 2 DescrlðCÞ and

D0 2 DescrlðC0Þ, then, for every 1� i� n and

1� j� k,

Dcij þ Dcij ¼ D0
cij
þ D0

cij
: ð4Þ

To this end, we show that, if C )msg C
0 and C ¼

ðl;w1; . . .;wnÞ and C ¼ ðl0;w0
1; . . .;w

0
nÞ, then

wiðajÞ þ wiðaj; hereÞ þ
X

p6¼i

wpðaj; iniÞ þ
X

lðmpÞ¼mi

wpðaj; outÞ

¼ w0
iðajÞ þ w0

iðaj; hereÞ þ
X

p6¼i

w0
pðaj; iniÞ þ

X

l0ðmpÞ¼mi

w0
pðaj; outÞ:

ð5Þ

First, observe that l ¼ l0, since a msg transition does not

change the underlying membrane structure. We treat Point 2

of Definition 5, the remaining cases can be handled simi-

larly. Let C )msg C
0 by Point 2 of Definition 5. Assume

wiðaj; inlÞ[ 0. Let us consider only the case i ¼ l in Eq. 5,

since for all the other cases the equation trivially holds. But in

this case the left hand side contains wlðajÞ þ wiðaj; inlÞ, and
the right hand side contains the corresponding

w0
lðajÞ þ w0

iðaj; inlÞ, which, by definition, are equal.

Let C )�
msg C

0, assume that C0 is msg-irreducible. A

msg-irreducible P system with the Skin membrane as the

outermost membrane contains no messages, thus, by Eq. 4,

MðC; 2Þ !�
Msg MðC0; 2Þ.

2. Let MðC; 2Þ !�
Msg N

0, we may assume

MðC; 2Þ !Msg N
0. Then, by Claim 3, N 0 ¼ Mð½D0; 2	Þ

for some description D0. We can prove by induction on

the number of summands constituting the defining

expression of cij that there exists C0 such that C )�
msg

C0 and D0 2 DescrlðC0Þ. h

Now, following Agrigoroaiei and Ciobanu (2011), we

define the skeleton of a configuration ðl; u1; . . .; unÞ as

U0 ¼ ðu01; . . .; u0nÞ, where u0i ¼ �, if membrane i is dissolved

or under dissolution (that is, uiðdÞ ¼ 1 and i 6¼ Skin) and

u0i ¼ 0 otherwise. Let

l0ðmiÞ ¼ mi;

ljðmiÞ ¼ lðlj�1ðmiÞÞ for j[ 0:

Let lU0 ðmiÞ ¼ mj, where j ¼ minfp j lkðmiÞ ¼ mp ^ u0p 6¼ �
^u0ðllðmiÞÞ ¼ � for 0� l� k � 1g. That is, lU0 ðmiÞ is the

smallest membrane containing membrane mi which exists

or does not disappear. Now we are in a position to define

the d reduction on configurations.

Definition 6 Let C0 )d C
00, assume w0

lðdÞ ¼ 1 for at least

one membrane ml. We define the effect of the dissolution

rule as follows: ðl0;w0
1; . . .;w

0
nÞ )d ðl00;w00

1 ; . . .;w
00
nÞ, where

w00
i ¼ � provided u0i ¼ �, and w00

i ðajÞ ¼ w0
iðajÞ þP

fw0
lðajÞ j lU0 ðmlÞ ¼ mi;w

0
lðdÞ ¼ 1g, if u0ðiÞ ¼ 0.

Lemma 3

1. If C0 )d C
00, then MðC0; 3Þ !�

Dis MðC00; 3Þ and

MðC00; 3Þ is Dis-irreducible.
2. Conversely, assume that MðC0; 3Þ !�

Dis M
00, and M00 is

Dis-irreducible. Then there exists C00 with C0 )d C
00

and M00 ¼ MðC00; 3Þ.

Proof

1. Let C0 ¼ ðl;w0
1; . . .;w

0
nÞ )d C

00, and assume that

w0
iðdÞ ¼ 1. Then bMðC0; 3Þcdi ¼ 1. Let

bMðC0; 3Þccij [ 1 for some 1� j� k. Then

MðC0; 3Þ !Disi Mð½disiðC0Þ; 3	Þ. Let p ¼ lU0 ðmiÞ,
where U0 is the skeleton of C0. Let D0 ¼ DescrlðC0Þ
and D00 ¼ disiðDescrlðC0ÞÞ. Let us denote by D0

cij
and

D00
cij

the values of the descriptions pertaining to the

coordinates (i, j). It follows immediately, by Defini-

tion 3, that
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D0
cpj

þ
X

D0
clj
j lU0 ðlÞ ¼ p;D0

dl
¼ 1

n o

¼ D00
cpj

þ
X

D00
clj
j lU0 ðlÞ ¼ p;D00

dl
¼ 1

n o
:

ð6Þ

In other words, for every 1� j� k, the sums of the

occurrences of elements aj in the dissolved or to be

dissolved descendants of membrane mp plus the mul-

tiplicity of aj in mp remain the same at a dissolution

step in the chemical calculus. Let MðC0; 3Þ !Dis

Mð½D; 3	Þ such that M([D, 3]) is irreducible with

respect to Dis. Then Ddi ¼ 1 implies Dcij ¼ 0, which,

by Eq. 6, involves that D 2 DescrlðC00Þ.
2. Let MðC0; 3Þ !�

Dis M
00. By Claim 3, there exists a

description D00 such that M00 ¼ Mð½D00; 3	Þ. Moreover,

MðC0; 3Þ being Dis reducible involves that there exists

1� l� n such that w0
iðdÞ[ 0. Let C0 )�

d C
00. Since M00

is Dis irreducible, D00
di
¼ 1 implies D00

cij
¼ 0. Then Eq. 6

simplifies to

D0
cpj

þ
X

D0
clj
j lU0 ðlÞ ¼ p;D0

dl
¼ 1

n o
¼ D00

cpj
;

when D00
dp
¼ 0, and D00

cpj
¼ 0 otherwise. Then, by Def-

inition 6, this amounts to D00 2 DescrlðC00Þ. h

Now we make sure that the process can be iterated after

simulating one maximal parallel step in the membrane

computation.

Lemma 4 Let D0 be a description, with D0
cij
¼ 0 and

D0
rjkj

¼ 0 ð1� i� n, 1� j� kÞ and, for every

1� i� n; 1� j� k, D0
di
¼ 1 implies D0

cij
¼ 0. Let C0 ¼

ðl0;w0
1; . . .;w

0
nÞ be the configuration such that

D0 2 DescrlðC0Þ. Assume Mð½D0; 0	Þ !�
RuleAppq

Mð½D00; 0	Þ.
Then Mð½D00; 0	Þ is RuleAppq-irreducible iff D00 2
DescrlðC0Þ is proper.

Proof Let D0, D00 and C0 be as above. Let r ¼ u ! v 2 Ri.

Let us introduce Valþq ðrÞ ¼ ValqðrÞ ^
V

1� j� k uðajÞ�
wiðajÞ. In what follows we omit the subscripts q. Making

use of the correspondence between configurations and

descriptions we have, for every rule r, r is q-applicable iff

ValþðrÞ and, for every r0 [ r, :Valþðr0Þ. Thus we have to

show Mð½D00; 0	Þ is RuleApp irreducible iff D00
r ¼ 1 is

equivalent to ValþðrÞ and, for every r0 [ r, :Valþðr0Þ. Let
us denote this last equivalence by ð�Þ.

1. Let Mð½D0; 0	Þ !s
RuleApp Mð½D00; 0	Þ. Assume

Mð½D00; 0	Þ is RuleApp-irreducible. By induction on s

we have

D00
r ¼ 1 implies ValþðrÞ: ð7Þ

Suppose ValþðrÞ and, for every r0 [ r, :Valþðr0Þ
holds and D00

r ¼ 0. By Eq. 7 we can conclude, for every

r0 [ r, D00
r0 ¼ 0. But this would make RuleAppðrÞ

applicable to D00, which contradicts the RuleApp irre-

ducibility of D00. For the other direction, assume D00
r ¼

1 and, furthermore, there exists r0 [ r such that

Valðr0Þ. We may suppose r0 is maximal with respect to

priority. Then, for every r00 [ r0, :Valðr00Þ. By the

above reasoning, we have D00
r0 ¼ 1, which would imply

the reducibility of D00 with respect to RuleAppðrÞ,
which is not possible.

2. Assume Mð½D00; 0	Þ is RuleAppðrÞ-reducible and ð�Þ is
true. Let ValþðrÞ, D00

r ¼ 0 and, for every r0 [ r,

D00
r0 ¼ 0. Let r0 [ r be maximal such that Valþðr0Þ.

By ð�Þ we have D00
r0 ¼ 1, a contradiction. Assume

furthermore that D00
r ¼ 1 and D00

r0 ¼ 1 for some r and

r0 [ r. Then, by ð�Þ, ð8r� [ rÞ:Valþðr�Þ. But 7

implies ð8r� [ rÞðD00
r� ¼ 0Þ, in particular, D00

r0 ¼ 0,

which is not possible. h

Proof of Theorem 1.

ð)Þ Let C0 )t C1. Assume MðC0; 1Þ is such that the

description of C0 in MðC0; 0Þ is proper. We obtain

the result, by induction on t, making use of

Lemmas 1, 2, 3 and 4 together with the observation

that MðD; iÞ !Sync MðD; iþ 1mod 5Þ whenever
M(D, i) is irreducible for a reduction corresponding

to a membrane computation step.

ð(Þ Follows in a way similar to the above reasoning,

this time making use of the other directions of the

lemmas.

Corollary 1 Let P ¼ ðO; l;w1; . . .;wn;R1; . . .;Rn;

q1; . . .; qnÞ and let C ¼ ðl;w1; . . .;wnÞ. Then P is strongly

(resp. weakly) normalizing iff M(C, 0) is strongly (resp.

weakly) normalizing. Moreover, the halting computations

starting from C provide the same results as those supplied

by the terminating reduction sequences of M(C, 0).

4 Conclusion

We have shown how to transform computations of mem-

brane systems with promoters/inhibitors, priorities, and

membrane dissolution into reduction sequences of certain

molecules of the chemical calculus. The transformation is

‘‘faithful’’ in the sense that terminating membrane com-

putations correspond to terminating reduction sequences of

the chemical calculus, and the same results are obtained in

both computational models. This connection will allow to

use the tools and techniques developed for chemical calculi

to reason about membrane systems and their computations.
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Banâtre JP, Le Métayer D (1986) A new computational model and its

discipline of programming. Technical Report RR0566, INRIA
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Păun G, Rozenberg G, Salomaa A (eds) (2010) The Oxford Handbook

of Membrane Computing. Oxford University Press, Oxford

532 B. Aman et al.

123


	Simulating P systems with membrane dissolution in a chemical calculus
	Abstract
	Introduction
	Preliminaries
	Membrane systems
	The chemical calculus

	Describing membrane system configurations and computations
	Conclusion
	Acknowledgments
	References




