Skip to main content

Advertisement

Log in

Expression Profiles of Protease in Onychomycosis-Related Pathogenic Trichophyton rubrum and Tinea Capitis-Related Pathogenic Trichophyton violaceum

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The two fungal species Trichophyton rubrum and Trichophyton violaceum are common pathogens on human, infecting keratinized tissue of the outer body parts. Both species are belonging to the “Trichophyton rubrum complex” and share very high similarity in the genome. Secreted proteinases, key factors for keratin degradation, are nearly identical. Contrary, the ecological niches are differing. Trichophyton rubrum preferably infects skin and nails, whereas T. violaceum preferably infects the scalp. We postulate, that differences in the protease expression contribute to differences in ecological preferences. We analyzed the expression profiles of all 22 endoprotease genes, 12 subtilisins (S8A), 5 deuterolysins (M35) and 5 fungalysins (M36), for both species. To compare the influence of the keratin source, we designed experiments with human nail keratin, sheep wool keratin and keratin free cultivation media. Samples were taken at 12 h, 24 h, 48 h and 96 h post incubation in keratin medium. The expression of the proteases is higher in wool-keratin medium compared to human nail medium, with the exception of MEP4 and SUB6. Expression in the keratin-free medium is lowest. The expression profiles of the two species are remarkable different. The expression of MEP1, MEP3, SUB5, SUB11 and SUB12 are higher in T. rubrum compared to T. violaceum. MEP2, NpIIc, NpIIe, SUB1, SUB3, SUB4, SUB7 and SUB8 are higher expressed in T. violaceum compared to T. rubrum. The differences of the protease expression in the two species may expalin the differences in the ecological niches. Further analysis are necessary to verify the hypothesis.Please check and conform the edit made in title.Here I thinke the species of strains shouldnt be capital, and the right expression should be,  "Expression Profiles of Protease in Onychomycosis-Related Pathogenic Trichophyton rubrum and Tinea Capitis-Related Pathogenic Trichophyton violaceum"Author names: Please confirm if the author names are presented accurately and in the correct se-quence (given name, middle name/initial, family name). Author 1 Given name: [Jingjing] Last name [Chen], Author 2 Given name: [Yangmin] Last name [Gao], Author 3 Given name: [Shuzhen] Last name [Xiong], Author 4 Given name: [Ping] Last name [Zhan]. Also, kindly confirm the details in the metadata are correct.YesPlease check and confirm the inserted city and country are correctly identified for affiliation 3.Please change the affiliations, Affiliation 2: ²Jiangxi Provincial Clinical Research Center for Skin Diseases, Dermatology Hospital of Jiangxi Province,The Affiliated Dermatology Hospital of Nanchang University, Nanchang, 330200, Jiangxi; Affiliation 3: 3Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College,Nanchang 330001, Jiangxi. Thanks a lot!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References

  1. Lin BB, Pattle N, Kelley P, Jaksic AS. Multiplex RT-PCR provides improved diagnosis of skin and nail dermatophyte infections compared to microscopy and culture: a laboratory study and review of the literature. Diagn Microbiol Infect Dis. 2021;101(3): 115413. https://doi.org/10.1016/j.diagmicrobio.2021.115413.

    Article  CAS  PubMed  Google Scholar 

  2. Jousson O, Lechenne B, Bontems O, Capoccia S, Mignon B, Barblan J, et al. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology (Reading). 2004;150(Pt 2):301–10. https://doi.org/10.1099/mic.0.26690-0.

    Article  CAS  PubMed  Google Scholar 

  3. Elewski BE, Charif MA. Prevalence of onychomycosis in patients attending a dermatology clinic in northeastern Ohio for other conditions. Arch Dermatol. 1997;133(9):1172–3.

    Article  CAS  PubMed  Google Scholar 

  4. Nenoff P, Kruger C, Ginter-Hanselmayer G, Tietz HJ. Mycology–an update. Part 1: dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges. 2014;12(3):188–209. https://doi.org/10.1111/ddg.12245.

    Article  PubMed  Google Scholar 

  5. Zaraa I, Hawilo A, Aounallah A, Trojjet S, El EuchMokni DM, et al. Inflammatory Tinea capitis: a 12-year study and a review of the literature. Mycoses. 2013;56(2):110–6. https://doi.org/10.1111/j.1439-0507.2012.02219.x.

    Article  PubMed  Google Scholar 

  6. Zhan P, Dukik K, Li D, Sun J, Stielow JB, Gerrits van den Ende B, et al. Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T violaceum. Stud Mycol. 2018;89:153–75. https://doi.org/10.1016/j.simyco.2018.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mercer DK, Stewart CS. Keratin hydrolysis by dermatophytes. Med Mycol. 2019;57(1):13–22. https://doi.org/10.1093/mmy/myx160.

    Article  CAS  PubMed  Google Scholar 

  8. Samdani AJ, Dykes PJ, Marks R. The proteolytic activity of strains of T. mentagrophytes and T. rubrum isolated from tinea pedis and tinea unguium infections. J Med Vet Mycol. 1995;33(3):167–70.

    Article  CAS  PubMed  Google Scholar 

  9. Viani FC, Dos SantosPaula JICR, Larson CE, Gambale W. Production of extracellular enzymes by Microsporum canis and their role in its virulence. Med Mycol. 2001;39(5):463–8. https://doi.org/10.1080/mmy.39.5.463.468.

    Article  CAS  PubMed  Google Scholar 

  10. Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol. 2002;292(5–6):405–19. https://doi.org/10.1078/1438-4221-00223.

    Article  CAS  PubMed  Google Scholar 

  11. Monod M. Secreted proteases from dermatophytes. Mycopathologia. 2008;166(5–6):285–94. https://doi.org/10.1007/s11046-008-9105-4.

    Article  PubMed  Google Scholar 

  12. Li J, Zhang KQ. Independent expansion of zincin metalloproteinases in Onygenales fungi may be associated with their pathogenicity. PLoS One. 2014;9(2): e90225. https://doi.org/10.1371/journal.pone.0090225.

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yike I. Fungal proteases and their pathophysiological effects. Mycopathologia. 2011;171(5):299–323. https://doi.org/10.1007/s11046-010-9386-2.

    Article  CAS  PubMed  Google Scholar 

  14. Leng W, Liu T, Wang J, Li R, Jin Q. Expression dynamics of secreted protease genes in Trichophyton rubrum induced by key host’s proteinaceous components. Med Mycol. 2009;47(7):759–65. https://doi.org/10.3109/13693780802524522.

    Article  CAS  PubMed  Google Scholar 

  15. Apodaca G, McKerrow JH. Regulation of Trichophyton rubrum proteolytic activity. Infect Immun. 1989;57(10):3081–90. https://doi.org/10.1128/iai.57.10.3081-3090.1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giddey K, Favre B, Quadroni M, Monod M. Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett. 2007;267(1):95–101. https://doi.org/10.1111/j.1574-6968.2006.00541.x.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Yu L, Tian Y, Zhang KQ. Molecular evolution of the deuterolysin (M35) family genes in Coccidioides. PLoS One. 2012;7(2): e31536. https://doi.org/10.1371/journal.pone.0031536.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Yi J, Liu L, Yin S, Chen R, Li M, et al. Substrate adaptation of Trichophyton rubrum secreted endoproteases. Microb Pathog. 2010;48(2):57–61. https://doi.org/10.1016/j.micpath.2009.12.001.

    Article  CAS  PubMed  Google Scholar 

  19. Bruce Fraser RD, Parry DA. The role of disulfide bond formation in the structural transition observed in the intermediate filaments of developing hair. J Struct Biol. 2012;180(1):117–24. https://doi.org/10.1016/j.jsb.2012.05.020.

    Article  CAS  PubMed  Google Scholar 

  20. Gong H, Zhou H, McKenzie GW, Yu Z, Clerens S, Dyer JM, et al. An updated nomenclature for keratin-associated proteins (KAPs). Int J Biol Sci. 2012;8(2):258–64. https://doi.org/10.7150/ijbs.3278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bitencourt TA, Macedo C, Franco ME, Assis AF, Komoto TT, Stehling EG, et al. Transcription profile of Trichophyton rubrum conidia grown on keratin reveals the induction of an adhesin-like protein gene with a tandem repeat pattern. BMC Genomics. 2016;17:249. https://doi.org/10.1186/s12864-016-2567-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tran VD, De CoiFeuermann NM, Schmid-Siegert E, Bagut ET, Mignon B, et al. RNA sequencing-based genome reannotation of the dermatophyte Arthroderma benhamiae and characterization of its secretome and whole gene expression profile during infection. mSystems. 2016. https://doi.org/10.1128/mSystems.00036-16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

No further acknowledgments.

Funding

This work was supported by the Key Scientific Project of Administration of Traditional Chinese Medicine of Jiangxi Province (2023Z008) and the National Natural Science Foundation of China [81960367], the Key Research and Development Project of Jiangxi Province (20203BBG73040), National Natural Science Foundation of Jiangxi Province [20212BAB206060] and Science and Technology innovation Team of Jiangxi University of Chinese Medicine (#CXTD22009).

Author information

Authors and Affiliations

Authors

Contributions

CJ and GY perform the experiment and original writing, XS and PZ help with data analysis, and PZ proposed the study and contributed to the writing polishing.

Corresponding author

Correspondence to Ping Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Ruoyu Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 94 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gao, Y., Xiong, S. et al. Expression Profiles of Protease in Onychomycosis-Related Pathogenic Trichophyton rubrum and Tinea Capitis-Related Pathogenic Trichophyton violaceum. Mycopathologia 189, 14 (2024). https://doi.org/10.1007/s11046-024-00828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11046-024-00828-3

Keywords

Navigation