
Multidimensional Systems and Signal Processing (2022) 33:527–559
https://doi.org/10.1007/s11045-021-00807-7

Enhancement of light field disparity maps by reducing the
silhouette effect and plane noise

Rui M. Lourenco1,3 · Luis M. N. Tavora2 · Pedro A. A. Assuncao1,2 ·
Lucas A. Thomaz1,2 · Rui Fonseca-Pinto1,2 · Sergio M. M. Faria1,2

Received: 21 June 2021 / Revised: 18 October 2021 / Accepted: 25 October 2021 /
Published online: 1 January 2022
© The Author(s) 2021

Abstract
During the last decade, there has been an increasing number of applications dealing with
multidimensional visual information, either for 3D object representation or feature extraction
purposes. In this context, recent advances in light field technology, have been driving research
efforts in disparity estimationmethods. Among the existing ones, those based on the structure
tensor have emerged as very promising to estimate disparity maps from Epipolar Plane
Images. However, this approach is known to have two intrinsic limitations: (i) silhouette
enlargement and (ii) irregularity of surface normal maps as computed from the estimated
disparity. To address these problems, thisworkproposes a newmethod for improvingdisparity
maps obtained from the structure-tensor approach by enhancing the silhouette and reducing
the noise of planar surfaces in light fields. An edge-based approach is initially used for
silhouette improvement through refinement of the estimated disparity values around object
edges. Then, a plane detection algorithm, based on a seed growth strategy, is used to estimate
planar regions, which in turn are used to guide correction of erroneous disparity values
detected in object boundaries. The proposed algorithm shows an average improvement of
98.3% in terms of median angle error for plane surfaces, when compared to regular structure-
tensor-basedmethods, outperforming state-of-the-artmethods. The proposed framework also
presents very competitive results, in terms of mean square error between disparity maps and
their ground truth, when compared with their counterparts.
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1 Introduction

While conventional video cameras only capture the light intensity, light field (LF) cameras
are able to capture not only the intensity of light emanating from a scene, but also the direction
of the light rays traveling in space towards the sensor. Therefore, with a single acquisition it is
possible to capture rich scenic information, which can be used to render images with different
focal planes or multiple points of view (Levoy and Hanrahan 1996). LF acquisition relies on
the plenoptic principles defined by Adelson and Bergen (1991), as a plenoptic function that
fully characterises the radiance information for every point in space and time and arriving
from every direction. Ren Ng further cemented LF photography as a valuable solution for
acquiring depth maps by designing a hand-held plenoptic camera, which greatly contributed
to advance methods of computational photography (Ng 2006).

LFs may be obtained using single-tier lenslet LF cameras, i.e., with narrow baseline, such
as those provided by LytroTM and RaytrixTM or a high-density camera array (HDCA), i.e.,
with a wider baseline. Examples of these cameras are shown in Fig. 1. The versatility of LF
technology enables many types of applications that require refocusing or 3D scenic features
such as computer vision in industry, 3D television (Arai et al. 2013), medical imaging (de
Faria et al. 2019) and many different applications requiring 3D information, where having
multiple viewpoints of the same scene (views) allows disparity and depth map estimation
(Wu et al. 2017).

In the past, several different disparity estimation methods have been investigated and
described in the literature. Some of the most relevant are based on the so called focus stack,
such as (Tao et al. 2013; Lin et al. 2015; Williem et al. 2018), and on multiview stereo
correspondence (Jeon et al. 2015). More recently, a different approach based on a spinning
parallelogram operator has been proposed by Zhang et al. (2016), while others have been
pursuing learning approaches based on neural networks, such as Shin et al. (2018) and (Zhou
et al. 2018). Neural networks can achieve interesting results, if a large enough amount of
ground truth data is used for training. However, since ground truth light field data is scarce, in
general, it is difficult to obtain convincing generalisation. Additionally, comparison of results
with other methods cannot use a great portion of available data, because it was previously
used for training.

Fig. 1 The Lytro light field camera and a high density camera array (image from Wilburn et al. (2005))
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This paper proposes a complete disparity estimation algorithmic pipeline, capable of
achieving state-of-the-art results. The proposed method is based on the structure tensor
method, originally presented by Bigun (1987). Previous methods for LF disparity estima-
tion based on the structure tensor (Li and Li 2013; Wanner and Goldluecke 2012) suffer
from known limitations, which consist in: (i) the enlargement of object boundaries where
occlusions appear in transitions between distinct depths in the scene—this is known as the
silhouette enlargement effect; (ii) low amplitude local noise affecting planar regions of the
scene—this can be characterised as an irregularity of surface normal maps. This work specifi-
cally addresses these two limitations of structure tensor-basedmethods by proposingmethods
to improve the accuracy of object silhouettes in disparity maps and to reduce the low ampli-
tude local noise in planar regions of depth maps. This is a novel unified framework capable
of minimising the inaccuracies of LF estimated disparity, thus improving the quality of the
resulting depth maps. The result is a method that is competitive with the state of the art in
terms of MSE but superior in terms of the regularity of surface normals in planar regions,
with the median angle error for those regions being improved up to 98.6%.

The remainder of this article is structured as follows: in Sect. 3, the structure tensormethod
is presented and the two main limitations of the method (discussed above) are characterised.
In Sect. 4, the proposed algorithmic pipeline is presented along with its specific modules.
Section 5, presents the results and discusses them in the light of the current state-of-the-art,
and, finally, Sect. 6 draws the main conclusions and final remarks.

2 Background on disparity estimation

In a stereo image acquisition setup, the distance of an object to the camera (i.e., the depth)
is inversely proportional to the difference between the position of the pixels representing
the object in each image (i.e., disparity). Thus, the main problem in traditional stereo-based
disparity estimation algorithms is to find accurate and reliable correspondences between the
pixels in both images.

The concept of Epipolar Plane Images (EPI)was described byBolles et al. (1987), stacking
horizontal lines of each view of a sequence of images acquired with a moving camera on a
straight rail. These images are formed by uniform stripes whose slope is proportional to the
depth of the points included in those stripes. To obtain EPI images it is necessary to capture
different views of the same scene, with small displacement between adjacent views, as shown
in Fig. 2 for a matrix of views taken from a light field. A line or column of the view matrix is
equivalent to the temporal sequence of images obtained by Bolles et al. (1987) with a camera
moving in a straight rail.

This characteristic of EPI images reduces the problem of disparity estimation from the
difficult case of matching interest points to the simpler problem of estimating the orienta-
tion of linearly symmetric structures in an image, which is potentially less complex from a
computational point of view.

Due to their acquisition geometry, light fields typically show very low displacement
between the same points in adjacent views, thus exploiting the EPIs is an efficient approach to
estimate disparity. Mathematically, EPIs are equivalent to a cut of the 4D plenoptic function,
where corresponding angular (s, t) and position (x, y) variables are fixed. For example, in
Fig. 2b the horizontal EPI is obtained by fixing t = 3 and y = 254, and varying the x and s
dimensions.
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(a)

(b)

Fig. 2 Light field cotton image from Johannsen et al. (2017)

2.1 Disparity from light fields

Estimating disparity from Light Fields has been an important focus of study in the past
decade. Tao et al. (2013) achieved a good disparity estimation by combining defocus and
correspondence cues and then propagating the results using Markov Random Fields. How-
ever, objects far away from the camera and pixels near occlusion boundaries are prone to
error. In Lin et al. 2015, the same principles of combining depth from defocus with stereo
methods are associated with an analysis by synthesis method that ensures data consistency.
Nonetheless, this method does not achieve angle consistency, producing a relatively large
median angle error. In Williem et al. (2018), the problem of normal map regularisation is
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addressed directly by adding a novel optimisation step to the initial estimation introduced
by Tao et al., achieving disparity maps that produce smooth surface normal maps. Yet, the
optimisation approach still allows some normal map regularity errors in planar regions which
can be addressed by the proposed method.

While these methods all focus on similar defocus and correspondence cues, other methods
have been proposed. In Zhang et al. (2016), the orientation of lines in EPIs is detected using a
spinning parallelogram operator by choosing the rotation angle that maximises the difference
between a weighted sum of the texture of the pixels on either side of a parallelogram centred
on a given pixel. This approach achieves good results in terms of MSE, especially near
occlusion regions, but normal maps generated from the estimated disparity are less than
ideal. Schilling et al. (2018) achieves excellent results by using a simple method based on
Ransac line-fittings of the zero-crossings of the second order derivative of the EPIs to initialise
a local optimisation method that directly enforces occlusion constraints. This method proves
to be one of the best non-supervisedmethods at achieving good disparity in occlusion regions,
however, it falls behind (Williem et al. 2018) when it comes to the accuracy of normal maps
produced from the resulting disparity estimation.

Learning based methods have seen a greater focus in recent years. In Shin et al. (2018),
LF specific data-augmentation techniques are used to train a neural network capable of fast
disparity estimation. This technique achieves better results than most non-learning-based
algorithms. However, it shows some limitations, as new training of the network is often nec-
essary for different light fields. In Tsai et al. (2020), an attention-based network is proposed.
By taking advantage of the symmetries and structural repetitions in the 4D LF, this method
achieves the best results in the state-of-the-art in terms of badpix and mean squared error.

While learning based methods appear to be a viable alternative, it is still worthwhile to
explore other options due to the opaque nature of such algorithms. Furthermore, neither of
these algorithms prove more accurate than traditional methods when it comes to the accuracy
of the surface normals obtained from the estimated disparity maps.

3 Background on the structure tensor method

The structure tensor was first used for disparity estimation in LF by Wanner and Goldluecke
(2012). While the results achieved by this early paper do not stand up to the current state-
of-the-art, the structure tensor is extremely fast, and unlike most other methods for initial
estimation, most of its errors occur in a predictable manner and thus can be corrected explic-
itly. This section first presents an introduction on the technical concepts of the structure
tensor, and then goes in depth into these predictable errors: Silhouette Enlargement and low
amplitude local noise.

3.1 Technical concepts

The structure tensor was proposed by Bigun (1987) as a method for estimating the orientation
of linear symmetry in images. Applying the tensor to overlappingwindows of an EPI centered
around each pixel is, thus, a good way of estimating the orientation of the linearly symmetric
structures in the EPI and thus obtain an estimation of the disparity of the points represented in
the EPI. For an horizontal EPI I (y)

h (s, x) the structure tensor computed for each pixel T(x, s)
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is represented by a 2×2 matrix such that:

T(x, s) =
[
I 2x ∗ Gσ Ix Is ∗ Gσ

Ix Is ∗ Gσ I 2s ∗ Gσ

]
=

[
Jxx Jxs
Jxs Jss

]
, (1)

where Ix = ∂ I
∂x , Is = ∂ I

∂s , Gσ represents a Gaussian kernel with scale σ , and ∗ represents the
convolution operator.

The structure tensor has two orthogonal eigenvectors that indicate the direction of lin-
ear symmetry, as demonstrated by Bigun (1987). The eigenvalues relating to each of the
eigenvectors can be calculated by solving

|T(x, s) − λI2| = 0, (2)

where λ is an eigenvalue, I2 is a 2× 2 identity matrix and | · | symbolises the determinant of
a matrix. This results in the second degree equation:

λ2 − (Jxx + Jss)λ + (Jxx Jss − J 2xs) = 0 ⇔ (3)

⇔λ = 1

2

(
Jss + Jxx ±

√
(Jss − Jxx )2 + 4J 2xs

)
. (4)

From the definition of eigenvector, any eigenvector e = (e0, e1) of T(x, s) will respect the
following:

(T(x, s) − λI2)e = 0, (5)

by substituting the previously calculated eigenvalues and solving the linear system of equa-
tions one can calculate the relation between the coordinates of the eigenvectors:

⇔ e0 = Jss − Jxx ± √
(Jss − Jxx )2 + 4J 2xs
2Jxs

e1. (6)

As the direction of linear symmetry corresponds to the orientation of EPI structures, one of
the eigenvectors will be co-linear with the lines in the EPI, while the other will be orthogonal.
With the disparity, d at the point (x, s) being given by e1

e0
of the co-linear eigenvector:

d = Jss − Jxx + √
(Jss − Jxx )2 + 4J 2xs
2Jxs

. (7)

This calculation allows for an expedited algorithm as the analytical computation of the
direction of the eigenvector ismuch less computationally expensive than automatic numerical
algorithms for calculating the eigenvectors of any matrix.

Furthermore, Bigun also describes a coherence measure for the structure tensor. The
coherence is a value bounded between 0 and 1 that measures the linear symmetry of each
patch of an image. In this way, a low coherence implies low linear symmetry, and therefore a
less reliable direction and consequently disparity value. A reliability metric for the disparity
can thus be calculated from the structure tensor, as given by Bigun:

r = (Jss − Jxx )2 + 4J 2xs
(Jxx + Jss)2

. (8)

Despite the good performance achieved by the structure tensor-based methods to estimate
disparity maps (Wanner and Goldluecke 2012; Li and Li 2013), these algorithms often fail
to accurately represent the objects’ silhouettes and planar regions, as described in Sects. 3.2
and 3.3, respectively.
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3.2 Silhouette enlargement

Silhouette enlargement is one of the most noticeable artefacts created by disparity estimation
methods using the structure tensor. This effect mostly affects the occlusion regions of the
light field, where objects in a given scene, captured from a certain viewpoint, occlude other
objects further away from the camera. The foreground object is an occluding object while
the object in the background is an occluded object. The region located around the boundary
between an occluding object and the occluded one is defined as an occlusion region.

In the EPI representation of a light field, an occlusion region is a region containing a
single edge with a slope that is inversely proportional to the disparity of the occluding object.
Figure 3 shows a cropped EPI from the Cotton light field, from the HCI dataset presented
by Johannsen et al. (2017), and a zoomed 9 × 9 detail of an occlusion region. Two surfaces
(surface A and surface B) are represented in any occlusion region. Thewhite arrow represents
the direction of linear symmetry calculated for the center pixel of the 9 × 9 window, which
is orthogonal to the occlusion edge.

By definition, the structure tensor T(x, s) includes convolutions with a Gaussian kernel
Gσ , as shown in (1). These convolutions can be understood as calculating T(x0, s0) in the
small window around a pixel where the value of Gσ at (x0, s0) is different than zero, for each
pixel in an EPI. This results in the structure tensor evaluated for a window centered around
(x0, s0) being assigned to the center pixel itself.

In an occlusion region, the small window will be similar to Fig. 3. Assuming surface A
is occluding surface B, the pixel (x0, s0), corresponding to the central pixel of the window,
is a part of the occluded object. Nevertheless, this pixel is attributed a tensor T(x0, s0) that
indicates the linear symmetry of the occlusion window, where the only edge belongs to the
occluding surface A. Therefore, the disparity d of the occluding object, estimated from the
tensorT(x0, s0) using (7), is incorrectly attributed to the central pixel (x0, s0), which belongs
to the occluded object.

Considering the disparity map for any view of the light field, this results in an enlargement
of the occluding objects, as their disparity is spread into the surrounding occluded regions.
This problem is exacerbated by the smoothing step necessary to obtain accurate derivative
information from a discrete image. It can be observed in Fig. 4 where the difference between
the estimateddisparitymap (top left) and the ground truth (top right) shows that the foreground
object is larger in the former than in the latter.

Some methods in the literature try to mitigate the silhouette enlargement issue. In Li and
Li (2013), a penalty measure for the reliability r of the structure tensor was proposed as an
attempt to overcome this type of artifact. However, it proved to be highly sensitive to texture
in the background regions of the neighboring object edges, providing only a minimal penalty
when the algorithm fails in regions of uniform texture. In Lourenco et al. (2018), the authors
of this paper proposed an edge detection based method to detect erroneous areas and inpaint
them with values from the nearest background region. Despite achieving good results, the
inpainting method presents some limitations as it is based only on the nearest pixels of the
background region. To overcome this issue, a new method is proposed to more accurately
correct these erroneous regions.

3.3 Low amplitude local noise

The structure tensor does not enforce local smoothness in disparity maps. Therefore, the
error in each adjacent sample is dissociated, resembling low-amplitude noise as can be seen
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Fig. 3 The image shows a detail
from an EPI image from the
cotton light field. The arrow
shows the direction of linear
symmetry calculated with the
structure tensor for the window,
but attributed to point (x0, y0)

in Fig. 5, where the disparity along a single horizontal line in the Cotton light field image is
shown.

When comparing the ground truth disparity (top in Fig. 5) with the disparity estimated
from the structure tensor (bottom in Fig. 5), it is possible to observe some amplitude errors
in the latter, especially in the background region, i.e., the left and right sides where disparity
is small. This mostly corresponds to low amplitude local noise, which mainly affects planar
regions. Therefore the estimated disparity di of pixel i can be defined as the sum between
the actual value d ′

i and a local error εi :

di = d ′
i + εi . (9)

Conversely, if the disparity di is converted to depth zi , then:

zi = z′i + ei , (10)

where z′i is the true depth value and ei refers to the estimation error. Thus, to estimate the
depth gradient of a surface in the horizontal or vertical directions by directly comparing two
adjacent pixels i and i − 1, it results in:

Δzi = zi − zi−1

= (z′i − z′i−1) + (ei − ei−1)

= Δz′i + Δei ,

(11)
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Fig. 4 The difference image between the base disparity estimation and the ground truth shows the enlarged
silhouettes

where Δz′i is the true difference between the depth of both pixels and Δei is the difference
of their errors. It is then clear, that as long as Δei is significant, the estimate Δzi will
be inaccurate. Furthermore, this error will be more significant for smaller Δz′i , so the worst
estimates are obtained for regionswith constant disparity in the chosendirection (e.g., surfaces
parallel to the image plane).

In this framework, a LaplacianMatting optimisation is performed as described in Sect. 4.2,
to efficiently reduce per-pixel disparity error ei . Nevertheless, while it has a smoothing
component that enforces similarity between the disparity of adjacent pixels, it does not
sufficiently enforce similarity in the depth gradient Δz′i .

A normal map N : R2 → R
3 is a map that for each pixel of a given image provides the

normal vector of the surface at the pixel. It is possible to calculate a normal map using an
estimated depth map and camera parameters. These maps can be useful for 3D modeling
and provide a good visualisation of the three dimensional structure of a scene. Nevertheless,
normal maps obtained from the optimised disparity map are still highly inaccurate, as shown
in Fig. 6.1 As expected from (11), the noise is mostly visible in the background surface,
which is parallel to the camera plane. It is possible to observe that, in the regions where
the ground truth normal map (c) has constant values, the normal vectors obtained from the
structure tensor estimation appear as random (a).

1 This figure is better observed in color. For viewing purposes, the normal vector coordinates are normalised
between zero and one and displayed as an RGB image such that the normal vector n = (0, 0, −1)T ( that
refers to a surface parallel to the image plane) is represented by the RGB color #7F7F00, i.e., brown-green.
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Fig. 5 Disparity along one horizontal line (Cotton dataset). Structure tensor disparity estimation (bottom).
Ground truth disparity (top)

Fig. 6 Comparison between a normal map obtained from the structure tensor depth estimation, the matting
optimised disparity estimation and the ground truth disparity

The most common methods to solve this limitation of disparity estimation algorithms are
global optimisation steps, such as graph cuts (Boykov et al. 2001) and belief propagation
(Sun et al. 2003). These methods are mostly focused on reducing the error Δei by assigning
a higher cost as Δei differs from zero. In this way they enforce similarity between neighbors
at the cost of some possible over-smoothing. However, other methods explicitly designed
to enforce regularity of normal maps, such as Strecke et al. (2017), achieve better results
in terms of low-amplitude local noise and on estimated normal maps, but require higher
computational complexity. To overcome low amplitude local noise and create a local map
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Fig. 7 Block diagram of the proposed framework for disparity map estimation

that enables the estimation of coherent three-dimensional structure, a new method based on
plane-fitting is proposed in Sect. 4.3.

4 Proposedmethod

The proposed method for enhanced disparity map (DM) estimation is presented in the pro-
cessing pipeline represented in Fig. 7, which includes the methods specifically devised for
improving the previously described issues, namely the silhouette enlargement and low ampli-
tude local noise.

After estimating disparity using the structure tensor, an object boundary detection algo-
rithm is used to estimate the regions affected by silhouette enlargement. A provisional
correction of this effect is performed, as explained in Sect. 4.1. Then, a matting-based opti-
misation step is applied, as this smoothing operation is required to achieve optimal results.
The description of this method and its output is addressed in Sect. 4.2. Finally, a plane fitting-
based algorithm is applied in order to reduce the effects of local noise based on the orientation
of planar surfaces in a light field image. The estimated orientations of these planar surfaces
are used to correct the erroneous regions found after object boundary detection, as described
in Sect. 4.3.

4.1 Disparity estimation and initial silhouette enhancement

The aim of the method proposed in this section is to find the location of object boundaries in
the central view of the light field, which are used in a provisional correction of the silhouette
enlargement problem described in Sect. 3.2. To achieve this goal, the algorithm follows the
steps described in Fig. 8.

The first step is to convert the light field L(s, t, x, y) into a collection of horizontal
I (y)
h (s, x) and vertical I (x)

h (t, y) EPIs, so that:

I (x)
v (t, y) = L(smid , t, xi , y), (12)

I (y)
h (s, x) = L(s, tmid , x, y j ), (13)

where tmid = round( tmax
2 ) and smid = round( smax

2 ), with tmax and smax being the number
of views in the vertical and horizontal directions, respectively. The remainder of this section
describes the method for the horizontal EPIs I (y)

h (s, x), as the method for the vertical EPIs

I (x)
v (t, y) is equal.
The second step involves estimating a disparity map d(y)(s, x), for each EPI, using the

structure tensor. Reliability maps r (y)(s, x) of these estimations are also calculated.
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Fig. 8 Algorithmic structure of the disparity estimation and silhouette enhancement algorithm

Thirdly, two edge estimation steps are necessary. Edge estimation is applied directly to
I (y)
h (s, x) and to the corresponding disparity map d(y)(s, x). This is further described in
Sect. 4.1.1.

The fourth step consists in the estimation of an object boundarymap from both edgemaps.
This map should include only edges that represent object boundaries, excluding texture-only
edges. The method for estimating this map is detailed in Sect. 4.1.2.

The object edge map has incomplete edges, therefore, the fifth step intends to improve
the object boundary map by implementing an edge-connection algorithm. This is further
explained in Sect. 4.1.3.

Finally, the sixth step is a provisional correction of the disparitymap applied by comparing
the improved object edge map with edges in the disparity map. This is detailed in Sect. 4.1.4.

4.1.1 Edge detection

The process of locating the object boundaries requires edge detection on both the horizontal
EPI (I (y)

h (s, x)) and the disparity map (d(y)(s, x)). Since I (y)
h (s, x), is a gray scale image,

common edge detection algorithms perform adequately, therefore the Canny edge detector
was used to obtain a binary edge map e(y)

EP I (s, x). When it is applied to I (y)
h (s, x) (Fig. 9

(Top)) the result is an edge map, as can be seen in Fig. 9 (Bottom).
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Fig. 9 EPI representation (top) and result of the Canny edge detector (bottom)

For the disparity map d(y)(s, x), gradient-based methods like the Canny edge detector,
provide false-positive results in surfaces approximately orthogonal to the camera plane, due
to the presence of high disparity gradient. In this case, the Laplacian ∇2d(y)(s, x) proves to
be a better tool to compute the disparity edge maps of d(y)(s, x), so a binary map e(y)

d (s, x)
is created such that

e(y)
d (s, x) =

{
0 if ∇2d(y)(s, x) ≤ th

1 if ∇2d(y)(s, x) > th
, (14)

where th is a predefined threshold. As the purpose of this method is to correct the disparity
map for the central view, only the central lines of the edge maps e(y)

EP I (s, x) and e(y)
d (s, x)

are necessary, as they correspond to the position of edges in the central view. These lines are
defined as l(y)EP I (x) = e(y)

EP I (smid , x) and l
(y)
d (x) = e(y)

d (smid , x).

4.1.2 Initial object boundary estimation

Not all texture edges represented in l(y)EP I (x) correspond to an object boundary because some
of themmerely describe a change in the colour of a surface. Therefore, these are texture edges
which do not have a matching disparity edge in l(y)d (x). In order to obtain an initial map of

object boundaries minit (x, y), it is necessary to match all edges described in l(y)EP I (x) with

a matching disparity edge in l(y)d (x) and to exclude from minit (x, y) edges without match.

However, as edges in l(y)d (x) do not have the same coordinates as those in l(y)EP I (x), a matching
algorithm is applied. This process is described as shown in pseudo-code in Algorithm 1.

To provide a visual intuition for the algorithm, a schematic representation is depicted in
Fig. 10. The figure shows a schematic of an EPI where four different regions are visible. The
dashed lines refer to texture edges (E1, E2), while the lighter shaded regions refer to same
region in the disparity map, and the outside edges (D1, D2, D3) are the disparity edges. The
point P2 shows the position of E2 in the centre view, while point P ′

2 shows the position in
the centre view of its associated edge in the disparity map. Similarly, P ′

3 shows the position
of the edge D3 in the centre view. The region Δs, between E2 and D2 is the region where
the disparity does not match the texture information. Working out the position of this region
involves starting from an EPI edge (P2) and searching over a region of size a to determine
the position of P′

2.

First, a search region a is defined for all points P2(Px
2 , smid), such that, l(y)EP I (P

x
2 ) = 1:

a = {x : |x − P2| < w}, ∀x ∈ N, (15)

where w is a constant defined with base on the size of the Gaussian kernel Gσ used to
construct Tx,y. Then a disparity edge can be considered as a matching candidate if:

∃ P ′
2 ∈ a | l(y)d (P ′

2) = 1. (16)
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Algorithm 1: Creation of Boundary Map

Function createBoundaryMap(L) is
(h, w) ← size(L);
minit ← zeros(h, w);
for y ← ω to h − ω do

Ih ← getEpi(L, y, tmid);
(d, r) ← disparitEstimation(Ih);
(lE P I , ld ) ← edgeDetection(Ih , d);
md [y, :] ← ld ;
dmap[y, :] ← d;
rmap[y, :] ← r ;
while i < w do

if lE P I [i] then
for j ← i − ω to i + ω do

if ld [ j] then
if j < i then

if d( j − 1) < d(i) then
minit [y, i] ← 1;

end
i ← i + 1;

else
if d( j + 1) < d(i) then

minit [y, i] ← 1;
end
i ← j ;

end
end

end
else

i ← i + 1;
end

end
end

return minit ,md ,dmap ,rmap

Fig. 10 Silhouette enlargement: the original EPI lines (E1; E2) and the corresponding lines on the disparity
map (D1; D2)

Matching candidates are only considered valid object boundaries if they respect the following
disparity constraint:

d(y)
(
smid , P

′
2 + (P2 − P ′

2)

|P2 − P ′
2|

)
< d(y)(smid , P2), (17)
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Fig. 11 Edge map (left) and resulting object boundary map (right)

which imposes that the disparity on the occluding regions is larger than the disparity
in the occluded region. If this constraint is satisfied, then the map of object boundaries
minit (P2, y j ) = 1, in all other cases minit (P2, y j ) = 0.

Figure 11 compares the edge map (on the left), obtained from concatenating all texture
edge lines l(y)EP I (x) with 1 < j < jmax with the object boundary map minit (x, y) (on the
right), obtained after excluding texture-only edges.

Additionally, to be used in the provisional improvement step, a map of the edges of the
center view disparity, md(x, y) is created by concatenating all disparity edge lines l(y)d (x)
with 1 < j < jmax .

4.1.3 Boundary map improvement

Due to limitations of both edge detectors, minit (x, y) still has broken edge segments. This
leads to visible artifacts in the disparity,when such edgemap is used to enhance the silhouettes
of objects in disparity maps, as can be seen in Fig. 12.

In order to create the final disparity map m(x, y) with more accurate object boundaries,
the following methodology was devised:

1. Very short edges are eliminated (i.e., shorter than 4 pixels);
2. The edges of the centre view of the light field L(smid , tmid , x, y) are computed using the

Canny detector and compared to minit (x, y);
3. When an edge in minit (x, y) is coincident with an edge in the centre view, all connected

points in the texture edge map are included in minit (x, y);
4. Finally, the remaining broken edges segments are reconstructed.

To reconstruct these broken edges, the spatial position of the end points for each line is
determined and the euclidean distance between all pairs of endpoints is stored in a symmetric
matrix M. Additionally, a directional estimate α is assigned to each endpoint, based on the
four closest points.

The objective is to draw a straight line, using the Bresenham line-drawing algorithm,
connecting endpoints that should constitute a single, complete boundary of an object. The
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Fig. 12 Silhouette enhancement artifacts on the disparity map (Cotton image)

Fig. 13 Example of a broken edge with connected endpoints

challenge lies in estimating which endpoint pairs should be connected. Since closer uncon-
nected endpoints are more likely to belong to the same edge, an iterative algorithm is used to
choose the unconnected endpoint pair with the smallest euclidean distance, which is equiv-
alent to find the smallest values in M (excluding its principal diagonal). For each endpoint
pair, a decision must be made before connecting a pair with a straight line.

As shown in Fig. 13, the black dashed lines represent the estimated direction associated
to the endpoint (angles α and α′ with the horizontal) and the colored dashed line represents
the straight line connecting the endpoints (angle β). If the difference between α and α′ is
larger than 90o the endpoint pair is ignored and no line is drawn. Similarly, if either |α − β|
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Fig. 14 Edge reconstruction detail on the cotton image

or |α′ − β| are larger than a predefined threshold (50o is used), the endpoints are considered
unconnected, because this indicates that the respective directions are significantly different
from the straight line that would be drawn by the Bresenham algorithm. In all other cases
a connecting line is drawn in m(x, y) between the two endpoints, connecting them through
the colored dashed line. After reconstructing all possible broken edges throughout the entire
disparity map, an improved map with more accurate object boundaries is obtained.

The resulting m(x, y) is depicted in Fig. 14, where a detailed zoom shows the difference
before and after edge improvement for the Cotton light field. As can be seen, there is an
accurate reconstruction of incomplete edges around the shoulder area of the statue. As real
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object boundaries constitute closed forms and do not include discontinuities, it is valid to
consider that any discontinuity in m(x, y) corresponds to some sort of error in the edge
detection process, which is confirmed by the results presented in Sect. 5.

4.1.4 Provisional correction

Following the previous reconstruction process, the spatial position of the object boundary
edges inm(x, y) is compared to the corresponding position of the disparity edges inmd (x, y).
The region between these corresponding edges is corrected by using the median of the values
in the background region closest to the matching disparity edge.

As m(x, y j ) contains new edges and excludes others, it is necessary to repeat the process
used to findmatching candidates, defined in Sect. 4.1.2, for the linesm(x, y j ) andmd(x, y j ).
In this case, for every P2, such that m(P2, y j ) = 1, a neighborhood a is defined as in (15).
Then a disparity edge can be considered a matching candidate if:

∃ P ′
2 ∈ a |md(P

′
2, y j ) = 1. (18)

Additionally, the following disparity constraint must hold for any two matching edges:

d

(
P ′
2 + (P ′

2 − P2)

|P ′
2 − P2| , y j

)
< d(P2, y j ), (19)

where d(x, y) is the disparity map obtained by concatenating all lines d(y)(smid , x) with
1 < j < jmax . Like previously discussed, if this constraint is not fulfilled, this would allow
occluded objects to exhibit higher disparities. Therefore, in such case the disparity edge for
x = P ′

2 is discarded. If the constraint is fulfilled, then the edges are considered to match and
the region E is defined:

E =
{

{x : P2 < x ≤ P ′
2}, if P ′

2 ≥ P2
{x : P2 > x ≥ P ′

2}, if P ′
2 < P2

. (20)

After this step, the disparity values to be corrected are defined as the vector d(e, y j ) ∀e ∈ E ,
which contains the disparities of the occluding object, rather than those of the background
region. Thus the corrected disparity map is obtained as,

d(e, y j ) = median(d(b, y j )), (21)

where d(b, y j ) ∀b ∈ B contains only the pixels with reliable disparity values out of the first
Ψ pixels (from the disparity edge position) of the background region:

B = x ∈ {P ′
2, . . . , P

′
2 + (Ψ − 1)} ∩ {x : r(x, y j ) < V}, Ψ ∈ N, (22)

where r(x, y) is the reliability map obtained by concatenating all lines r (y)(smid , x) with
1 < j < jmax and V is a constant chosen via empirical testing.

4.1.5 Analysis of vertical and horizontal disparity estimations

Following the above steps for horizontal and vertical EPIs, two object boundary maps
mhor (x, y) andmver (x, y) are obtained. Similarly, two disparity maps for the central view of
the light field dhor (x, y) and dver (x, y) are obtained, as well as two reliabilitymaps rhor (x, y)
and rver (x, y). To build a single disparity map d f (x, y), for each point (x, y) the disparity
estimation associated with a higher degree of reliability is chosen. The reliability of the
chosen pixels is stored in r f (x, y).
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4.2 Optimisation step

As described in Sect. 3.3, there is a high level of noise in structure tensor based estimations.
Such noise makes it difficult to estimate the orientation of surfaces from the disparity results.
This would pose serious constraints to the plane noise reduction algorithm presented in
Sect. 4.3, therefore an optimisation step is applied by considering a Laplacian-based image
matting correction (Levin et al. 2008). Starting from an initial disparity map estimation d̃,
an optimal solution d is achieved by minimizing the energy function:

J (d) = dT Ld + λ(d − ˜d)T C(d − ˜d), (23)

where the optimised disparity values d and the estimated disparity d̃ are N × 1 vectors. N
represents the number of pixels in each view (i.e. N = Height × Width) and L represents
the so called affinity matrix, whose N × N elements can be understood as a measure of the
affinity between each pixel and the rest of the pixels in the image. Furthermore, λ is a global
weight of the data term determining the strength of the smoothing operation (in Levin et al.
(2008) λ = 5) and C is a diagonal N × N matrix with reliability values from r f (x, y)).

The energy function can be understood as a weighted sum of two terms. An edge-aware
smoothing term (dT Ld), that provides a smoother response to low variance portions of
the image while keeping sharp results in transition areas, and a data term weighted by the
reliability of the structure tensor λ(d − ˜d)T C(d − ˜d)).

While the smoothing optimisation is edge-aware, some over-smoothing of object edges
still occurs. Thus, a mean-shift segmentation is used to separate the image into different
segments based on color similarity, which are optimised separately. It aims to keep different
objects in different segments, in order to avoid over-smoothing of edges. Since themean-shift
segmentation algorithm is not totally accurate, over-smoothing still occurs in some cases.

4.3 Plane noise reduction

As pointed out in Sect. 3.3, structure tensor-based disparitymaps do not enforce local smooth-
ness. In this section, a novel approach based on a seed growing strategy is presented to
minimise this effect for planar regions of the light field.

As shown in the diagram of Fig. 15, the proposed framework starts by changing from
image coordinates to real-world coordinates before dividing the image into a number of
regions, which act as initial seeds. A plane is estimated for each of these seeds and they
grow by including neighboring points close to the estimated plane, in terms of perpendicular
distance. These results are further refined and used to establish a better in-painting option for
the silhouette enhancement framework. Finally, the planes are used to reconstruct the depth
map with more accurate values.

4.3.1 From pixels to scene coordinates

Images captured from a light field camera do not usually reflect an orthographic projection.
This leads to distances not changing linearly across the whole image. Therefore, a surface
that is planar in the real-world, with axis x , y, and z will not be represented by a plane in pixel
coordinates, where m and n give the pixel position in the horizontal and vertical directions,
respectively. Thus, it is necessary to convert the center view of the light field images to scene
coordinates before plane estimation.
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Fig. 15 Structure of the plane
noise reduction algorithm

Conversion from disparity to depth depends on the scene and camera geometry. This work
uses the same representation as the evaluation toolkit for the HCI dataset (Johannsen et al.
2017):

z = d

s · f · b · max(w, h)
+ 1

D
, (24)

where s represents the sensor size, f represents the camera focus distance,w and h represent,
respectively, the width and height of the image, and D represents the focal length. Here,
max(·, ·) represents the larger value between the two entries.

To estimate the (x, y) coordinates for each pixel with coordinates (m, n), the position of
the upper left corner of the image is treated as the origin, with coordinates (0, 0, z0). Then,
the x and y coordinates for each pixel are estimated as:

{
x = 0.5 m·s

w−1 · z
f

y = 0.5 n·s
h−1 · z

f

. (25)

Thus, each pixel (m, n) in the image corresponds to a point (x, y, z) in three dimensional
euclidean space, representing the relative metric position of the object represented in the
pixel. Having completed this necessary step, it is now possible to detect planes using a seed
growing approach.
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4.3.2 Initial plane estimation

After obtaining the position of each pixel in real-world coordinates, it is possible to divide
this set of positions into seeds sm,n and estimate the plane equation that best describes each
seed. Traditional seed growth methods, such as the one described by Jin et al. (2014), assume
a locally smooth disparity and, therefore, utilise small windows of 3× 3 samples. However,
as previously mentioned, the presence of noise in the depth maps obtained from a structure
tensor-based estimation means a sufficiently large amount of points is necessary to obtain
a good plane estimate. To this end, all possible overlapping regions with size w × w are
considered (w = 20 was adopted in the scope of this work).

A plane estimate, of the form z = Ax + By + C , is found for each seed using RANSAC
(Fischler and Bolles 1981) algorithm. The algorithm randomly chooses three points and
calculates the plane formed by them. The euclidean distance of all other points to this plane
is used as the error metric. Points with a distance of less than ε are considered inliers. The
plane with the most inliers after N iterations is considered an inlier. N and ε are chosen
empirically as is common practice with the algorithm.

However, not all seeds represent planar surfaces. To ensure the best results and compu-
tational swiftness it is appropriate to rank the fitness of the estimated plane. The number of
inliers performs poorly as a metric in this regard for the reasons stated in Sect. 3.3. Jin et al.
(2014) suggest the variance of the perpendicular distance but once again this fitness metric
provides mixed results. Instead, the fact that seeds with poor fitness show clustered inlier
points, while seeds with high fitness have more scattered inlier points is used.

A closeness metric is here introduced. For each RANSAC inlier point P let there be a set
Ω consisting of all other inlier points Pi in a circular region with a radius of three pixels.
The average distance to each pixel is given by:

χ =
∑

Ω ||P − Pi ||
|Ω| , (26)

where |Ω| represents the cardinality of the set. If there are no pixels in the vicinity, the
average distance χ = 3. The closeness metric χ̄ is then given as the inverse of the mean of
the χ distance, for all inliers.

In this way, seeds with a low closeness value present the best fitness. The order of seed
growth is thus chosen by increasing order of closeness. Seeds with too high closeness are
discarded. This use of inlier closeness to rank the fitness of each seed proved to be a working
solution. Figure 16 shows a map of the non discarded surfaces for the Cotton light field
compared with the map of planar surfaces provided by the dataset. One can see an effective
separation between planar and smooth regions.

4.3.3 Seed growth

Each well fitted seed sm,n must grow until it includes all points in a scene plane. For that
purpose, the seed is represented as a binary image with the same size as a view from the light
field.

A morphological dilation operation (Soille 2004) on this binary image is used to find all
adjacent points to this seed. All adjacent points are considered candidate points that might
belong to the same scenic plane as the seed.

An adapted RANSAC algorithm is used to estimate a plane based on three random can-
didate points. The same threshold used in Sect. 4.3.2 is used to select inliers. The plane
estimated from the three random candidates is compared with the current estimate for the
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Fig. 16 Seed selection using the closeness metric

Algorithm 2: Adapted RANSAC Algorithm

Function adaptad_ransac(candidate_points, plane,N) is
max_inliers = 0;
inlier_thr = 0.001;
orientation_thr = 0.98;
distance_thr = 0.01;
while max_<epiWidth do

random_points = get_random_points(candidate_points);
curr_plane = get_plane(random_points);
ori_difference = calc_ori_difference(curr_plane,plane);
plane_distance = calc_plane_distance(curr_plane,plane);
inlier_points = calc_inliers(candidate_points,inlier_thr);
n_inliers = length(inlier_points);
if n_inliers > max_inliers then

if plane_orientation > orientation_thr then
if plane_distance < distance_thr then

inlier_map = calc_inlier_map(inlier_points);
max_plane = curr_plane;

end
end

end
end
if max_inliers == 0 then

coherence = LARGE_NUMBER;
else

coherence = calc_cloherence(inlier_map);
end

return (inlier_map, max_plane, coherence)

given plane. Regardless of the number of inliers, a given estimate is only considered if the
planes are considered similar.

To measure similarity between planes two metrics are used: the dot product of the planes
measures similarity in orientation and the distance between parallel planes. To measure the
distance between planes with similar orientation the following formula is used:

plane distance = |D1 − D2|
A2
1 + B2

1 + C2
1

, (27)
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Algorithm 3: Seed Growth Algorithm

Function seed_growth(seed) is
plane_binary = plane_binary_from_seed(seed);
curr_plane = plane_from_seed(seed);
iter = 0;
stop = false;
while stop �= true do

candidate_points = xor(dilate(plane_binary),plane_binary);
N = 0.2∗ sum(candidate_points);
chosen_points = adapted_ransac(candidate_points,curr_plane,N);
error = distance_to_plane(chosen_points,curr_plane);
percentile= percentile(error,99);
chosen_points = delete_from_map(chosen_points,error > percentile);
total_error = distance_to_plane(plane_binary,curr_plane) ;
error_difference = mean(error) - mean(total_error);
if error_difference > THRESHOLD then

seed_binary = seed_binary + chosen_points;
if mod(iter,10) == 0 then

N = 0.2 * sum(plane_binary);
(plane_binary,curr_plane,coherence) = adapted_ransac(plane_binary,curr_plane,N);
error = distance_to_plane(plane_binary,curr_plane);
percentile = percentile(error,99);
plane_binary = delete_from_map(plane_binary,error > percentile);
if coherence > COHERENCE_THRESHOLD then

stop = 1;
end

end
else

stop = true ;
end
iter = iter + 1;

end
N = 0.2 * sum(plane_binary);
(plane, final_plane,closeness) = ransac(plane_binary,N);

return (final_plane,plane,closeness)

where the current global plane estimate is in the form A1x+B1y+C1z = D1 and the current
ransac plane estimate is given by A2x + B2y + C2z = D2.

The inliers of the estimate with the most inliers that is sufficiently similar to the current
plane are selected as belonging to the same plane. A pseudo-code version of this adapted
ransac algorithm is described in Algorithm 2.

To improve the robustness of the algorithm, the distance between the selected candidate
points and the current plane is calculated. Those points with a distance above the ninety ninth
percentile are not considered as part of the scene plane.

The process is repeated iteratively. Every 10 iterations the same adapted RANSAC algo-
rithm is run for all points currently considered as belonging to the plane, with the obtained
plane estimate being considered as the new current estimate. Just as before, points with a
distance to the estimated plane above the ninety ninth percentile are excluded from the plane.

The above exclusion process is robust against noise, however, might allow the growth of
seeds in nearly planar smooth surfaces. To address that a new measure is calculated based
on the inlier points obtained from the RANSAC estimate.

Planar regions will have outlier points spread evenly across the region of the seed. Non-
planar regions will have outliers concentrated where the smooth region becomes distant from
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the estimated plane. To distinguish between these two situations, for every outlier point,j, the
geodesic distance, in pixels, to the closest inlier g j is calculated. Themetric is then considered
as,

coherence =
∑
j

(g j )

J
, (28)

where J is the total number of outliers.
The plane is considered grown when the distance to a plane of the current points is

sufficiently larger than the average distance to the planes for all points. The process proves
insensitive to this choice of threshold, so long as it isn’t excessively small, as the previous
steps ensure the elimination of points that differ too much from the initial plane estimate.
Choosing an excessively large threshold simply leads to larger computation times for similar
results.

To further guarantee robustness, a final RANSAC is run on all current points of the plane.
Only inliers below the ninetieth percentile in terms of distance to the estimated plane are con-
sidered part of the final grown plane. The coherence metric is re-calcualted for this RANSAC
estimate. The entire Seed Growth algorithm is described in pseudo code in Algorithm 3.

4.3.4 Merging planes

Seed growth might be halted prematurely due to excessive noise or due to random chance
in the RANSAC algorithm. Similarly, the same surface might be disconnected in the image
due to occlusions. In both circumstances it’s beneficial to the final result to find and merge
planes that are similar so that the final result shows a plane with the exact same direction.

In order to perform this merging, we iteratively compare all planes with each other con-
sidering the same criteria used in the Adapted RANSAC algorithm described in Algorithm 2
with similar thresholds.Whenever two planes are considered similar, the plane area is merged
by us of a logical ’or’ operation on the binary map and RANSAC is run on all points to find
a new estimate that better fits all points.

4.3.5 Filling holes in fully grown seeds

Since the method requires accurate border delineation, the thresholds k and kp are set in such
way that the seed growth becomes highly sensitive to noise. This leads to the seeds having
an incomplete description of the scene plane, which areas coincide with those where the
initial depth map has a larger error. Therefore, reconstructing these incomplete areas should
significantly improve the impact of the algorithm on depth map quality.

In this context, a map M is created associating each pixel of the image with the index i
of a plane s′

i . This map is binarised and morphological operations are used to create binary
images of the position of each holes in this map. To ensure that no important details are
erased from the improved depth map, only holes occupying an area inferior to a predefined
number of pixels are included in the binary map of the region described by the seed. This
predefined value can be easily adjusted for different light fields to ensure the best possible
results, nevertheless the threshold has been kept at 400 (the area in pixels of a 20× 20 pixel
window) for all results presented in this paper.

As can be seen in Fig. 17, for the map M before and after the hole filling process, the
binary map on the left contains holes where some noise exist in the original depth map, but
some of these are fixed in the final map (on the right).
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Fig. 17 Map of the different planar regions estimated for the Dino light field, before and after hole filling
(black pixels represent regions identified as non-planar)

4.3.6 Silhouette improvement

In Sect. 4.1, two binarymaps representing the boundaries of object silhouettes in the disparity
map and in the central view of the light field image were generated. Due to failures in the
provisional silhouette enlargement correction method presented in Sect. 4.1.4 and the over-
smoothing effect of the matting-based optimisation presented in Sect. 4.2, the boundaries of
fully grown seeds do not accurately match the silhouette map of the image.

To overcome such issues, a new approach is proposed. Firstly, a map A with the size of
the central view of the light field image is created, providing an index for the corresponding
seed, for each pixel of the original disparity map. The value of A is set to zero for pixels
where no corresponding seed was estimated.

Secondly, for every point where the object boundary mapmhoriz(x, y) = 1, the horizontal
neighbourhood of the corresponding disparity edge is checked for a seed in A, a search
distance must be defined (in this case 10 pixels). If a seed is found, the area between the
first position of that seed and the object boundary edge is considered part of the seed, if it
was not previously considered part of another seed. This procedure is repeated in the vertical
direction using the respective object boundary map mvert (x, y).

The improvement in the reconstructed disparity map can be observed in Fig. 18, after the
silhouette improvement for the Cotton light field. This image shows the difference between
the ground truth and the disparity map (0 being black and values above 0.7 in white). It is
also possible to notice a significant difference in the accuracy of the border of the detected
plane, especially on the right of the image, in the edge of the statue’s head.

4.3.7 Depth map reconstruction

Having attributed a seed with a corresponding estimated plane equation of the form z =
Ax + By +C for each pixel (n,m) of the image, it is now necessary to compute a new z for
each pixel that is coherent with the plane equation. The relationship between a pixel (m, n)

and its (x, y) coordinates is given by (25). Thus, the dependency between z and the pixel
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Fig. 18 Details of the difference to a ground truth before and after silhouette enhancement (normalised between
0 and 0.1)

(n,m) can be obtained from the following system of three equations:

⎧⎪⎪⎨
⎪⎪⎩
z = Ax + By + C

x = ( m
w−1×0.5)s·zi

f

y = ( n
h−1×0.5)s·zi

f

⇔

⎧⎪⎨
⎪⎩
z = Ax + By + c

x = kh(m) · zi
y = kv(n) · zi

⇔

⎧⎪⎨
⎪⎩
z = C

1−Akh(m)−Bk‘v(n)

x = kh(m)C
1−Akh(m)−Bkv(n)

y = kv(n)C
1−Akh(m)−Bkv(n)

. (29)

The system is solved in relation to z, for every pixel of the image using the plane estimated
for the corresponding seed and the parameters of the camera. The values of the input depth
map are updated with the z values given by the system. In order to better compare results with
other algorithms and benchmarks the depth results are converted back to disparity values.
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5 Results and discussion

The experimental results are presented in this section. The algorithm was implemented in
MATLAB® and not optimised for computing efficiency, nevertheless a breakdown of the
running time for each section of the code is presented. Secondly, subjective observation
and objective metrics are used to compare the different stages of the algorithm. Finally, the
algorithm is comparedwith the state-of-the-art, where it proves slightly behind othermethods
in terms of the Mean Square Error metric, but mostly ahead in terms of median angle error
in planar regions. The comparisons are performed using the artificial HCI Training dataset
provided by Johannsen et al. (2017), and the real world Lytro light field Concrete Cubes from
the EPFL dataset (Řeřábek and Ebrahimi 2016).

5.1 Run-time breakdown

AMATLAB® implementation of the algorithmwas run for theTest images of theHCI dataset.
The tests were run on a computer with a Intel® CoreTM i7-10750H CPUwith 2.60GHz clock
speed and 16GB of RAM.

The running time, for each image was, on average, 9:26 min. Of this total time, 25.45%
is related to the Disparity Estimation and Initial Enhancement, described in Sect. 4.1, 10.4%
relates to the Matting Optimisation step, described in Sect. 4.1, and the remaining 64.15%
are related to the Plane Noise Reduction improvement, described in Sect. 4.3.

The run-time of the structure tensor-based disparity estimation, and the optimisation step
depends only on the size of the light-field, but most other steps are reliant on the structure
of the captured scene. The time-complexity of all initial enhancement steps depending on
the number of detected image edges, with most computations occurring only where an edge
is found. Meanwhile, the Plane Noise Reduction algorithm has an increased run-time for
images with several non-contiguous planar regions. This results in a varying run-time for
equal-sized images. For example, the Cotton dataset achieves a run-time of only 2min and
51s, well below the average. As the image represents a single non-planar object (a statue)
over a contiguous planar background, the low run-time is expected.

5.2 Algorithm performance

The different stages of the algorithm provide different but significant benefits to the disparity
maps. Figure 19 shows the difference between the ground truth disparity and the estimated
disparitymap (DM) obtained after various steps of improvement. For better visibility, a darker
colour implies a larger error.

The silhouette enlargement effect is visible for the optimised base DM, shown in the error
images as a large black region. To make the comparison fairer, the structure tensor-based
initial estimation is shown with a matting optimisation. This is compared with the proposed
matting optimised DM and finally with the full proposedmethod, after plane-noise reduction.
The provisional silhouette enhancement, combined with matting optimisation, provides the
biggest improvements to the silhouette of the disparity map. The improvements from plane
noise reduction and the final silhouette improvement, described in Sect. 4.3.6, are focused
on removing small amplitude noise and the over-smoothing of borders. These phenomena
are poorly captured in the depiction of the absolute error.

Table 1 compares theMean Square Error (MSE) obtained from the same disparity maps as
Fig. 19, with the addition of the base DMwith no optimisation. TheMSE results confirm that
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Fig. 19 Absolute difference between the ground truth disparity map and estimated disparity maps

Table 1 MSE ×100 for the disparity estimated at different algorithm stages

Base DM Opt. base DM Matting optimised DM Proposed

Boxes 15.943 9.558 8.386 9.2808

Cotton 4.166 2.206 0.477 0.478

Dino 1.611 1.195 0.562 0.531

Sideboard 2.9240 1.915 1.165 1.217

the initial enhancement is very effective at increasing the accuracy of the disparity estimation,
with the MSE for the matting optimised Cotton DM being 78% lower than the MSE for the
opt. base DM. However, the improvements relating to the final step of the Proposed method
are, once again, poorly captured by the MSE metric. Matting-based optimisation results in
DMs with smooth border boundaries and thus the mitigation of small errors in the locality of
edges resultant from the initial improvement. The final silhouette improvement step trades
this mitigation for sharper borders. DMs obtained from the Proposed method therefore have
a slightly larger MSE which does not accurately reflect a reduction in the accuracy of the
disparity estimation.

InFig. 20, the estimated normalmaps are shown. In this case the unoptimised base structure
tensor initial estimation (Structure Tensor) is compared with the matting optimised disparity
map after provisional silhouette enhancement (Opt-Structure Tensor) and the results of the
proposed method (Proposed) (see the diagram in Fig. 7). One can see that the normal maps
from the initial estimation are entirely irregular, with larger errors in planar surfaces parallel
to the camera plane. This is visible in the background of the Cotton and Sideboard normal
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Fig. 20 Normal Maps obtained with the structure tensor-based estimation with and without the optimisation
step

maps. Thematting-based optimisation does little to correct this problem in these regionswhile
making smoother curved regions much more regular. However, it is possible to observe a
much bigger improvement when using the proposed method. It is, however, important to note
that the proposed algorithm does not accurately detect all planar regions and therefore does
not provide any improvements to some scene planes. This is done to ensure smooth regions
of the image are not misidentified as planes, which would introduce unnecessary error.

These results are backed by Table 2. In this table the median angle error of the surface nor-
mals calculated from the disparity map is shown for planar and non-planar regions. The used
planar region map is the one provided by the dataset. One can see outstanding improvements
for planar regions, with the median angle error falling below 1◦ for all but the Boxes dataset.
Specifically, the estimated surface normal map for the Cotton light field shows a decrease of
about 76◦ in median angle error in planar regions, accounting for a 99.76% reduction in this
metric. Meanwhile, both the lack of a large increase in mean square error and a decrease in
median angle error in non-planar regions shows that the algorithm is not detrimental in other
regions.

The effect of noise on the full algorithm is addressed by using the algorithm for an
image with excessive noise, as is the case of the artificial light field Dots, from the HCI
dataset. The extreme amounts of noise make edge and plane detection untenable, resulting
in a disparity map wholly unaffected by Plane Noise Reduction, but slightly altered by the
initial enhancement process. However, this sensibility to noise does not extend to real-world
images.

Figure 21 shows the disparity and normal maps between different stages for the non-
synthetic light field Concrete Cubes from the EPFL Light-field dataset. As can be seen, the
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Table 2 Median angle error, in degrees, for the surface normals obtained from different algorithm stages

Planar regions Other regions
ST Matting Opt. DM Proposed ST Matting Opt. DM Proposed

Boxes 71.768 40.052 3.180 71.304 52.441 32.8943

Cotton 86.700 76.216 0.183 57.770 28.335 25.9053

Dino 41.152 17.876 0.342 48.545 24.736 17.6381

Sideboard 50.293 23.731 0.484 58.121 38.555 30.2799

Fig. 21 Disparity and Normal Map performance for a non-synthetic light field image

added noise makes it non-trivial to recognise surfaces as planar, nevertheless, some regions
of the image are still recognised as planes and enhanced.

5.3 Comparisons with state-of-the-art

The proposed method is compared, in terms of mean square error (MSE) and median angle
error in planar regions (MAE), to the Multi-Resolution (RM3DE) method by Neri et al.
(2015), the Spinning Parallelogram Operator (SPO) method (Zhang et al. 2016), the OFSY
method (Strecke et al. 2017), a robust optimisation method (OBER), presented by Schilling
et al. (2018), and the attention-based neural network (AttNet) (Tsai et al. 2020).
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Table 3 MSE (×100)
comparison of state-of-the-art
algorithms

Images RM3D SPO OFSY OBER AttNet Prop.

Boxes 7.625 9.107 9.561 4.750 3.842 9.2808

Cotton 0.341 1.313 2.653 0.555 0.059 0.478

Dino 0.571 0.31 0.782 0.336 0.045 0.531

Sideboard 1.071 1.024 2.478 0.941 0.398 1.217

Table 4 MAE in planar regions comparison of state-of-the-art algorithms

Images RM3DE SPO OFSY OBER AttNet Prop.

Boxes 20.842 20.269 3.574 5.402 5.307 3.180

Cotton 30.775 5.427 2.909 12.674 16.293 0.183

Dino 16.465 16.741 1.069 3.062 5.020 0.342

Sideboard 23.330 5.304 4.151 6.219 5.643 0.485

Thosemethodswere selected for comparison, as theRM3DE, SPOandOBERmethods are
the non-neural networkmethods that provide the best results in terms ofMSE in the literature,
while the OFSY method is an optimization method that minimises the angle difference of a
focus stack-based disparity estimation, which achieves the best results in terms of MAE. The
attention-based neural network was chosen as it achieves the best results in the literature.
It is, however, important to mention that the dataset is used in the validation process of the
training of the neural network and, therefore, the results are not fully comparable.

Table 3 shows that the proposed method (Prop) achieves a similar performance in terms
of MSE to both the SPO and RM3DE algorithms. The algorithm proves inferior to the
OBER algorithm for all but the Cotton light field. This can be explained by this light field
consisting of a single large object with well-defined borders, which greatly aids the silhouette
enhancement algorithm, which relies on the quality of the edge detection. Meanwhile, the
robust model introduced in the OBER method provides better performance in terms of MSE
for light fields consisting of smaller objects or containing ill-defined borders. The AttNet
algorithm includes these training images in the supervised learning framework and thus the
MSE values could be misleading as they show an MSE value extremely close to zero for the
Cotton and Dino light fields.

Table 4 shows that the proposed algorithm is superior to all others in terms of MAE in
planar regions, with a relative difference to the next best algorithm (OFSY) reaching 88.3%
for the Sideboard light field.

6 Final remarks

A novel algorithm for disparity estimation was proposed to address known limitations of
the traditional structure-tensor approach, namely silhouette enlargement and low amplitude
local noise. The proposed method is based on edge map comparison as well as plane fitting.
Erroneous regions were detected and corrected by juxtaposing the estimated edges in the
luminance images with those in their respective disparity maps with good accuracy, thus
significantly minimising silhouette enlargement in the resulting disparity maps. A noise
resilient seed growth algorithm managed to accurately estimate the position and orientation
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of planar surfaces in a light field, resulting in a significant reduction of low amplitude local
noise in the resulting disparity maps, enabling the estimation of accurate normal maps.

In the performed experiments, the resulting disparity maps prove competitive in terms
of MSE. In terms of MAE in planar regions, the plane noise reduction algorithm achieves
improvements of up to 99.76% in planar regions, resulting in a sate-of-the-art performance,
beating the next best method by an average of 1.878◦, thus obtaining an average relative
difference of 64.2%.

In conclusion, the proposed algorithm is well suited for light fields with strong edges and
large planar surfaces, and is especially effective in cases where the orientation of surface
normals is important, for instance, when the end-goal is to render an accurate 3D model of
the scene.

Future avenues of research could include other applications where the structure tensor
might prove promising, such as imagequality assessment techniques,whichhave seen success
when using gradient based approaches such as the Difference of Gaussian filter (Pei and Chen
2015). As for direct improvements to the method, replacing the matting-based optimisation
method with an optimisation framework that takes into account the 4D structure of the
light field may lead to more accurate results. Similarly, extending this method for multiple
orientations, and not just the cross-hair views, would take advantage of the full light field
volume and possibly achieve more accurate disparity results.
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