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Abstract Self-organized regularities in terms of patient

arrivals and wait times have been discovered in real-world

healthcare services. What remains to be a challenge is how

to characterize those regularities by taking into account the

underlying patients’ or hospitals’ behaviors with respect to

various impact factors. This paper presents a case study to

address such a challenge. Specifically, it models and sim-

ulates the cardiac surgery services in Ontario, Canada,

based on the methodology of Autonomy-Oriented Com-

puting (AOC). The developed AOC-based cardiac surgery

service model (AOC-CSS model) pays a special attention

to how individuals’ (e.g., patients and hospitals) behaviors

and interactions with respect to some key factors (i.e.,

geographic accessibility to services, hospital resourceful-

ness, and wait times) affect the dynamics and relevant

patterns of patient arrivals and wait times. By experi-

menting with the AOC-CSS model, we observe that certain

regularities in patient arrivals and wait times emerge from

the simulation, which are similar to those discovered from

the real world. It reveals that patients’ hospital-selection

behaviors, hospitals’ service-adjustment behaviors, and

their interactions via wait times may potentially account for

the self-organized regularities of wait times in cardiac

surgery services.

Keywords Autonomy-Oriented Computing (AOC) �
Cardiac surgery services � Complex systems � Self-

organized regularities � Patient arrivals � Wait times

1 Introduction

A healthcare service system has been well recognized as a

self-organizing system (Rouse 2008; Lipsitz 2012). Here,

by the notion of self-organizing it is meant that certain

forms of global order emerge without any direct control

imposed from outside the healthcare service system but

arise out of the local interactions between autonomous

entities within the system. In the previous work, some self-

organized regularities in wait times, such as the power-law

distribution of variations in specialists’ waiting lists (i.e.,

the variations in the mean time that patients spend on

specialists’ waiting lists) (Smethurst and Williams 2002),

have been reported. However, it is still unclear what and

how patients’ and hospitals’ behaviors with respect to

underlying factors, such as distance from homes to ser-

vices, hospital resourcefulness in terms of physician sup-

ply, and service performance as measured in wait times,

account for such emergent regularities.

Dynamically-changing patient arrivals and wait times

may be directly or indirectly affected by various factors, as

schematically illustrated in Fig. 1. They include, but are not

limited to, the factors of demographics, socioeconomic

backgrounds, environmental conditions, as well as the

healthcare related behaviors of patients (Cardiac Care

Network of Ontario 2005) and hospitals (Wijeysundera
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et al. 2010). For instance, old age is an important risk factor

for cardiovascular diseases, while patients’ hospital-selec-

tion behaviors may heavily influence the distribution of

actual patient flows to various hospitals. Furthermore, these

factors may have complex interrelationships and coupling

interactions (Plsek and Greenhalgh 2001). For instance, as

shown in Fig. 1, wait times, as one of the indicators for

measuring the performance of healthcare services, may

affect patients’ hospital-selection behaviors, which will in

turn influence the distribution of patient flows and further

exert effects on the performance of hospitals.

In view of this, to understand the self-organized regu-

larities of patient arrivals and wait times in healthcare

services from a complex systems perspective, it would be

essential to address the following issues:

– Scope What factors, variables, processes, and hierar-

chical levels (e.g., services at a hospital level or at a

regional level) are relevant to the self-organized

regularities, and hence should be investigated and

modeled?

– Coupling relationships and/or interactions What are

the interrelationships among the impact factors and

variables? Identifying their local feedback loop(s)

would be crucial for understanding the self-organized

regularities.

– Heterogeneity The behavior of patients in choosing

hospitals may be heterogeneous due to the differences

of personal profiles, socioeconomic backgrounds, and

service availability in and around their residence areas.

Hospitals may also be heterogeneous in delivering

healthcare services because of variations in their

equipped resources, management strategies, and

dynamically-changing patient arrivals. Thus, capturing

the heterogeneity of patients and hospitals will be

central to the modeling and simulation of a real-world

complex healthcare system.

In this paper, we present a study on applying Autonomy-

Oriented Computing (AOC), an approach effective in mod-

eling systems from a self-organizing systems perspective (Liu

et al. 2004), to understand the self-organized regularities

relating to patient arrivals and wait times in cardiac surgery

services in Ontario. Specifically, we construct an AOC-based

cardiac surgery service model (AOC-CSS model) which

takes into consideration some of the key factors impacting

patient arrivals (as shown in Fig. 1), i.e., weather, demo-

graphics of cities/towns in Ontario, geographic accessibility

to cardiac surgery services, resourcefulness of physicians in a

hospital, hospital performance in terms of wait times,

patients’ hospital-selection behaviors, and hospitals’ service-

adjustment behaviors. By experimenting with the AOC-CSS

Fig. 1 A schematic diagram of the cardiac surgery services in

Ontario, Canada. Numbers in the map denote 14 Local Health

Integration Networks (LHINs), which are geographic-location-based

health authorities responsible for planning and determining healthcare

service needs and priorities in certain areas of Ontario, Canada. H1–

H11 denote the LHIN hospitals studied in this work. The illustrated

tempo-spatial patterns on the right-hand side are observed from

secondary data about cardiac surgery service utilization between

January 2005 and December 2006. The map of Ontario was adapted

from http://www.csqi.on.ca/cms/one.aspx?portalId=258922&pageId=

273312
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model, we aim to discover the underlying factors and the

interactions that account for the self-organized regularities of

patient arrivals and wait times.

The remainder of this paper is organized as follows.

Section 2 surveys related work on modeling and simulation

of wait times in a healthcare service system and briefly

introduces AOC. Section 3 states the research problem and

related issues. Section 4 shows the formulation of our

AOC-CSS model. Section 5 presents the simulation-based

studies and results on characterizing the regularities of

patient arrivals and wait times. Section 6 discusses the

underlying mechanism that potentially accounts for the

self-organized regularities of wait times and presents a

sensitivity analysis on the key parameters that influence the

emergence of self-organized patterns. We finally summa-

rize our findings and consider future work in Sect. 7.

2 Related work

In general, existing studies related to uncovering the causes

of the dynamics and self-organized regularities in patient

arrivals and wait times can be classified into two catego-

ries: (1) those to empirically identify the effects of multiple

factors based on multivariate analysis, and (2) those to

characterize the behaviors of healthcare service systems. In

this section, we will first review the existing studies. Then,

we will briefly introduce AOC, the method that we utilize

in this work to model a healthcare service system.

2.1 Empirical identification of impact factors

Dynamically-changing patient arrivals and wait times may

be affected by various factors, as schematically illustrated

in Fig. 1. These factors include but are not limited to

demographics, socioeconomics, environment (e.g.,

weather), human behaviors (Cardiac Care Network of

Ontario 2005), as well as services’ physical and human

resources (Wijeysundera et al. 2010). A number of previ-

ous studies have aimed to discover the underlying factors

and estimate the corresponding impacts on patient arrivals

and wait times from empirical data.

To achieve this end, most of the existing studies rely on

multivariate analysis methods to unveil the potential

impact factors and the corresponding effects. Among those

methods, factor analysis has been commonly utilized to

extract various underlying factors from a set of observed

variables, such as those contributing to long wait times

(Pillay et al. 2011). Various multiple regression methods

(Knapman and Bonner 2010), especially multiple linear

regression (Hair et al. 1998) and logistic regression (Me-

nard 2009), has been extensively employed to analyze

pairwise relationships between observed factors and patient

arrivals or wait times (Sanmartin et al. 2007). Recently,

structural equation modeling has drawn increasing atten-

tions in healthcare service research for it enables us to

investigate a series of complex (direct and indirect, pair-

wise and hierarchical) relationships among observed and

latent (i.e., not directly measured) variables simultaneously

(Hair et al. 1998).

Aided by these methods, existing studies have identified

several factors and the corresponding effects on patient

arrivals and wait times. For instance, some studies have

found that geodemographic profiles, including population

size (Buerhaus et al. 2009), age profile (Grover et al. 2009),

and socioeconomic characteristics (Smith et al. 2009), have

significant effects on patient arrivals to different hospitals.

Tao et al. (2013) have further found that certain geode-

mographic profiles, such as geographic accessibility as

measured by the distances from homes to services, may

moderate the relationship between population size and

patient arrivals, as well as the relationship between age

profile and patient arrivals. As another example, research-

ers have found that the available physical (e.g., operating

rooms and beds) (Cardiac Care Network of Ontario 2006)

and human resources (e.g., skilled doctors, nurses, and

anesthetists) (Wijeysundera et al. 2010) of healthcare ser-

vices, as well as management policies (Jun et al. 1999) are

significantly related to wait times.

Although the studies of empirically analyzing impact

factors can reveal the reason why patient arrivals and wait

times change to some extent, such studies cannot explain

how healthcare services self-regulate in terms of patient

arrivals and wait times because (1) these studies assume

that the relationships between factors and patient arrivals or

wait times do not change; (2) the employed multivariate

analysis methods do not intend to characterize the behav-

iors of a healthcare service system, and thus they cannot

represent the dynamics of patient arrivals and wait times.

2.2 Characterization of systems behaviors

In healthcare, patient arrivals and wait times dynamically

change over time and differ from one hospital to another.

To characterize the dynamics of patient arrivals and wait

times, studies utilize various modeling and simulation

methods including stochastic modeling and simulation,

system dynamics, agent-based modeling, and AOC, to

model the behaviors of a healthcare service system from

different aspects.

Stochastic modeling and simulation methods, such as

queueing theory (Kleinrock 1975) and discrete event sim-

ulation (England and Roberts 1978), are commonly used

methods to model and simulate a healthcare service system

by describing its stochastic properties. Models based on

these methods aim to estimate probability distributions of
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potential states (e.g., as represented by the queue length) of

a system, as referred to as regularities in this paper, by

taking into account the variations in one or more variables.

In healthcare services research, previous studies have uti-

lized queueing models and discrete event simulations to

analyze the change of waiting lists for designing a specific

healthcare service system (Fomundam and Herrmann

2007); to present the dynamics of operating rooms and

recovery rooms under the constraints of capacity (e.g., beds

and recovery time) (Schoenmeyr et al. 2009; Creemers and

Lambrecht 2008); and to predict the performance of a

healthcare service system in different scenarios (Fomun-

dam and Herrmann 2007). To summarize the applications

of queueing models and discrete-event simulations in

healthcare services research, Jun et al. (1999), Fone et al.

(2003), and Jacobson et al. (2006) have presented com-

prehensive surveys on the use of the two methods to

address various problems such as forecasting the dynamics

of patient flows with different resource allocation strate-

gies. Based on these reviews, in 2010, Cardoen et al.

(2010) have incrementally reviewed the up-to-date studies

that employ the two methods for operating room planning,

scheduling, and performance modeling. Despite the wide

applications in healthcare, these methods assume the

existence of passive entities in the system, which makes it

difficult to model entities’ autonomous behavior with

respect to certain impact factors. Therefore, these methods

cannot explain how self-organized regularities in wait

times emerge from individuals’ behaviors and interactions.

In addition, researchers have developed various models

based on system dynamics to understand the dynamically-

changing behaviors of a healthcare service system with a

focus on the internal feedback loops. System dynamics is

distinct from other methods in that it utilizes variables (as

referred to as stocks) and the corresponding interactions (as

referred to as flows) between each other (Maani and Ca-

vana 2000) to model a system as a causal loop diagram. In

healthcare services research, studies have employed this

method to qualitatively characterize the effects of interre-

lated impact factors and wait times in the cardiac care

system of Ontario, Canada (Cardiac Care Network of

Ontario 2006); model the relationships between multiple

interacting diseases, healthcare service systems for delivery

corresponding services, and national and state policies

(Homer and Hirsch 2006); simulate patient flows with the

purpose of identifying bottle-necks in emergency health-

care (Brailsford et al. 2004); and predict the demand for

ambulatory healthcare services (Diaz et al. 2012). How-

ever, system dynamics may be hard to address the problem

of explaining the causes of self-organized regularities

because: (1) the assumption that entities contained in a

stock are homogeneous makes this method be hard to

model patients’ heterogeneous behaviors in selecting

hospitals; (2) the predefined and fixed interactions between

stocks do not allow this method to model patients’ and

hospitals’ autonomous behaviors.

Furthermore, a majority of studies have employed the

method of agent-based modeling to model a healthcare

service system through describing the behaviors and

interactions of autonomous individuals (Grimm and

Railsback 2005) (as referred to as agents, which could be

either a physical element such as a patient, or an abstract

concept such as a hospital). In ABM, each agent makes

decisions individually according to its behavioral rules and

perceived environmental information (Wooldridge 2009).

Each agent may also interact with each other by means of

competition, cooperation, or environmental information

sharing. Because of the features of autonomy and interac-

tion, even a simple agent-based model may emerge specific

regularities or patterns at a systems level (Bonabeau 2002;

Epstein 2006).

Based on ABM, researchers have built models for dif-

ferent research purposes, such as for examining the effects

of physicians’ behaviors on patient outcome (Leykum et al.

2012); predicting the spread of infectious diseases based on

social networks (Ajelli et al. 2010; Eubank et al. 2004); and

evaluating patient scheduling or other operation manage-

ment strategies (Barnes et al. 2013). However, traditional

ABM faces two major challenges in characterizing system-

level self-organized regularities: (1) it lacks general prin-

ciples to explicitly indicate which fundamental behaviors

of and interactions between agents play crucial roles in the

emerging patterns and therefore should be modeled; (2) it

does not emphasize the identification and the modeling of

feedback loops in a system. Potentially due to this reason,

some of the existing models based on ABM appear to be

more or less ad hoc with a major focus on delicately

defining agents, whereas few of them pay attention to

explaining the underlying mechanisms for self-organized

regularities in a healthcare service system.

2.3 Autonomy-oriented computing

AOC (Liu 2008) is a computational modeling and problem-

solving paradigm with a special focus on addressing the

issues of self-organization and interactivity by modeling

heterogeneous individuals (entities), autonomous behav-

iors, and the mutual interactions between entities and cer-

tain impact factors. Compared with ABM, AOC is more

practical for discovering the underlying mechanisms for

emergent patterns, as AOC provides a general principle,

i.e., AOC-by-prototyping (Liu 2001), for explicitly stating

what fundamental behaviors of and interactions between

entities should be modeled. Generally speaking, AOC-by-

prototyping includes the following three key steps to model

a system (Liu et al. 2004):
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– Identify entities, key impact factors, and local feedback

loops In the first step, autonomous entities, the key

impact factors, the mutual interactions between entities

and factors, and the local feedbacks loops that may play

significant roles in the self-organization of the system

should be recognized based on the literature and the

observations of the interested system.

– Identify environment characteristics and define envi-

ronment E In the second step, the types of information

that are collected and exchanged in the environment

should be determined. Accordingly, the environment

that entities reside in and interact with should be

formally modeled.

– Define entities, autonomous behaviors, and behavioral

rules This step handles the modeling and the design of

local-autonomy-oriented entities, their autonomous

behaviors, and behavioral rules. This step needs to

clearly state how entities react with respect to different

impact factors and respond to various information; and

how entities directly interact with or indirectly interact

via sharing information in the environment, with a

special attention on how the interactions form positive

or negative feedback loops.

AOC-by-prototyping should be an evolutionary and

exploratory process (Liu et al. 2004) to make the synthetic

system as real-world driven as possible. During this pro-

cess, some parameters are initialized and configured to

make the synthetic model approximate the real system

more closely. The final synthetic model can be used to

reveal the underlying mechanisms of positive-feedback-

based aggregations or negative-feedback-based regula-

tions, which may account for the observed self-organiza-

tion and emergent behavior of the real system.

Aided by AOC, Tao and Liu (2013) have revealed that

the hospital-selection behavior of patients and the inter-

action between this behavior and hospital wait times may

account for the self-regulating service utilization in a car-

diac care system. However, in the reported AOC-based

model, the assumption that patients residing in a specific

location are homogeneous in choosing hospitals (e.g., all

the patients living in a city only consider distances from

homes to hospitals when they select hospitals) seems not

reasonable in the real world. Furthermore, the assumption

that the average service rates of hospitals are not changed

during the service processes may not be always hold in the

real-world healthcare services. In this regard, we aim to

develop a new AOC-based model that relaxes the two

unrealistic assumptions for the purpose of characterizing

the self-organized regularities of patient arrivals and wait

times.

3 Problem statement

In this work, as aided by AOC, we will build an AOC-CSS

model to explain how certain global-level self-organized

regularities emerge from the individual-level behaviors and

interactions. The specific AOC-CSS model not only con-

siders the input and the output of real-world cardiac sur-

gery services, but also addresses the underlying interaction

mechanisms among the involved heterogeneous entities,

such as patients and hospitals.

Figures 2 and 3 illustrate the two self-organized regu-

larities that are identified from the aggregated data about

patient arrivals and median wait time for 11 hospitals

providing cardiac surgery services in Ontario, Canada, over

a 2-year period from January 2005 to December 2006 (the

investigated data was provided by the organization of

Cardiac Care Network of Ontario1; accessed in February

2011). As shown in Figs. 2 and 3, the monthly variations in

patient arrivals follow a normal distribution based on the

Lilliefors test (Sá 2007) (p = 0.05); while the monthly

absolute variations of median wait time follow a power-law

distribution with a power of -1.36 and a standard deviation

of 0.28 (p \ 0.001). In the two figures, the month-to-month

variations in patient arrivals (or median wait time) are

calculated as follows:

vnþ1 ¼
xnþ1 � xn

xmax � xmin

ðn� 1Þ ð1Þ

where vnþ1 denotes the variation of patient arrivals (or

median wait time) at time n ? 1. In this work, each n cor-

responds to a month. xn denotes the number of patient arrivals

(or median wait time) at month n. xmin and xmax are the
Fig. 2 The statistical distribution of variations in patient-arrival for

cardiac surgery services in Ontario, Canada, between January 2005

and December 2006. The distribution follows a normal distribution

with a mean value of 0.004 and a standard deviation (SD) of 0.226.

The normality of the distribution passed the Lilliefors test (p = 0.05) 1 http://www.ccn.on.ca/ccn_public/FormsHome/HomePage.aspx
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minimum and the maximum values of patient arrivals (or

median wait time) over the two-year period, respectively.

Accordingly, the absolute month-to-month variations in

patient arrivals (or median wait time), v0n, can be obtained

as follows:

v0n ¼ jvnj ðn [ 1Þ ð2Þ

Specifically, in designing the AOC-CSS model to

explain the two emergent regularities as shown in Figs. 2

and 3, we will address the following issues:

– Major impact factors What factors, by and large, affect

the patient hospital-selection behavior?

– Behavioral rules How to formulate the behavioral rules

that govern the hospital-selection behavior, while

taking into account the identified impact factors and

the heterogeneity of patients and hospitals?

– Local interactions and feedback loop(s) What are the

local interactions and feedback loop(s) of the entities in

the system?

– Simulation-based validation Do certain self-organized

regularities emerge from the AOC-CSS model based

simulations?

In what follows, we will describe in detail how we build the

AOC-CSS model and address the above-mentioned issues.

4 An AOC-based cardiac surgery service model

(AOC-CSS)

As a case study to understand self-organized regularities by

means of AOC-based modeling and simulation, we present

the following three steps in constructing an AOC-based

cardiac surgery service model (AOC-CSS model):

1. Identifying the participating heterogeneous entities in

the system, major impact factors, and local feedback

loop(s).

2. Modeling the services based on the AOC methodology

where a special attention is paid to deriving entities’

behavioral rules that incorporate (1) the heterogeneity

of the entities, (2) the identified impact factors, and (3)

the local feedback loop(s).

3. Capturing the self-organized regularities by means of

simulating the constructed AOC-CSS model.

4.1 Identifying entities, impact factors, and local

feedback loop(s)

4.1.1 Entities

In Ontario, each location (e.g., a city or a town) has a

certain number of patients that require cardiac surgery

services. According to the ‘‘cardiac care patient access

management process’’2, when these patients are recom-

mended to have cardiac surgery by their GPs or specialists,

they will choose a specific hospital to receive the required

services. In most cases, patients make their decisions with

their GPs, as 93 % of Ontario’s population are registered

with a GP (Ontario Ministry of Health and Long-Term

Care 2012) and most of the patients will follow a GP’s

recommendations (Cardiac Care Network of Ontario

2005). Patients’ hospital-selection behaviors therefore

represent the consequences of patient-GP mutual decisions.

After patients make a decision on hospital selection, GPs

refer patients to the selected hospitals, where patients wait

to receive the treatment. Finally, patients leave the hospital

after finishing the treatment.

Based on the above process, we can readily identify

three types of autonomous entities in the cardiac surgery

services; they are: GP, patient, and hospital. For each

patient entity, he/she and his/her GP will make a mutual

decision on hospital selection based on (1) the released

information about the hospitals and (2) the applicable

behavioral rules for hospital selection which take into

account certain impact factors.

4.1.2 Major impact factors

According to the literature, we consider the following

factors that affect the patient behaviors in selecting hos-

pitals: (1) geographic distance (between homes and a

2 http://www.ccn.on.ca/ccn_public/uploadfiles/files/Patient%20Access%

20Mgmnt%20diagram

Fig. 3 The statistical distribution of absolute variations in median

wait time for cardiac surgery services in Ontario, Canada, between

January 2005 and December 2006. The distribution follows a power

law with a power of -1.36 (power-law test based on Clauset’s

method (Clauset et al. 2009): p \ 0.1; linear fitness (red line):

p \ 0.001; standard deviation SD = 0.28). (Color figure online)
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hospital), (2) the resourcefulness of a hospital (referred to

as hospital resourcefulness thereafter), and (3) hospital

performance (e.g., wait times). First of all, it has been well

recognized that the geographic distance is negatively

associated with the probability that patients and GPs select

a hospital (Seidel et al. 2006; Lakha et al. 2011). The

resourcefulness of a hospital, as represented by the number

of physicians (Wijeysundera et al. 2010), has been found to

be positively correlated with the probability that patients

and GPs select a specific hospital (Wijeysundera et al.

2010; Kinchen et al. 2004; Tao and Liu 2012) because

more hospital resources may attract more patient arrivals

(Smethurst and Williams 2002). In addition, waiting is also

a major concern for patients (Cardiac Care Network of

Ontario 2005) and GPs (Lakha et al. 2011; Wakefield et al.

2012), who are usually in favor of hospitals with short wait

times (Cardiac Care Network of Ontario 2005; Lakha et al.

2011; Wakefield et al. 2012).

4.1.3 Local feedback loops

The aforementioned interrelationships among these factors,

patient-GP mutual decisions on hospital selection, and

hospital service-adjustment behavior may form a few

feedback loops. In this study, we identify two local feed-

back loops among patient arrivals, the service rate of a

hospital, and hospital wait times (as shown in Fig. 4). The

first negative feedback loop, namely as AW-loop, exists

between the factors of patient arrivals and wait times due to

the patient-GP mutual decisions on hospital selection. The

AW-loop shows that the increase of wait times in a hospital

may decrease the number of patient arrivals subsequently,

as patients/GPs are less willing to select a hospital with

long wait times, and thus the wait times in the hospital will

be reduced soon afterwards. That means, the AW-loop will

regulate the variable of patient arrivals or wait times to its

original value when either of the two variables is changed.

As shown in Fig. 4, the factors of patient arrivals, hospital

service rate, and wait times form the second positive

feedback loop, namely as ASW-loop. The ASW-loop will

accelerate the changes of patient arrivals, hospital service

rate, or wait times. Taking one scenario as an example, if

there are more patient arrivals at a hospital, the hospital

will increase its service rate to cope with the arrivals and

avoid long wait times. Whereafter, the increased service

rate will shorten wait times, which will in turn result in a

larger number of patient arrivals afterwards.

In what follows, we will describe the detailed formula-

tion of the AOC-CSS model, which includes the environ-

ment, the three types of entities, and their behavioral rules.

4.2 Environment

Patients are geographically distributed in different cities

and towns. The relationship between cities and hospitals

can be conceptualized as a weighted bipartite network

defined as follows:

Definition 1 (City-hospital network) A city-hospital network

can be described as a bipartite network CH ¼ ðC;H;DÞ, where

CðNÞ ¼ fcig ði 2 ½1;N�Þ and HðMÞ ¼ fhjg ðj 2 ½1;M�Þ are

two node sets, H \ C ¼ ;; D ¼ fdijg ði 2 ½1;N�; j 2 ½1;M�Þ
is a set of weighted edges.

Here, each node ci ð8ci 2 CÞ in a city-hospital network

CH represents a sampled city/town. Each node hj ð8hj 2
HÞ in CH denotes a hospital that provides cardiac surgery

services in Ontario, Canada. Finally, each weighted edge

dij ð8dij 2 DÞ in CH represents the driving time from a

city/town ci ð8ci 2 CÞ to a hospital hj ð8hj 2 HÞ which is

estimated by using the ‘‘Get directions’’ function in Google

Maps.3

Fig. 4 The effects of impact

factors on patient-GP mutual

decisions on hospital selection

and the interacting feedback

loop. ? positive relationship

between two factors, – negative

relationship between two factors

3 https://maps.google.com/
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The environment E in the AOC-CSS model records the

released information about hospitals. We formally define

environment E as follows:

Definition 2 (Environment) Environment E for the AOC-

CSS model is represented as a city-hospital network CH. E

maintains information that could be accessed by patients and

GPs. We define environment E as a tuple:\D,R,W,POP,M[,

where the elements are given as follows:

– D Distance information D ¼ fdijg. Each dij records the

driving time between city/town ci ð8ci 2 CÞ and

hospital hj (8hj 2 HÞ.
– R Hospital resourcefulness information R ¼ frjg,

where rj records the number of physicians in hj

(8hj 2 HÞ.
– W Wait time information W ¼ fwjðsÞg. Each wjðsÞ

records the wait time information (e.g., median wait

time in this paper) for hospital hj (8hj 2 HÞ at time

round s. Here, a unit of time round equals to ŝ number

of time steps, i.e., s ¼ ŝ � t, where ŝ is a positive

integer, and t denotes a time step, e.g., one day in this

paper.

– POP: Population information POP ¼ fpopig. Each

popi records the population size for city ci ð8ci 2 CÞ.
– M Patient-generation probability M ¼ fmig. Each mi

records the patient-generation probability for city ci

ð8ci 2 CÞ in a time step.

4.3 Entities

4.3.1 General physician (GP)

In the AOC-CSS model, patients come to a hospital that is

selected by patient-GP mutual decisions based on the

released information in the environment E. As most cardiac

surgery patients are referred by GPs, we define entities

GP[N] to record and represent patient-GP mutual decisions

on hospital selection for cities/towns C(N), as given below:

Definition 3 (General physician (GP) entity) Each GP

entity GP½i� ði 2 ½1;N�Þ records the information about the

number of patients who live in city ci and are referred to

hospitals at time step t. Each entity GPi ði 2 ½1;N�Þ
maintains a record: \cityID; AkðtÞ[ , where the elements

are given as follows:

– cityID: This represents the unique identity of a location.

– Ak(t) This denotes the patient flow information for

urgent type k ðk 2 KÞ patients, AkðtÞ ¼ fâk;jðtÞg. Each

âk;jðtÞ records the number of type k ðk 2 KÞ patients to

hospital hj (hj 2 H) at time step t.

4.3.2 Patient

As reported in (Cardiac Care Network of Ontario 2005), a

large number of patients may not have access to wait time

information and thus they may not consider wait times when

they select a hospital. Patients can therefore be categorized as

wait time-sensitive or wait time-insensitive, according to their

decision making styles. Wait time-sensitive patients refer to

those who consider all of the acquired information about the

hospitals (i.e., distance, hospital resourcefulness, and wait

times). Wait time-insensitive patients refer to those who do

not take into account the factor of wait times when he/she

selects a hospital, and those who do not know wait time

information. A patient entity is defined as described below.

Definition 4 (Patient entity) A patient entity maintains

a record: \patientID; cityID;Pr; rule; hospitalID; type; join

Time; endTime; ~w[ , where the elements are given as

follows:

– patientID This records the unique identity which is

represented by a constant for a patient.

– cityID This denotes the unique identity for the city/

town that a patient comes from.

– Pr This denotes the probability of a patient considering

the factor of wait times when selecting a hospital.

Accordingly, the probability of a patient who does not

take into account the factor of wait times when

choosing a hospital is 1 - Pr.

– rule This represents how a patient chooses a hospital

along with the GP.

– hospitalID This indicates the unique identity for the

hospital that a patient arrives at.

– type This represents the urgent type of a patient entity

to the cardiac surgery service according to the severity

of illness, 8k 2 ½1;K� ðK� 1Þ.

Fig. 5 The number of patient arrivals versus the number of treated

cases of cardiac surgery services in Ontario, Canada, between January

2005 and December 2006
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– joinTime This denotes the time step at which a patient

joins in the queue of a hospital.

– endTime This indicates the time step at which a patient

is served in a hospital.

– ~w This records how long a patient has waited in a

hospital, ~w ¼ endTime � joinTime.

4.3.3 Hospital

Whenever patient entities register at hospitals that are

selected based on patient-GP mutual decisions, they will be

arranged to different positions in the waiting queue

according to their urgent types. Hospitals stochastically

serve the queueing patients with different mean service

rates that depend on the physical resources, human

resources, and service management policies of hospitals.

The mean service rate of each hospital may be regularly

(e.g., once per month) adjusted in accordance with the

accumulated number of patient arrivals. In other words, if

there are more patients waiting in the queue, the hospital

may increase the service rate, and vice versa. To model the

operations of a hospital, this work employs queueing the-

ory, which is commonly utilized by some previous studies

(Schoenmeyr et al. 2009; Creemers and Lambrecht 2008).

As operating rooms for cardiac surgery services in a hos-

pital are, to a certain extent, homogeneous in terms of the

service capacity, and are centrally scheduled, the operating

rooms in a hospital behave like a single one. We assume

Fig. 6 A schematic diagram to illustrate the simulation framework

within the context of cardiac surgery services in Ontario, Canada.

Numbers in the map denote 14 LHINs. H1 to H11 denote hospitals

under LHINs. The map of Ontario was adapted from http://www.csqi.

on.ca/cms/one.aspx?portalId=258922&pageId=273312
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that the service rate of a hospital follows an exponential

distribution, which is a common assumption made by

previous work (Schoenmeyr et al. 2009; Creemers and

Lambrecht 2008). Thus, we can model each hospital as an

M/M/1 queue (Kleinrock 1975). A hospital entity can be

defined as follows:

Definition 5 (Hospital entity) Hospital[M] records the

information of all the hospitals. Each hospital entity hj

(8hj 2 H) maintains a record: \hospitalID; cityID; ~AkðtÞ;
lðtÞ; rule;wðsÞ; queue[ ; where the elements are given as

follows:

– hospitalID This represents the unique identity for a

hospital.

– cityID This indicates the unique identity for the city/

town in which a hospital is located.

– ~AðtÞk This records the patient arrival information for

type k ðk 2 KÞ patients, ~AðtÞk ¼ f~ai;kðtÞg. Each ~ai;kðtÞ
records the number of type k ðk 2 KÞ patients coming

from city/town ci at each time step.

– l(t) This denotes the hospital service rate at time step t.

– rule This represents how a hospital adjusts the service

rate with respect to the accumulated patient arrivals.

– wðsÞ This records the wait time information (mean

median wait time in this paper) of hospital hj at time

round s, which will be released in environment E.

– queue This records the information about the queue,

which includes all the patient entities waiting for

cardiac surgery services at each time step.

Table 1 Key parameters as used in the simulation

Symbol Meaning Initialization value

popi The population size of a city/town The population size for a specific city/town in 2006

mi The patient-generation probability of a city/town in a cold season The patient-generation probability for each city/town in the

cold season of 2006 based on the work of Alter et al. (2006)

m0i The patient-generation probability of a city/town in a warm season 0.85*mi

dij Distance from a city/town to a hospital The average driving time calculated by Google Maps

rj The number of physicians in a hospital The number of physicians in a specific year (2005 or 2006)

for a hospital

wj,r The wait time information for a hospital at time round s Average median wait times in the last quarter of 2004

Pr The probability of a patient considering the factor of wait times when

selecting a hospital

0.2

K The number of patient types 2 (i.e., urgent and non-urgent patients)

l(t) Average service rate of a hospital The mean service rate in 2005 of a hospital

queue The queue length of a hospital The queue length at the end of the first quarter in 2005

ad Sensitivity of a patient to the factor of distance 4

ar Sensitivity of a patient to the factor of hospital resourcefulness 1

aw Sensitivity of a patient to the factor of wait times 1

bj The first service rate adjustment parameter for hospital hj 0.57

gj The second service rate adjustment parameter for hospital hj 0.43

t A unit of simulation time step 1 (day)

s Time round, indicating the period of time to review the wait times in a

hospital

1 (month)

ŝ The number of time steps that are included in a time round s 30 time steps

~s The number of time steps that hospitals adjust the service rates l(t) 1 week (i.e., five time steps)

T The total simulation time steps 720 time steps
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4.4 Designing behavioral rules

4.4.1 Behavioral rules for patients to select hospitals

Based on the literature review, we identify stylized facts

addressing the effects of key impact factors (i.e., distance,

hospital resourcefulness, and wait times) on patient-GP

mutual decisions for hospital selection.

– Stylized fact 1 The probability that patients select a

hospital is exponentially and inversely related to the

distance between their homes and a hospital (Seidel

et al. 2006).

– Stylized fact 2 Patients usually prefer to visit a hospital

that is resourceful in terms of personnel (e.g., physi-

cians) and facilities (e.g., ORs) (Wijeysundera et al.

2010; Kinchen et al. 2004; Tao and Liu 2012). Hospital

resourcefulness and the number of patient arrivals are

therefore positively correlated (Liu et al. 2011).

– Stylized fact 3 Patients usually prefer to visit a hospital

with shorter wait times (Lakha et al. 2011; Cardiac

Care Network of Ontario 2005; Wakefield et al. 2012).

However, a large proportion of patients, especially the

elderly, may not have access to wait time information

or are less likely to consider the wait times when they

select hospitals (Cardiac Care Network of Ontario

2005).

Based on the stylized facts, we develop two specific

behavioral rules, i.e., a DHW-rule and a DH-rule, to model

how patients choose a hospital. The two behavioral rules

are our assumptions in this work, which are defined below.

Definition 6 (DHW-rule) DHW-rule represents how a

wait time-sensitive patient residing in location ci ð8ci 2 CÞ
estimates the arrival probability aij for hospital hj ð8hj 2
HÞ based on the information about distance dij, the hospital

resourcefulness rj, and the released wait time information

wjðsÞ at time round s. The hospital selection probability for

a hospital hj can be calculated as follows:

aij ¼ f ðdijÞ � f ðrjÞ � f ðwjðsÞÞ

f ðdijÞ ¼
d0ijP

hk2H d0ik

d0ij ¼
P

hk2H dad

ik

dad

ij

f ðrjÞ ¼
rar

jP
hk2H rar

k

f ðwjðsÞÞ ¼
P

hk2H waw

j ðsÞ
waw

j ðsÞ
;

ð3Þ

where ad (ad 2 ½1; 5�), ar (ar 2 ½1; 5�), and aw (aw 2 ½1; 5�)
are exponents to indicate the sensitivity of patients to the

factors of distance, hospital resourcefulness, and wait

times, respectively.

Definition 7 (DH-rule) DH-rule indicates how a patient

chooses a hospital hj with respect to the distance dij and

hospital resourcefulness rj. The hospital selection proba-

bility is calculated by:

aij ¼ f ðdijÞ � f ðrjÞ

f ðdijÞ ¼
d0ijP

hk2H d0ik

d0ij ¼
P

hk2H dad

ik

dad

ij

f ðrjÞ ¼
rar

jP
hk2H rar

k

ð4Þ

Fig. 8 Distributions of variations in simulated and observed patient

arrivals in cardiac surgery services. SD standard deviation

Fig. 9 The distribution of simulated absolute wait time variations (by

month) in cardiac surgery services. The distribution follows a power

law with power of -1.47 (power-law test based on Clauset’s method

(Clauset et al. 2009): p \ 0.1; linear fitness (red line): p \ 0.0001;

standard deviation SD = 0.183). (Color figure online)
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4.4.2 A behavioral rule for hospitals to adjust service rates

Hospitals may periodically change their service rates to

adapt to unpredictable patient arrivals. For instance, as

shown in Fig. 5, changes in the throughput, which rep-

resents the actual serviced numbers of patients, follows

approximately the same pattern as changes in the patient

arrivals in cardiac surgery services in Ontario. The cor-

relation coefficient between the throughput and patient

arrivals is 0.896 (p \0.0001), implying that the service

rate of a hospital may vary in accordance with the

changes in patient arrivals. We therefore define an S rule

for hospitals to adjust their service rates by assuming that

service rate of a hospital and the queue length (repre-

senting the accumulated patient arrivals at present) is

positively and linearly related. The definition of the S rule

is given as below.

Definition 8 (S-rule) S-rule represents how a hospital

hj ð8hj 2 HÞ changes the service rate ljðtÞ in view of the

aggregated patient arrivals in the past ~s number of time

steps. The service rate is updated as follows:

ljðtÞ ¼ �lj �
bj �

Pt�1
t0¼t�~s

~Ajðt0Þ
~s � �Aj

þ gj

 !

; ð5Þ

Fig. 10 Distributions of simulated and real-world wait-time varia-

tions in cardiac surgery services
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Fig. 11 The dynamically-changing preferences of patients residing in

the city of Brampton (in LHIN 5) to the four neighboring hospitals,

i.e., a H4, Trillium Health Centre. b H5, St. Michael’s Hospital. c H6,

Sunnybrook Hospital. d H7, University Health Network. The shaded

areas in this figure represent the warm seasons in Ontario, Canada
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where ~s is the number of time steps that a hospital adjusts

its service rate once (usually 1 week in Ontario (Office of

the Auditor General of Ontario 2009); ljðtÞ is the service

rate of hospital hj at time step t; �lj is the average service

rate of hospital hj at a time step; Ajðt0Þ is the total number

of patient arrivals at time step t0; �Aj is the average patient

arrivals to hospital hj at a time step; bj (bj 2 ½0; 1�) and gj

(gj 2 ½0; 1�) are two parameters to represent how a hospital

adjusts its service rate with respect to the variations of

patient arrivals.

5 AOC-CSS model based simulations

In this section, we conduct simulations based on our AOC-

CSS model, aiming to understand the self-organized reg-

ularities of patient arrivals and wait times (as presented in

Figs. 2 and 3) in cardiac surgery services in Ontario,

Canada. The overall simulation framework is schematically

illustrated in Fig. 6.

As presented in Fig. 6, at each time step, a simulated

city/town ci in Ontario randomly generates a certain

number of patient entities based on the mean patient size

popi � mi. Each generated patient entity in ci calculates the

arrival probability for each hospital based on the behavioral

rules, and then selects a hospital with its GP. At the same

time, each GPi calculates the total number of patient

entities coming from city ci to each hospital. Then, each

hospital entity hj queues the coming patient entities and

services them accordingly. The service time for a specific

patient entity in hj is randomly generated from an expo-

nential distribution with the mean service rate lj. Fur-

thermore, at each time round (e.g., at each month in this

work), a hospital entity hj should calculate its wait time

information and release it to environment E. Specifically,

within the research scenario, we simulate cardiac patients

coming from 47 major cities/towns (each has a population

of more than 40,000 in 2006) in Ontario, Canada, for which

cover approximately 90.72 % of Ontario’s total population.

We also simulate 11 hospitals that provide cardiac surgery

services in Ontario.

5.1 Simulation settings

The parameters in the AOC-CSS model are initialized

using aggregated data which is published by Cardiac Care

Network of Ontario (CCN) of Ontario and 2006 Canada

Census (Statistics Canada 2007). CCN published monthly

statistical reports on cardiac surgery service utilization in

Fig. 12 The distribution of simulated absolute wait time variations

(calculated by week) in cardiac surgery services. The distribution

follows a power law with power of -2.19 (power-law test based on

Clauset’s method (Clauset et al. 2009): p \ 0.1; linear fitness (red line):

p \ 0.0001; standard deviation SD = 0.331). (Color figure online)

Fig. 13 The distribution of simulated absolute wait time variations

(calculated by half-month) in cardiac surgery services. The distribution

follows a power law with power of -1.86 (power-law test based on

Clauset’s method (Clauset et al. 2009): p \ 0.1; linear fitness (red line):

p \ 0.001; standard deviation SD = 0.38). (Color figure online)

Table 2 The p values of power-law tests for distributions of absolute wait time variations with respect to different Pr

Pi 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

[0.1 [0.1 [0.1 [0.1 [0.1 [0.1 [0.1 [0.1 \0.1 B0.1 [0.1 [0.1

If p� 0:1 as suggested by Clauset et al. (2009), the data for power-law fitness tests follows a power-law distribution. Pr is initialized to 0.2 in our

simulations because near 20 % of surveyed patients in Ontario consider wait times when they select a hospital (Cardiac Care Network of Ontario

2005)
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Ontario hospitals in the years between January 2005 and

December 2006 (we accessed the data in February 2011).

In the statistical reports, the average number of treated

cases, the median wait time, and the queue length in a

month for each hospital were reported. Therefore, the

service rate lj can be approximated as the average number

of served cases in a day. The service rate adjustment

parameters bj and gj for hospital hj can also be estimated

based on the CCN data.

To estimate the arrival rate for a hospital in a day, we

calculated the number of patients in each city/town by

multiplying the patient-generation probability, i.e., the

probability of a person in a city/town to be a patient who

needs a cardiac surgery service, to the total number of

people in the city/town. In this work, the patient-generation

probability for each city/town could be inferred from the

work of Alter et al. (2006). The total population for each

city/town is gathered from the 2006 Canada Census data

(Statistics Canada 2007).

As seasonal weather is an important contributing factor

influencing patient arrivals (Mackay and Mensah 2004),

the arrival rate is adjusted seasonally in our simulation. The

patient arrival rate is approximately 15 % lower in the

warm season (from May to October in Ontario) than in the

cold season (from January to April and from November to

December in Ontario), according to the reported CCN data

(Alter et al. 2006).

Near 20 % of patients consider wait times when they

select a hospital (Cardiac Care Network of Ontario 2005).

Therefore, we assume that the probability that a patient

considers the factor of wait times when selecting a hospital

is relatively small and we set the probability Pr = 0.2 in

our simulations.

According to the practice, patients can be categorized

into two types, i.e., K = 2. One type of patients is urgent,

and another is non-urgent. According to the data reported

by Alter et al. (2006, p. 71), the arrival rate of urgent

patients versus that of non-urgent patients is set to

0.23:0.77. Urgent patients have a higher priority in

receiving cardiac surgery services than non-urgent patients.

The values of exponential parameters (i.e., ad, ar, and

aw) are estimated by using the spatial pattern of real patient

flows in 2007 (as shown in Fig. 7) (Cardiac Care Network

of Ontario 2007). Based on our experiments, it has been

found that when ad = 4, ar = 1, and aw = 1, we can get

relatively small values of mean and standard deviation of

absolute errors. Here, the absolute error is defined as

jeijj ¼ jâij � â0ijj, where eij is the error between the per-

centage of patients residing in LHIN li coming to hospitals

in LHIN lj in the year of 2007-2008 in Ontario, âij, and the

percentage of simulated patients that reside in LHIN li but

visit LHIN lj for services, â0ij.

In accordance with the real-world monthly service uti-

lization data from January 2005 to December 2006, we

therefore set the total simulation time steps as 720 to rep-

resent the same period of time, i.e., 2 years. At each time

step, the simulation repeats 1,000 times to get mean values

of the number of generated patient entities and the number

of served patients in a hospital. The key parameters as used

in the simulation are summarized in Table 1.

5.2 Simulated patient arrivals and wait times

In this section, we examine the self-organized regularities

in our synthetic cardiac surgery services. Figure 8 shows

the comparison between the distribution of patient arrival

variations in the real world (represented by black boxes in

the figure) and that obtained from the simulation (repre-

sented by red stars in the figure). The simulation approxi-

mately reproduces the shape of the distribution of observed

patient-arrival variations, shown in Fig. 8. The observed

patient-arrival variations have a mean of 0.0004 and a

standard deviation of 0.226, whereas the simulated patient-

arrival variations have a mean of -0.0013 and a standard

deviation of 0.232. The Kullback-Leibler (KL) divergence

(Burnham and Anderson 2002), which measures the dif-

ference between the statistical distribution of simulated

patient-arrival variations and that of real-world patient-

arrival variations, is 0.14. The small value of KL diver-

gence (0 means two distributions are identical while 1

means not (Burnham and Anderson 2002) implies that the

distribution of patient-arrival variations as obtained from

the simulation are close to that observed from the real

world.

Fig. 14 The Gini coefficients that measure the dispersion of wait

times in a hospital with respect to different ŝ for releasing wait time

information. Black box a Gini coefficient of wait times for a hospital;

red dot an average Gini coefficient of wait times for all hospitals.

(Color figure online)
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Figure 9 presents the statistical distribution of absolute

variations of median wait time as obtained from our sim-

ulation. From Fig. 9, we can note that the absolute varia-

tions of median wait time in the simulation exhibit a

power-law distribution with power of -1.47 (linear fitness:

p \ 0.0001; power-law test based on Clauset method

(Clauset et al. 2009: p \ 0.1)), while the power of the

absolute variations of median wait time as observed in the

actual practice is -1.36 (as illustrated in Fig. 3). This

indicates that the synthetic cardiac surgery services are

self-organizing in terms of wait times.

Figure 10 compares the statistical distribution of abso-

lute variations in the median wait time obtained from our

simulation to the distribution of the observed data. The KL

divergence of the distribution of the simulated absolute

wait-time variations (represented by red stars in the figure)

from that of the observed absolute wait-time variations

(represented by black boxes in the figure) is 0.1227. The

small value of the KL divergence implies that the two

distributions are similar.

6 Discussion

6.1 Causes of tempo-spatial patterns

Based on our AOC-CSS model and simulation-based

experiments, we are able to characterize the self-organized

regularities as observed in the real-world cardiac surgery

services. This is partially due to the AW-loop as shown in

Fig. 4.

Let us take the city of Brampton, Ontario, as an example

to illustrate the self-organizing process at an individual

level. The four hospitals nearest to Brampton that offer

cardiac surgery services are Trillium Health Centre (H4),

St. Michael’s Hospital (H5), Sunnybrook Hospital (H6),

and University Health Network (H7). The average driving

times for patients living in Brampton to these hospitals are

less than 0.7 h. Figure 11 presents the dynamically

changing preferences of patients residing in Brampton to

the four hospitals and shows that patients living in

Brampton generally prefer H7, because the driving dis-

tances from Brampton to the four hospitals are almost the

same, varying between 0.5 and 0.7 h, and H7 has more

physicians than the other three hospitals. As the values for

the factors of driving distance and hospital resourcefulness

are not changed during the simulation, the changing wait

times for the four hospital are the only cause of the

dynamically changing arrival probabilities.

For instance, Fig. 11(d) shows that in the first two

months, the arrival probabilities for patients living in

Brampton to H7 are high, because the wait times in this

hospital are short, at approximately 22 days. Due to the

high arrival probabilities in the first two months, more

patients will visit H7 than the other three hospitals, which

will in turn result in longer wait times in H7. The wait time

information for H7 is then released into the environment

and is used by patients when they make hospital selection

decisions in the third month. As a result, the arrival prob-

ability of patients living in Brampton to H7 in the third

month will decrease. This self-regulating process is initi-

ated by autonomous patient/GP entities according to their

hospital selection behavioral rules and incorporates the

AW-loop, potentially accounting for the observed self-

organized regularities at a systems level.

Figure 11 also shows that the trends of the changes in

arrival probabilities to the four hospitals are complemen-

tary. The increase in arrival probabilities to some of the

hospitals in some months therefore accompanies the

decrease in arrival probabilities to other hospitals. Due to

the differences in the wait times in the four hospitals, a few

patients may therefore transfer among the four hospitals to

avoid a long wait. For instance, in the first warm season

(from month 3 to month 8), the arrival probabilities to H4

and H6 increase because their reference wait times are less

than 20 days, whereas the arrival probabilities to H5 and H7

decrease because their wait times are much longer than 20

days. It should be noted that although the arrival probabil-

ities to H4 and H6 increase, the wait times in all four hos-

pitals decrease in the first warm season. The number of

patient arrivals in the warm season is smaller than in the

cold season. As more patients may be willing to travel to H4

and H6 in the first warm season, the accumulated patient

arrivals in the first warm season may result in the increase in

wait times in the initial several months in the second cold

season (from month 9 to month 12), which will in turn

reduce the arrival probabilities for the two hospitals. With

the same analysis process described above, we can explain

the variations in the arrival probabilities and wait times for

the four hospitals in the subsequent months.

6.2 Wait time variations at different time scales

Figures 12 and 13 show the statistical distributions of

absolute wait time variations that are calculated by week

and by half-month, respectively. The power-law tests based

on the Clauset’s method (Clauset et al. 2009) show that

both of the absolute wait time variations as presented in the

two figures fit power law distributions (power-law test:

p \ 0.1). The powers of the two statistical distributions are

-2.19 and -1.86, respectively. This suggests that absolute

wait time variations in different time scales are able to

represent the self-organizing property of the cardiac care

system in terms of wait times, such as by week, as shown in

Fig. 12, by half-month, as shown in Fig. 13, and by month,

as shown in Fig. 9.
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6.3 The probability for selecting DHW-rule, Pr

Table 2 presents the corresponding p values of power-law

tests with respect to various Pr based on Clauset’s method

(Clauset et al. 2009). According to Table 2, when there are

few wait time-sensitive patients (e.g., Pr = 0 or 0.1), the

distribution of absolute wait time variations does not fol-

low a power-law distribution, as the power-law test is not

significant ( p [ 0.1). If most of the patients select hospi-

tals without considering the wait time information, the

AW-loop and the ASW-loop are absent. In other words,

patient arrivals may not adapt to the dynamically changing

wait times in hospitals.

According to Table 2, when there is a relatively small

probability that a patient considers wait times when

choosing a hospital, e.g., Pr = 0.2 or 0.3, the distribution

of absolute variations in the median wait time follows a

power-law distribution (p B 0.1), suggesting that the sys-

tem is self-regulating. This suggests that a small number of

wait time-sensitive patients may result in the emergence of

self-organized regularities.

However, when Pr becomes larger, for instance,

Pr [ 0.3, as shown in Table 2, the distributions of absolute

wait time variations do not follow power-law distributions.

The p-values of the power-law tests are all larger than 0.1.

A large number of wait time-sensitive patients may there-

fore not result in a self-regulating healthcare service sys-

tem, as the patient arrivals for each hospital may fluctuate

highly if more patients are sensitive to the wait time

information when they select hospitals.

6.4 The number of time steps for releasing wait time

information, ŝ

The parameter ŝ is critical in that it determines the fre-

quency for reviewing and releasing the wait time infor-

mation to environment E. Figure 14 shows the Gini

coefficients (Gakidou et al. 2000), which are utilized to

measure the variations of wait times in a hospital, with

respect to different ŝ. As denoted by the red dots in

Fig. 14, reviewing the wait time information once every

0.5–3 months would reduce the Gini coefficient of wait

times. This means that frequently updating the past wait

time information may help regulate wait times in the

healthcare service system. However, Fig. 14 also reveals

that releasing the wait time information too frequently,

e.g., once every week, may not decrease the extent of

variations in wait times. This is potentially because the

wait time information calculated within a small ŝ may be

biased, and thus is hard to regulate patient arrivals and

wait times.

7 Conclusion

In this paper, we have used an AOC-based modeling and

simulation approach to characterizing self-organized regu-

larities in cardiac surgery services. In particular, we have

described three types of entities, i.e., patient, GP, and hospital,

as well as the environment that they reside in and access

information from. Based on the identified major impact fac-

tors of distance, hospital resourcefulness, wait times, as well

as their interaction relationships and local feedback loops, we

have derived three types of behavioral rules for patients to

make mutual decisions with their GPs on hospital selection

and hospitals to adaptively adjust their service rates.

Through simulation-based experiments, we have

observed that the constructed AOC-CSS model produces a

few regularities that are, more or less, similar to those

found in the real-world cardiac surgery services. This

indicates that the patient-GP mutual hospital selection

behavior and its interrelationship with hospital wait times

may account for the self-regulating service utilization. It

also reveals that the AOC-based modeling approach pro-

vides a potentially effective means for explaining the self-

organized regularities and investigating emergent phe-

nomena in complex systems. In our future study, it would

be promising to study the applications of the presented

approach to other real-world complex healthcare services,

so as to better understand how self-organized regularities at

a systems level emerge from individuals’ collective

behaviors and their closely coupled interactions.
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