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Abstract Candida auris has been reported world-

wide, but only in December 2020, the first strain from

a COVID-19 patient in Brazil was isolated. Here, we

describe the genome sequence of this susceptible C.

auris strain and performed variant analysis of the

genetic relatedness with strains from other geographic

localities.
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Candida auris is an emerging multidrug-resistant

pathogen able to cause invasive infection outbreaks in

tertiary care hospitals worldwide. C. auris has the

unique ability to persistently colonize the skin and

medical surfaces, making it easily transmissible [1, 2].

Currently, 4 major populations have been described,

representing geographic linked clades: South East

Asia (clade I), Eastern Asia (clade II), Southern Africa

(clade III), South America (clade IV), and a minor fifth

lineage (clade V) represented by a single Iranian

isolate [2, 3].

Candida auris was first reported from Brazil in

December 2020 where it was isolated from a COVID-

19 patient hospitalized in a reference center at

Salvador city. Microsatellite typing showed that the

strain (L1537/2020) from the index patient (case one

in [4]) is part of the South Asia clade (clade I).

Remarkably, the strain was susceptible for all anti-

fungal classes [4]. Whole genome sequencing (WGS)

was performed on strain L1537/2020 to enable in-

depth analysis of its genetic relatedness with publicly

available clade I strains. Additionally, WGS of this

strain provides genome data of an antifungal suscep-

tible C. auris strain [4, 5].

The strain was cultured in 10 ml peptone glucose

broth (LP0040; Oxoid, Basingstoke, UK) and incu-

bated (125 rpm) at 25 �C for 3 days. High-quality

genomic DNA was extracted as described before [6].

However, the final step with chloroform/isoamyl-

alcohol was replaced by column-based purification

using the Fungi/Yeast Genomic DNA kit (catalog nr.

27300; Norgen Biotek, Thorold, ON, Canada) and

DNA was eluted in 50 ll molecular grade 1 9 IDTE

buffer (pH 8.0; IDT, Coralville, IA, USA).

Sequencing was performed on the Oxford Nano-

pore MinION platform (Oxford Nanopore Technolo-

gies, Oxfordshire, UK) using the ligation sequencing

kit (SQK-LSK109) and native barcoding kit (EXP-

NBD104). The sample was sequenced on the MK1B

MinION (MIN-101B) device with a FLO-MIN106

(SpotON R9.4) flowcell using MinKNOWN release

20.10.3.

Raw nanopore reads were basecalled using Guppy

(v4.4.1 ? 1c81d623j; ONT) with the parameters

--flowcell FLO-MIN106 --kit SQK-LSK109 --bar-

code_kits EXP-NBD104 --device CUDA:0. De novo

123

Mycopathologia (2021) 186:883–887

https://doi.org/10.1007/s11046-021-00593-7(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11046-021-00593-7&amp;domain=pdf
https://doi.org/10.1007/s11046-021-00593-7


A
B

F
ig
.
1

a
H
ea
tm

ap
v
is
u
al
iz
at
io
n
o
f
th
e
p
ai
rw

is
e
S
N
P
-n
u
m
b
er

co
m
p
ar
is
o
n
b
as
ed

o
n
se
q
u
en
ce
s
g
ro
u
p
ed

b
y
th
ei
r
z-
sc
o
re
s
(g
en
er
at
ed

in
R
p
ac
k
ag
e,
h
tt
p
s:
//
tv
p
h
am

.g
it
h
u
b
.i
o
/i
o
n
/)
.

b
IQ

-T
R
E
E
g
en
er
at
ed

m
ax
im

u
m

li
k
el
ih
o
o
d
p
h
y
lo
g
en
et
ic

an
al
y
si
s
u
si
n
g
4
2
0
,1
6
4
S
N
P
s,
ro
o
te
d
w
it
h
st
ra
in

A
R
1
0
9
7
(C

.
a
u
ri
s
cl
ad
e
V
).
N
u
m
b
er
s
ab
o
v
e
b
ra
n
ch
es

re
p
re
se
n
t
b
ra
n
ch

le
n
g
th
s
in
te
rp
re
te
d
as

th
e
n
u
m
b
er
s
o
f
n
u
cl
eo
ti
d
e
su
b
st
it
u
ti
o
n
s
p
er
n
u
cl
eo
ti
d
e
si
te
.T

h
e
h
ea
tm

ap
z-
sc
o
re
s
an
d
th
e
IQ

-T
re
e
b
ra
n
ch

le
n
g
th
s
sh
o
w
th
at
cl
ad
e
I
st
ra
in
s
w
er
e
v
er
y
si
m
il
ar
to

ea
ch

o
th
er
,
h
o
w
ev
er
,
st
ra
in

L
1
5
3
7
/2
0
2
0
h
ad

a
lo
n
g
er

b
ra
n
ch

le
n
g
th

an
d
a
h
ig
h
n
u
m
b
er

o
f
S
N
P
s
(1
8
9
3
–
2
0
8
9
)
co
m
p
ar
ed

to
o
th
er

st
ra
in
s
in

cl
ad
e
I

123

884 Mycopathologia (2021) 186:883–887

https://tvpham.github.io/ion/


genome assembly was performed using Flye v2.8.2-

b1689 (https://github.com/fenderglass/Flye; [7]) with

the parameters --nano-raw\ fastq[ --out-dir\ di-

rectory[ --genome-size 12.5 m.

The assembly resulted in 15 fragments with a total

length of 12,687,478 bp (N50 of 2,134,410 bp; largest

fragment 4,519,230 bp) with a mean coverage of

300X. However, when the 7 smaller contigs (range

490–4970 bp) were omitted, the mean coverage

was 387X. The 8 large contigs (range 27,834–

4,519,230 bp; total length 12,675,277 bp) included

the circular mitochondrial genome (27,834 bp; 1000X

coverage), the remaining nuclear contigs had a

coverage of * 300X.

Variant calling was performed using a subset of 47

published genomes representing the five C. auris

clades, including a benchmark set for clade I, (Fig. 1;

[3, 8–12]). Sequencing reads were aligned with

reference genome B8441 (NCBI accession

SRS1558430) using minimap2 for nanopore and bwa

v0.7.17-r1188 for Illumina data [13, 14]. Sam-files

were sorted and indexed using samtools v1.9 [15]. For

nanopore data, longshot was performed on the bam-

file to obtain variants of the reference genome [16].

Indels and SNPs with a quality\ 20 were removed

using vcftools v0.1.15 [17]. For Illumina data, picard

(http://broadinstitute.github.io/picard/) was per-

formed to mark duplicates. Variants were then iden-

tified with gatk HaplotypeCaller, and SNPs were

selected with gatk HaplotypeCaller and filtered with

the settings ‘‘QD\ 2.0||MQ\ 40.0||FS[ 60.0||SOR

[ 3.0||MQRankSum\- 12.5 ||ReadPosRankSum

\- 8.0’’ [18]. SNP-files were merged using vcf-

merge to produce a fasta-alignment file for all samples

with R-package SNPRelate [19]. Different nucleotides

within the fasta-alignment file were counted by pair-

wise SNP-number comparison (Fig. 1, panel A).

IQ-TREE v1.6.1 was performed to build a maximum-

likelihood tree from the alignment file that was visu-

alized with itol (https://itol.embl.de/) (Fig. 1, panel B;

[20]). As a result, 420,164 SNPs were counted. Strains

in clade I had * 1200–1900 SNPs, while much

higher SNP-counts were observed for clade II

(* 45 K), clade III (* 65 K), clades IV and V

(* 170 K). Pairwise SNP-number comparison

showed that all clade I strains were very much similar

with only 230–1011 nucleotide differences, except for

strain L1537/2020 that had 1893–2089 SNPs com-

pared to the other clade I strains (Fig. 1).

Although strain L1537/2020 belongs to clade I, it is

distantly related to all other representatives of that

clade, and in contrast it is susceptible to all common

antifungals (Fig. 1; [4]). Several mutations are

reported to play a role in C. auris’ antifungal

resistance, viz. CIS2 (A27T), ERG3 (W182*,

L207I), ERG11 (Y132F, K143R), FKS1 (S639P),

MEC3 (A272V), PEA2 (D367V), TAC1B (FS191S,

F214S, R495G, S611P), and UPC2 (M365)

[3, 9, 21–23]. None of these mutations are present in

the genome of L1537/2020.

Nearly all publicly available C. auris genome data

was generated by short-read Illumina sequencing

[3, 9, 11, 12]. Nonetheless, the relative distant relation

of the nanopore-based genome of strain L1537/2020 to

other Illumina-sequenced clade I strains cannot be

explained by the differences in sequencing technolo-

gies. The nanopore flowcell, chemistry and basecall-

ing software used here approaches an accuracy

of[ 98%. This means that a SNP precision of[
99.9% can be achieved in the case of 50X genome

coverage [24]. With the 300X coverage for L1537/

2020 it is unlikely that an erroneous mutation was

introduced in the assembly. Hence, further studies are

needed to investigate the epidemiological and biolog-

ical impact of the phenotypic and genotypic differ-

ences in L1537/2020 versus its multi-drug resistant

siblings within clade I.
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