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Abstract Mucosal and invasive candidiasis can be

challenging to treat in the setting of drug intolerance,

antifungal resistance, drug–drug interactions, or host

immune status. Antifungals with novel mechanisms of

action and distinct pharmacokinetic/pharmacody-

namic properties have been developed in recent years.

Rezafungin is an echinocandin with high-tissue pen-

etration and an extended half-life that allows for once-

weekly administration, making it a convenient treat-

ment option for invasive candidiasis while obviating

the need for central catheter placement. Ibrexafungerp

is an oral glucan synthase inhibitor that is active

against most echinocandin-resistant Candida species.

At present, it is approved for the treatment of acute

vulvovaginal candidiasis and is under investigation as

an oral step-down therapy following initial treatment

with an echinocandin for cases of invasive candidiasis.

Oteseconazole is a long-acting tetrazole that exhibits a

higher affinity for the fungal enzyme CYP51, resulting

in a potentially lower risk of drug–drug interactions

and side effects compared to other azoles. It is

currently approved for the treatment of recurrent

vulvovaginal candidiasis. Fosmanogepix has a novel

mechanism of action and potent activity against

several Candida strains resistant to other antifungals.

Due to its considerable bioavailability and tissue

penetration, it holds promise as a potential treatment

option in patients with invasive candidiasis, including

those with chorioretinitis or meningitis. Results from

clinical trials and observational studies will further

delineate the role of these agents in the management of

candidiasis. As the usage of these novel antifungals

becomes widespread, we expect to acquire a greater

understanding of their efficacy and potential benefits.
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Introduction

The genus Candida comprises more than 200 species,

many belonging to the human microbiota of the skin,

gastrointestinal tract, and vaginal flora [1–3]. Candida

species can cause a wide range of infections, from

localized mucosal disease (e.g., vulvovaginal candidi-

asis) to deep-seated invasive infection and candidemia

[2, 4]. Approximately 90% of infections are caused by

Candida albicans, Nakaseomyces glabrata (formerly
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Candida glabrata), Candida parapsilosis, Candida

tropicalis, and Pichia kudriavzevii (formerly Candida

krusei) [2, 5]. C. albicans remains the most frequent

species causing candidiasis. However, the prevalence

of non-albicans Candida species infection has steadily

increased in recent years [6, 7]. Compared to C.

albicans isolates which commonly remain susceptible

to fluconazole, non-albicans species demonstrate

variable susceptibility to antifungal agents [7–9].

Furthermore, Candida auris has emerged as a mul-

tidrug-resistant species that can be associated with

outbreaks in healthcare settings [3, 10, 11].

Established antifungal agents for managing can-

didiasis belong to four drug classes: azoles, polyenes,

echinocandins, and pyrimidine analogs (flucytosine).

Azoles and polyenes act at the level of the fungal

membrane, echinocandins on the fungal cell wall, and

flucytosine impairs nucleic acid synthesis [8, 9].

Antifungal treatment selection is based on multiple

factors, including the host immune status, the extent of

infection, prior drug tolerance, and antifungal resis-

tance [12]. Antifungal resistance can be intrinsic (e.g.,

fluconazole-resistant P. kudriavzevii) or acquired

(e.g., echinocandin-resistant N. glabrata), with the

latter typically occurring following prolonged anti-

fungal exposure [7–9]. Resistance mechanisms

include the alteration of the binding sites through the

enzyme-encoding gene ERG11 mutation and overex-

pression of the efflux pumps CDR1, CDR2, or MDR1

(for azoles), and amino acid substitutions in the FKS

subunits of the glucan synthase (for echinocandins)

[12–15]. Candida biofilm formation is potentially

contributing to the emergence of resistance, given the

decreased ability of antifungal agents to penetrate

biofilms and reach the intended site of action

[9, 12, 13].

Novel antifungals with activity against Candida

species have been developed in recent years. Herein,

we review the available data from pre-clinical and

clinical studies on rezafungin, ibrexafungerp, otesec-

onazole, and fosmanogepix. Although real-world data

is currently lacking, we provide examples of chal-

lenging cases and discuss the potential role of these

novel antifungal agents.

Rezafungin

Case 1

A 43-year-old man with end-stage renal disease

receiving intermittent hemodialysis via a tunneled

central venous catheter was admitted for fever. The

patient was started on empiric antibiotic treatment

with cefepime and vancomycin. Blood cultures col-

lected from the hemodialysis catheter and peripheral

blood grew fluconazole-resistant C. auris. The mini-

mum inhibitory concentration (MIC) of fluconazole

was 128 lg/mL, micafungin MIC was 4 lg/mL, and

rezafungin MIC was 0.25 lg/mL (susceptible if

MIC B 0.5 lg/mL [16]). Echocardiogram showed

no valvular insufficiency or vegetations. The fundo-

scopic exam was unremarkable. The hemodialysis

catheter was removed. Rezafungin was considered an

appropriate treatment option for this patient and was

administered via a peripheral catheter in 2 doses (day

1, day 8).

Rezafungin (formerly CD101) is a novel

echinocandin derived from anidulafungin with potent

in vitro and in vivo activity against Candida,

Aspergillus, and Pneumocystis [9, 17]. Rezafungin

has poor activity against Cryptococcus species and

rare mold, such as Mucorales, Fusarium, and Sce-

dosporium [18]. Rezafungin demonstrates activity

against azole-resistant Candida spp (including N.

glabrata and C. auris). Similar to other echinocandins,

FKS mutations lead to increased rezafungin MICs.

However, a once-weekly dosing regimen achieved

C 90% probability of target attainment associated

with effective drug target exposures [19]. Due to a

chemical modification that reduces degradation, reza-

fungin has improved tissue penetration compared to

other echinocandins and prolonged half-life (133 h in

humans), allowing once-weekly dosing [20–22]. In

addition, rezafungin has potent activity against Can-

dida and Pneumocystis biofilms [23, 24]. In a murine

model, rezafungin achieved faster and higher concen-

tration in hepatic tissue and had a more uniform

distribution in necrotic lesions compared to mica-

fungin [25, 26]. Rezafungin was compared to caspo-

fungin in the phase 2 STRIVE trial. The higher front-

loaded exposure (400 mg loading dose followed by

200 mg weekly dose) correlated with mycological

eradication at day five and day fourteen compared to

caspofungin [27]. The phase 3 ReSTORE trial
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demonstrated non-inferiority of rezafungin compared

to caspofungin for the primary endpoints of global

cure (clinical, radiological, and mycology eradication)

and 30-day mortality in patients with candidemia and/

or invasive candidiasis [28]. Despite the higher front-

loaded exposure, the safety and tolerability of reza-

fungin have been reported to be similar to other

echinocandins [27, 29]. Rezafungin is stable in hep-

atocytes with no biotransformation indicating a low

potential for drug–drug interactions [30]. Rezafungin

is mainly excreted in feces (\ 1% excreted unchanged

in urine) [30]. Dose adjustment is not required for

patients with renal or hepatic dysfunction [31].

Comment

Echinocandins are preferred over azoles for the initial

treatment of candidemia. In two randomized clinical

trials, echinocandins demonstrated superior efficacy

compared to azole antifungals [32, 33]. Similar

conclusions were drawn from observational studies

and led to the guideline recommendation of initiating

treatment with an echinocandin and transitioning to an

oral azole after clinical stability has been achieved

[34]. By extrapolating from the existing evidence, we

anticipate that rezafungin will have superior efficacy

to fluconazole for the initial management of can-

didemia. In phase 2 and phase 3 clinical trials

comparing rezafungin to caspofungin, eligible partic-

ipants could have received standard-of-care antifungal

therapy with an approved echinocandin prior to

enrollment (but for no longer than 48 h) [27, 28]. It

is known that timely initiation of antifungal treatment

can affect clinical outcomes. Faster blood culture

clearance was observed in patients receiving reza-

fungin compared to caspofungin. Once rezafungin is

used in clinical practice, we will assess wheter this

finding correlates with superior clinical outcomes.

Nakaseomyces glabrata exhibits reduced suscepti-

bility to fluconazole (isolates are susceptible dose-

dependent or resistant). Pichia kudriavzevii demon-

strates inherent resistance to fluconazole. For blood-

stream infections caused by fluconazole-resistant

Candida species, our practice is to administer an

echinocandin for the duration of treatment without

stepping down to an oral azole. Given its prolonged

half-life, rezafungin is conveniently dosed once

weekly and will likely be favored over other

echinocandins in this setting (as exemplified by case

1 in this review).

Based on the activity of other echinocandins, we

anticipate that rezafungin could potentially be used to

treat Candida endocarditis. Rezafungin has demon-

strated potent activity against Candida biofilms [23]

which can be formed in native and prosthetic valves.

People who inject drugs are at high risk for Candida

endocarditis, and weekly antifungal dosing sparing

central catheter placement may be the preferred

approach in this patient population. We note, however,

that patients with infective endocarditis were excluded

from the STRIVE and ReSTORE trials. Given its

activity against biofilm, rezafungin may also be used

in the treatment of vascular graft infections. Similarly,

it may be used to treat candidemia in patients with left

ventricular assist devices or those receiving extracor-

poreal membrane oxygenation support.

Drug penetration and distribution within infected

tissue are determinants of clinical response. In a

murine model of intra-abdominal candidiasis, reza-

fungin accumulated faster and persisted longer in

hepatic tissue compared to micafungin [25]. Impor-

tantly, rezafungin demonstrated a balanced distribu-

tion within necrotic lesions, whereas micafungin

provided a higher signal in the outer rim compared

to the necrotic center. These properties may be

particularly beneficial in the management of infections

with high fungal burden and the presence of necrotic

tissue (i.e., multiple intraperitoneal or hepatic

abscesses, infected pancreatic necrosis). Primary

Candida peritonitis occurs in the absence of an

apparent breach of the gastrointestinal tract. The

condition is typically encountered in patients with

cirrhosis and has been associated with significant

mortality compared to other forms of intra-abdominal

candidiasis [35]. Future research will show whether

rezafungin can improve the outcomes of primary

peritonitis. We are also interested to see whether

rezafungin will outperform other echinocandins in the

treatment of hepatosplenic candidiasis, a deep-seated

form of candidiasis among neutropenic patients.

Pharmacokinetic studies have shown that the con-

centration of echinocandins within the pleural fluid is

lower compared to plasma [36, 37]. In a retrospective

cohort study, patients with Candida pleural empyema

treated with an echinocandin had higher 100-day

mortality compared to those treated with fluconazole

[38]. Given its pharmacokinetic properties, rezafungin
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may achieve higher concentrations in the pleural space

resulting in superior clinical outcomes. Clinical stud-

ies on pleural fluid concentration will help to define its

potential role for this indication. Similar to other

echinocandins, rezafungin has poor penetration into

the central nervous system and is not recommended

for the treatment of Candida endophthalmitis or

meningitis.

Echinocandin resistance mediated by FKS muta-

tions can emerge after prolonged drug exposure. It has

been postulated that intra-abdominal candidiasis

(mainly in the form of abscesses) provides a reservoir

for the emergence of resistance [39]. Given the front-

loaded exposure and higher tissue penetration, reza-

fungin may be associated with a lower risk of

emergence of resistance compared to the other

echinocandins. Hence, rezafungin may become the

preferred agent if prolonged antifungal treatment is

planned; however, more clinical data on the safety of

long-term use is needed. Candida auris has gained

attention in recent years due to its potential for

multidrug resistance and persistence in the environ-

ment leading to hospital outbreaks. In vitro studies

have shown higher potency of rezafungin compared to

the other echinocandins [40, 41]. It remains to be seen

how rezafungin will perform compared to the other

echinocandins in the treatment of C. auris infections in

clinical practice.

In clinical trials, rezafungin demonstrated a similar

safety profile to caspofungin with limited drug–drug

interactions. In animal studies, unexpected tremors

were observed. It is unclear whether neurologic side

effects pose a safety concern in humans. Of note,

patients with severe ataxia, tremor, or peripheral

neuropathy were excluded from the clinical trials. We

will learn more about the occurrence and magnitude of

these potential side effects once rezafungin is regu-

larly used.

Ibrexafungerp

Case 2

A 55-year-old man with a history of poorly controlled

diabetes and multivessel coronary artery disease

underwent coronary artery bypass graft surgery com-

plicated by postoperative N. glabrata sternal

osteomyelitis and received treatment with a prolonged

course of caspofungin. The patient presented to the

hospital complaining of persistent pain and recurrent

drainage from the sternal incision. He underwent

surgical debridement, and tissue cultures grew N.

glabrata resistant to fluconazole (MIC 128 lg/mL)

and caspofungin (MIC 1 lg/mL), and intermediately

susceptible to anidulafungin (MIC 0.25 lg/mL) and

micafungin (MIC 0.12 lg/mL). MIC to ibrexafungerp

was 0.5 lg/mL (proposed epidemiological cut-off

value for non-wild-type N. glabrata MIC[ 1.0 lg/

mL [42]). In this case, ibrexafungerp demonstrated

in vitro activity against fluconazole- and echinocan-

din-resistant N. glabrata.

Ibrexafungerp (formerly SCY-078) is an oral

glucan synthase inhibitor and the first triterpenoid

antifungal class member that has activity against

Candida, Aspergillus, and dimorphic fungi

[12, 43–46]. It lacks reliable activity against Muco-

rales and Fusarium [44, 45, 47]. Ibrexafungerp is a

semi-synthetic derivative of enfumafungin and dis-

rupts fungal cell wall synthesis by inhibiting (1,3)-b-D-

glucan synthase, acting on the same target as

echinocandins (Fig. 1). However, its distinct binding

site to the glucan synthase only partially overlaps with

the echinocandins. Hence, ibrexafungerp retains

activity against most echinocandin-resistant Candida

species [43, 46, 48–50]. Resistance to ibrexafungerp

can occur in the presence of FKS mutations, especially

with specific amino acid changes in the subunit FKS2.

Activity is variable in the presence of FKS mutations,

although it is still considered more potent than

echinocandins [44]. Studies in C. auris have demon-

strated potent antibiofilm activity and interruption of

cell division [51, 52]. In contrast to the echinocandins,

ibrexafungerp has the advantage of oral bioavailability

with a prolonged half-life (30 h) and a larger volume

of distribution with excellent tissue penetration in the

liver, lung, kidney, spleen, skin, and bone [44, 47]. Of

note, ibrexafungerp achieves reduced concentration in

urine and has poor penetration into the central nervous

system [46]. In an open-label trial of patients with

invasive candidiasis initially treated with an

echinocandin, step-down therapy to ibrexafungerp

showed similar favorable response rates compared to

standard-of-care treatment [43]. A phase 3 clinical

trial aimed to evaluate the efficacy and safety of

ibrexafungerp as a step-down therapy following

caspofungin in patients with candidemia and invasive

candidiasis is currently ongoing [53].
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Ibrexafungerp has been studied in patients with a

wide range of fungal infections that have been

refractory to or intolerant of standard antifungal

treatment [54]. As it targets an enzymatic pathway

not found in humans, ibrexafungerp is well-tolerated.

The most commonly reported side effects were

abdominal pain, diarrhea, nausea, and vomiting

[43, 46]. Ibrexafungerp undergoes extensive hepatic

metabolism, with elimination mainly via feces and

bile (* 90%) and minimally through urine (\ 2%)

[46, 47, 55]. No dosage adjustment is recommended in

patients with renal dysfunction or mild-to-moderate

hepatic impairment. It has not been studied in patients

with severe liver dysfunction. Ibrexafungerp is con-

traindicated in pregnant patients, as fetal toxicity was

observed in animal studies [56].

Comment

Ibrexafungerp has been approved as a single-day oral

treatment for uncomplicated vulvovaginal candidiasis

(VVC). Ibrexafungerp is a treatment option for

infection caused by fluconazole-resistant strains. In

contrast to azoles, it retains activity in the low vaginal

pH environment. We note, however, that patients

infected with fluconazole-resistant Candida albicans

isolates were not included in VANISH 303 [57] and

VANISH 306 [58]. In these phase 3 clinical trials on

VVC, ibrexafungerp was compared to placebo (and

not to fluconazole).

Treatment of vaginitis caused by N. glabrata is

challenging. Even for isolates that are in vitro suscep-

tible to voriconazole, failure rates to azole therapy are

Fig. 1 Mechanism of action of novel antifungals with activity

against Candida species. Rezafungin and ibrexafungerp inhibit

the cell-wall enzyme complex (1,3)-b-D-glucan synthase at

different subunits. FKS genes encode (1,3)-b-D-glucan synthase.

Manogepix, the active moiety of fosmanogepix, inhibits the

fungal acetyltransferase enzyme (Gwt1) in the endoplasmic

reticulum, blocking the acetylation of inositol and preventing

the biosynthesis of glycosylphosphatidylinositol, thus, affecting

the function of mannoproteins. Oteseconazole inhibits the

fungal CYP51 enzyme, blocking the conversion of lanosterol

to ergosterol

123

Mycopathologia (2023) 188:937–948 941



high. Ibrexafungerp is a reasonable treatment option in

this setting. We note that\ 10% of infections were

caused by non-albicans Candida strains in the clinical

trials cited above. For the treatment of P. kudriavzevii

vaginitis, we recommend the use of azole vaginal

creams or suppositories (i.e., clotrimazole, micona-

zole, or terconazole), as data on the activity of

ibrexafungerp against P. kudriavzevii is conflicting

[42, 59].

In recurrent VVC, vaginal swab cultures should

always be obtained for identification of Candida to the

species level and azole antifungal susceptibility test-

ing. We recommend treatment with ibrexafungerp for

azole-resistant isolates. Future studies will better

define the appropriate duration, but courses longer

than single-day treatment may be required. In a phase

3 trial, patients with recurrent VVC were treated with

fluconazole followed by monthly ibrexafungerp for 6

months [60]. More patients in the ibrexafungerp arm

remained infection-free at the end of treatment

compared to placebo (65.4% versus 53.1%). Based

on these findings, ibrexafungerp was approved by the

FDA for extended treatment. The efficacy of extended

treatment for infection caused by fluconazole-resistant

isolates will need to be studied further. Based on

animal studies, ibrexafungerp may cause fetal harm,

and use in pregnancy is unfortunately contraindicated

similarly to azole therapy. Data collection on infant

outcomes following exposure is ongoing.

The efficacy and safety of ibrexafungerp for the

treatment of candidemia and invasive candidiasis are

currently being studied in a phase 3 randomized

clinical trial (MARIO) [53]. Eligible participants are

initially treated with an intravenous echinocandin and

are randomized to receive ibrexafungerp or flucona-

zole as step-down therapy. The primary outcome is

30-day mortality. If shown to be non-inferior to

fluconazole, ibrexafungerp will be a treatment option

for step-down therapy. We believe that it is crucial to

understand the role of ibrexafungerp as step-down

therapy for fluconazole-resistant Candida species

(e.g., N. glabrata, C. auris). Transitioning from

intravenous to oral therapy will facilitate the care of

patients with invasive candidiasis.

Ibrexafungerp has been studied in the open-label

FURI trial in patients who have been intolerant of

standard antifungal treatment [54]. Intolerance to

azoles is commonly related to hepatotoxicity, whereas

allergic reactions are less common. Ibrexafungerp

may be used as an alternative to azole therapy in

patients with QT prolongation. Ibrexafungerp may be

favored over itraconazole or voriconazole in patients

with cirrhosis, although more clinical data is needed.

Due to its unique binding characteristics to the glucan

synthase, ibrexafungerp may retain activity against

echinocandin-resistant N. glabrata and C. auris. The

findings of the FURI trial will inform us of its role in

refractory candidiasis.

Notably, ibrexafungerp achieves poor concentra-

tion in the cerebrospinal fluid, and the drug should not

be used for the treatment of central nervous system

infections (at least not as monotherapy). Treatment

options for lower urinary tract infections caused by

fluconazole-resistant Candida species are limited due

to the poor urine concentration of other azoles and

echinocandins. Ibrexafungerp undergoes extensive

hepatic metabolism, and\ 2% is recovered

unchanged in the urine [55]. Given its tissue distribu-

tion, we believe that ibrexafungerp could be a

treatment option for Candida pyelonephritis. Its role

in cystitis will need to be elucidated in future studies.

We also expect to learn more about its efficacy

compared to the echinocandins in biofilm-associated

infections such as endocarditis, osteomyelitis, and

device infections.

Oteseconazole

Case 3

A 62-year-old woman with a history of poorly

controlled diabetes and recurrent episodes of VVC

caused by P. kudriavzevii was previously treated with

clotrimazole vaginal cream. The patient returns com-

plaining of pruritus and vaginal discharge. On physical

exam, there are signs of severe vaginal inflammation.

Vaginal swab culture grows P. kudriavzevii. Otesec-

onazole is indicated for this patient of non-childbear-

ing age with recurrent VVC caused by a Candida

species intrinsically resistant to fluconazole.

Oteseconazole (formerly VT-1161) is a novel oral

tetrazole that inhibits the fungal CYP51 enzyme

lanosterol 14a-demethylase (Fig. 1) and has potent

activity against Candida species (including N. glab-

rata and P. kudriavzevii), Cryptococcus species,

Coccidioides immitis/posadasii, and Trichophyton

spp [44, 61–63]. Oteseconazole resistance
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mechanisms can vary but may be similar to triazole

resistance conferred by ERG11 mutations or overex-

pression of the efflux pumps CDR1 and MDR1 [44]. In

contrast to other azoles containing an imidazole or

triazole moiety that binds to the human cytochrome,

oteseconazole has a tetrazole moiety with a greater

specificity (2000-fold) for the fungalCYP51 compared

to human CYP450 enzymes. Hence, oteseconazole is

possibly associated with a lower risk for drug–drug

interactions and adverse events [63–65]. Otesecona-

zole has an oral bioavailability of 40–70% and a

prolonged long half-life of 138 days leading to

sustained plasma levels. It has high tissue penetration,

with studies showing comparable concentrations in

vaginal tissue and blood [64, 65]. Oteseconazole does

not undergo significant metabolism and is mainly

excreted via feces and bile, with low levels recovered

in urine [63]. No dose adjustment is recommended in

patients with mild-to-moderate renal or hepatic

impairment [66]. However, its use is not recom-

mended in patients with severe renal or hepatic

impairment due to the lack of safety information.

In a phase 3 clinical trial, oteseconazole was

superior to placebo in preventing recurrent VVC

[67]. Participants presenting with acute VVC entered

an induction phase in which they were randomly

assigned to receive oteseconazole or fluconazole (2:1).

Cure rates were similar in both arms. Following the

2-week induction phase, participants with resolved

VVC entered the maintenance phase and received

oteseconazole or placebo weekly for 11 weeks. The

recurrence rate through week 50 was 5.1% with

oteseconazole compared to 42.2% with placebo

(p\ 0.001). In this study, 23.9% of Candida isolates

at baseline were identified as non-albicans species. In

2022, the FDA approved the use of oteseconazole for

women with a history of recurrent VVC. Based on

animal studies demonstrating fetal harm, otesecona-

zole is contraindicated in pregnant and lactating

women [66]. Oteseconazole has been tolerated well

in clinical trials, with the most frequently reported

adverse reactions being headache and nausea [67, 68].

Comment

Recurrent VVC is a chronic debilitating condition that

significantly affects the quality of life of millions of

women worldwide [69]. Oteseconazole has been

approved for recurrent VVC and has potential benefits

over other azoles related to its long half-life, activity

against fluconazole-resistant Candida species, lower

risk for drug–drug interactions, and adverse events. As

with other azoles, it is contraindicated in women that

are pregnant, lactating, or of childbearing age. Given

its pharmacological properties, oteseconazole could

possibly have a role in other forms of mucosal or

invasive candidiasis. However, it has only been

studied in recurrent VVC.

Fosmanogepix

Fosmanogepix (formerly APX001) is a guanosine

monophosphate inhibitor with potent in vitro activity

against Candida, Cryptococcus, Aspergillus, Fusar-

ium, and Scedosporium spp [44, 70, 71]. It lacks

activity against P. kudriavzevii and has variable

activity against Rhizopus, Lichtheimia, and Mucor

[71–74]. This first-in-class antifungal is the prodrug of

manogepix, a molecule that inhibits the fungal

acetyltransferase enzyme Gwt1 in the endoplasmic

reticulum (Fig. 1) [44, 75]. The inhibition of Gwt1

affects the anchoring of mannoproteins to the fungal

cell wall, impairing adherence to mucosal and epithe-

lial surfaces, compromising the cell wall integrity, and

affecting biofilm formation [74–76]. In vitro studies

have shown that resistance to fosmanogepix can be

acquired after drug exposure, primarily due to amino

acid substitutions within Gwt1 or overexpression of

efflux pumps [44]. Fosmanogepix can be administered

intravenously or enterally. It has a high oral bioavail-

ability ([ 90%) and achieves excellent concentrations

in the eye and central nervous system in animal models

[75, 77].

A phase 2 clinical trial demonstrated the safety and

efficacy of fosmanogepix in patients with candidemia

[78, 79]. Another clinical trial that aimed to evaluate

the role of fosmanogepix in patients with candidemia/

invasive candidiasis caused by C. auris was termi-

nated early due to the impact of COVID-19 on trial-

related activities [80]. In a planned phase 3 clinical

trial, the safety and efficacy of fosmanogepix will be

studied in patients with candidemia and invasive

candidiasis [81]. Two-thirds of participants will

receive intravenous fosmanogepix followed by an

optional transition to oral formulation. One-third will
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receive standard care with caspofungin followed by

transition to oral fluconazole.

The prolonged half-life of approximately 60 h

allows once-daily dosing [75, 82]. In trials, fosman-

ogepix has been well tolerated, likely due to its fungal-

specific activity, and was only associated with mild

and transient adverse events (most commonly head-

ache). It is primarily cleared by biliary/fecal excretion

[75, 82]. Clinical trials have demonstrated that

fosmanogepix is not associated with worsening renal

function in patients with chronic kidney disease. An

ongoing clinical trial is evaluating its safety in patients

with hepatic dysfunction [83].

Comment

Its novel mechanism of action allows fosmanogepix to

retain potent activity against various resistant Candida

strains, except P. kudriavzevii. Additionally, its high

penetration in organs where other antifungals do not

achieve adequate concentrations, including ocular

tissue and central nervous system, makes fosman-

ogepix a potential treatment option in patients with

intolerance or resistance to standard antifungal treat-

ment. Given its high bioavailability and once-a-day

dosing, fosmanogepix may be an option for step-down

therapy in patients with invasive candidiasis, includ-

ing Candida chorioretinitis or meningitis. Further

studies are needed to evaluate its utility in this

scenario.

Conclusion

Both mucosal and invasive candidiasis can be chal-

lenging to treat in the setting of drug intolerance,

antifungal resistance, drug–drug interactions, or host

immune status. Despite the use of effective antifungal

agents, candidemia continues to be associated with

significant mortality. Fortunately, several novel anti-

fungal agents are being studied and approved for

clinical use. As we obtain additional clinical data in

the future, we anticipate gaining a deeper understand-

ing of the role of these medications in the management

of candidiasis.
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