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Abstract
This paper presents a simple and novel formulation for the design and analysis of a generic
cubic array with a single real coefficient for each antenna element, to steer the developed
beam toward a certain desired angle in both azimuth (totally 360◦) and elevation (totally 180◦)
directions. This configuration demonstrates frequency invariance of the directional patterns
of the array within a relatively large fractional bandwidth which makes this array a potential
candidate for wideband and ultra wideband applications. The required real coefficients are
calculated based on matrix manipulation methods. However, the dimension of the matrices
and vectors used in the computations aremuch less than the total number of antenna elements.
Computer simulation shows the performance of the array with respect to the resolution of the
main beamand frequency independence of the patterns and also in termsof the complexity and
frequency range. Moreover, we will present a comparison between the proposed algorithm
and the Fourier transform based methods and the adaptive least mean square algorithm.

Keywords Array signal processing · Wideband arrays · Spatial processing · Cubic arrays

1 Introduction

Wideband beam formation has attracted interest due to its potential applications in differ-
ent areas such as radar, medical imaging and telecommunications (Liu 2010; Liang and
Hum 2011). In conventional wideband beamforming methods that use both time and space
domains, the wideband characteristics of the array is realized by applying the received signal
of each antenna element to a pre-designed set of adjustable filters (Hawes and Liu 2014) or
pure time delays (Allen and Ghavami 2005). In some other approaches which do not employ
time-domain filters or delay elements, only a single real-values coefficient is used for each
antenna element (Ghavami 2002).

Distributed beamforming methods using three dimensional volumetric arrays present
higher flexibility in terms of throughput and bandwidth. In the analysis presented in Overturf
et al. (2017) different array topologies including cubic configuration have been considered.
As expected, this work concludes that larger volumes of omnidirectional elements produce
narrower radiation patterns. As an application of cubically located sensor arrays, the detection
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of a far field particle source has been studied in Srikanth et al. (2017). In another investi-
gation, a cubic scanning array of antenna elements have been modelled and simulated. The
behaviour of the resultant array is compared with the multiple planar array structure (Zhao
and Peng 2009).

Cubic antenna arrays for wideband beamforming in both full azimuth and elevation direc-
tions using purely spatial processing has rarely been discussed in literature. In the method
described in Liu (2010) and Liu and Weiss (2008), Fourier transform techniques have been
used to calculate the weights connected to each element. In another approach, steerable cubic
antenna arrays are designed by optimization of the amplitude and phase excitations across the
elements (Garza et al. 2016). The novelty of this method is the application of an evolutionary
optimization algorithm to a design problem.

In this paper a new algorithm is proposed to calculate the real multipliers of a linear cubic
array. The main advantage of this method is the simplicity of the computation which does not
involve two dimensional Fourier transform normally used in wideband array calculations.
Moreover, it covers 360◦ of azimuth and 180◦ of elevation angles with a single structure.
We also notice that the proposed method is superior in terms of overall size and frequency
independence compared to the distributed technique presented in Overturf et al. (2017) which
is using both temporal and spatial signal processing methodology. To compare our method
with Srikanth et al. (2017), we observe that in this reference the frequency dependence of the
beam patterns is not taken into account during the design process. This lack of discussion on
the frequency dependency of the phased array is also a drawback of the method presented
in Zhao and Peng (2009).

The rest of this paper is organized as follows. In Sect. 2 we will introduce the cubic
array formulation. Section 3 explains the design of coefficients. Section 4 presents some
computer simulation results including a comparison between the proposed algorithm and
two dimensional Fourier transform method of Liu and Weiss (2008) and adaptive least mean
square (LMS) algorithm (Widrow and Stearns 1985). Finally, Sect. 5 concludes the paper.

2 Cubic array formulation

Figure 1 shows the placement of the receiving antenna elements on the cubic volume. There
are a total of N1 × N2 × N3 elements located on three perpendicular (x, y, z) directions.
The distances between the elements along these directions are d1, d2 and d3, respectively.
The incoming wave arrives with the azimuth and elevation angles of 0◦ < θ < 360◦ and
−90◦ < φ < 90◦, respectively. The received signal at the array reaches the sample element
(n1, n2, n3), for 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1 and 0 ≤ n3 ≤ N3 − 1, with a time
delay that can be calculated as:

τ(n1, n2, n3) = 1

c

[
d1n1 cos θ sin φ + d2n2 sin θ sin φ + d3n3 cosφ

]
(1)

Equation (1) has been calculated with respect to the reference element (0, 0, 0) and c is the
speed of propagation. The frequency dependent phase angle at the location of the element
(n1, n2, n3) will be calculated as follows:

φ(n1, n2, n3) = 2π f τ(n1, n2, n3) (2)
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Fig. 1 Location of the antenna elements on the cubic volume with the incoming wave arriving at the azimuth
and elevation angles of θ and φ, respectively

The signal received at each element is multiplied by Cn1n2n3 and the overall transfer
function in terms of angle and frequency can be written as:

H( f , θ, φ) =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

Cn1n2n3e
j 2π f

c (d1n1 cos θ sin φ+d2n2 sin θ sin φ+d3n3 cosφ) (3)

For simplicity of analysis, three different frequencies are defined as:

f1 = f d1
c

cos θ sin φ, f2 = f d2
c

sin θ sin φ, f3 = f d3
c

cosφ (4)

which simplifies (3) to the following form:

H( f1, f2, f3) =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

Cn1n2n3e
j2π(n1 f1+n2 f2+n3 f3) (5)

The three dimensional frequency volume ( f1, f2, f3) is limited for f1, f2 and f3 to
(−0.5, 0.5), because

| f1| =
∣∣∣∣
f d1
c

cos θ sin φ

∣∣∣∣ ≤ f d1
c

≤ f

c

λmin

2
= f

c

c

2 fh
≤ 0.5 (6)

| f2| =
∣∣∣∣
f d2
c

sin θ sin φ

∣∣∣∣ ≤ f d2
c

≤ f

c

λmin

2
= f

c

c

2 fh
≤ 0.5 (7)

| f3| =
∣∣∣∣
f d3
c

cosφ

∣∣∣∣ ≤ f d3
c

≤ f

c

λmin

2
= f

c

c

2 fh
≤ 0.5 (8)
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where λmin is the wavelength corresponding to the highest frequency fh , and as a sensible
choicewe assume that the inter-element spacing is limited to the half of the lowest wavelength
of the spectrum.

3 Calculations of coefficients

For the calculation of the real coefficients Cn1n2n3 , we start with considering L ≥ 2 focal
points symmetrically located on the three dimensional space generated by ( f1, f2, f3). These
points do not include the origin. Then, two vectors, both with the length of L , are defined as
follows:

b = [
b1, b2, . . . , bL

]T (9)

H0 = [
H( f101 , f201 , f301 ), . . . , H( f10L , f20L , f30L )

]T (10)

where the superscript T stands for transpose. The elements of the vector H0 have the same
values for any two pairs ( f10l , f20l , f30l ), l = 1, 2, . . . , L which are symmetrical with respect
to the origin of the ( f1, f2, f3) space. The vector b is an auxiliary vector andwill be computed
in the design process. Now, assume that H( f1, f2, f3) is expressed by the multiplication of
three basic polynomials and then the summation of the weighted result by bl as follows:

H( f1, f2, f3) =
L∑

l=1

bl

N1−1∑
n1=0

e
j2πn1( f1− f10l

)
N2−1∑
n2=0

e
j2πn2( f2− f20l

)
N3−1∑
n3=0

e
j2πn3( f3− f30l

)

(11)

We notice that by using this form of H( f1, f2, f3), we have reduced the problem of
direct computation of N1N2N3 coefficients Cn1n2n3 from a complicated system of N1N2N3

equations to a new problem of solving only L equations, because normally we select
L << N1N2N3. Anyhow, our final task will be finding Cn1n2n3 from bl . We can obtain
the relationship between bl and Cn1n2n3 be rearranging (11) as follows:

H( f1, f2, f3) =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

{
L∑

l=1

ble
− j2πn1 f10l e

− j2πn2 f20l e
− j2πn3 f30l

}
·

e j2πn1 f1e j2πn2 f2e j2πn3 f3 (12)

Comparing with (5) yields

Cn1n2n3 =
L∑

l=1

ble
− j2πn1 f10l e

− j2πn2 f20l e
− j2πn3 f30l (13)

After calculation of b, (13) provides a formula to determine all coefficients Cn1n2n3 . The
computation of b is done using (11). For this purpose, we define an L × L matrix A with the
elements akl , 1 ≤ k, l ≤ L as follows:

akl =
N1−1∑
n1=0

e
j2πn1( f10k

− f10l
)
N2−1∑
n2=0

e
j2πn2( f20k

− f20l
)
N3−1∑
n3=0

e
j2πn3( f30k

− f30l
)

(14)

It should be noted that A is a dense matrix having elements as the product and sum of
complex numbers with a modulus of unity. Hence, the condition number of A, which is the
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ratio of the largest to the smallest singular value in the singular value decomposition of the
matrix, should be investigated with the variation of L for stability of the algorithm.

First it is shown that akl is bounded:

|akl | =
∣∣∣∣∣∣
N1−1∑
n1=0

e
j2πn1( f10k

− f10l
)

∣∣∣∣∣∣

∣∣∣∣∣∣
N2−1∑
n2=0

e
j2πn2( f20k

− f20l
)

∣∣∣∣∣∣

∣∣∣∣∣∣
N3−1∑
n3=0

e
j2πn3( f30k

− f30l
)

∣∣∣∣∣∣

≤
N1−1∑
n1=0

∣∣∣e j2πn1( f10k − f10l
)
∣∣∣
N2−1∑
n2=0

∣∣∣e j2πn2( f20k − f20l
)
∣∣∣
N3−1∑
n3=0

∣∣∣e j2πn3( f30k − f30l
)
∣∣∣

≤ N1N2N3 (15)

The constant value of akl = N1N2N3 appears on the diagonal of the symmetric matrix A.
All other entries of this matrix have a smaller magnitude than this constant as shown in (15).
Although the proof of the non-singularity ofA is not discussed here; however, we would like
to report that we never encountered any unstable case during the simulations using different
values of azimuth and elevation angles or different values of the number of antenna elements
or the parameter L .

Now, we can use (9) and (10) to derive

H0 = Ab (16)

Thus, b is obtained as follows:

b = A−1H0 (17)

In (17) we have assumed thatA is not singular, so that its inverse exists. The proof of the non-
singularity ofA is impossible or extremely difficult as the elements of thismatrix are functions
of the selection of the azimuth and elevation angles, the choice of L and the dimensions of the
array N1, N2, N3. Simulation results with several values of these parameters never showed
any difficulty in the calculations. The final step will be to calculate Cn1n2n3 from the formula
in (13).

Fig. 2 Space covered by
( f1, f2, f3) and different octants
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We now discuss the allocation of L points ( f10l , f20l , f30l ) with the corresponding values
of H( f10l , f20l , f30l ) in the ( f1, f2, f3) space. The simplest but non-trivial way to perform
this allocation is L = 2. The selection of these two points should be appropriate in order to
generate a set of real coefficients Cn1n2n3 . For this purpose, as shown in Fig. 2, we need to
select two points P1 and P2 symmetrically located in octant 1 and 7, ladled by (+,+,+)

and (−,−,−), respectively.

P1: ( f101 , f201 , f301 ) = ( f10 , f20 , f30)

P2: ( f102 , f202 , f302 ) = (− f10 ,− f20 ,− f30) (18)

Then, values at these points:

H0 = [1, 1]T (19)

The symmetric selection guarantees that the coefficients are real and also that we have a
unit gain at the desired point on the ( f1, f2, f3) space. More complex choices can be made
by adding several symmetric zeros to (18). For example, we can apply permutation rule to
(± f1,± f2,± f3) and increase the number of critical points to L = 18 as follows:

( f10 , f20 , f30), (− f10 ,− f20 ,− f30), ( f20 , f30 ,− f10), (− f20 ,− f30 , f10)

( f20 ,− f30 , f10), (− f20 , f30 ,− f10), ( f20 ,− f30 ,− f10), (− f20 , f30 , f10)

( f20 , f30 , f10), (− f20 ,− f30 ,− f10), ( f30 , f10 ,− f20), (− f30 ,− f10 ,− f20)

(− f30 ,− f10 , f20), ( f30 , f10 ,− f20), ( f30 ,− f10 ,− f20), (− f30 , f10 , f20)

( f30 , f10 , f20), (− f30 ,− f10 ,− f20) (20)

For which we define:

H0 = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (21)

That means the first two points P1 and P2 will be assigned an amplitude of one and the other
16 will have an amplitude of zero to improve the directivity of the resultant pattern.

The selection of L is voluntary, however, to assure real coefficients for array elements, L
needs to be even. In order to complete the design with any other even values of L between 2
and 18 (which is the maximum number we can generate by permutation of (± f1,± f2,± f3))
we only need to keep the first L values of (20) and discard the rest. Similarly,H0 in (21) will
only have two ones and L − 2 zeros.

4 Simulation results

For the first simulation, we assume the simplest case of L = 2 as in (18) and (19). The array
configuration consists of 4 × 4 × 4 elements. The desired azimuth and elevation angles are
θ = 70◦ andφ = −50◦. The lowest and highest operational frequencies have been considered
as 3 GHz and 4 GHz, respectively. This will generate a fractional bandwidth of about 30%.
We also assume that the inter-element spacing of the array is d1 = d2 = d3 = 3.75 cm,
which is half wavelength of the highest frequency.

To assign the values of P1 and P2, we have to calculate f10 , f20 , f30 from (4). Then, A
is constructed using (14) and b is calculated from (17). Finally, the coefficients Cn1n2n3 , for
1 ≤ n1, n2, n3 ≤ 4, are computed from (13). Due to the symmetry of the selected points in
the ( f1, f2, f3) space, the values of Cn1n2n3 are all real which reduces the computation load
considerably and the array system will be fully spatially processed.
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Fig. 3 Normalized plot of H( f1, f2, f3) as a function of f1 and f2. The global maximum is located at
( f1 = −0.1146, f2 = −0.3149)
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Fig. 4 Normalized plot of H( f1, f2, f3) as a function of f1 and f3. The global maximum is located at
( f1 = −0.1146, f3 = 0.2812)

Figure 3 shows a normalized plot of H( f1, f2, f3) calculated from (11) as a function
of f1 and f2 while f3 is kept constant to its nominal value when calculated at the mid-
range operational frequency. In the same way, Figs. 4 and 5 demonstrate the variation of
H( f1, f2, f3) as f2 and f1, respectively, are maintained at their nominal values. All three
figures show a relatively smooth variation of the magnitude close to the selected points based
on (18). These mild variations are the key reasons for the frequency independence of the
designed array, particularly near the desired direction.

Directional patterns of the three dimensional array with frequency variations from 3 GHz
to 4 GHz are shown in Figs. 6 and 7 for azimuth and elevation angles, respectively. Both
figures show the frequency independence of the design within the range and for the main
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Fig. 5 Normalized plot of H( f1, f2, f3) as a function of f2 and f3. The global maximum is located at
( f2 = −0.3149, f3 = 0.2812)
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Fig. 6 Azimuth patterns for 3–4 GHz with the desired value of θ = 70◦ when L = 2

lobe of the pattern. Relatively more variations are observed for the sidelobes but they all are
happening below 10 dB attenuation.

Further simulations show that increasing L = 2 to L = 18 and using (20) together with
(21) will decrease the beamwidth, sidelobe levels and frequency dependence by different
factors that can be as high as 60% for sidelobes. These observations are presented in Figs. 8
and 9. As we can notice, the 10 dB beamwidth has improved from 71◦ to 59◦ for the azimuth
and from 52◦ to 45◦ for the elevation. This improvement is higher for the sidelobe attenuation
levels which reduces from −12 dB to −20 dB.
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Fig. 7 Elevation patterns for 3–4 GHz with the desired value of φ = −50◦ when L = 2
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Fig. 8 Azimuth patterns for 3–4 GHz with the desired value of θ = 70◦ when L = 18

For a comparison between the proposed algorithm and other methods employing cubic
array structures,we have simulated the beamforming designs for the samenumber of elements
and similar azimuth and elevation angles using the Fourier transform technique described
in Liu (2010) andLiu andWeiss (2008) for calculation theweights connected to each element.
The result of simulation is demonstrated in Figs. 10 and 11 for azimuth and elevation angles,
respectively. These figures show that the sidelobe levels are only 6–8 dB lower than the main
lobe, as compared to the 12–20 dB of the propose method in Figs. 6, 7, 8 and 9.
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Fig. 9 Elevation patterns for 3–4 GHz with the desired value of φ = −50◦ when L = 18
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Fig. 10 Azimuth patterns for 3–4 GHz with the desired value of θ = 70◦ using Fourier transform algorithm

The second comparison is between the proposed method and the LMS adaptive algo-
rithm for calculation of the real-valued coefficients. The LMS algorithm uses the following
equation:

Cn1n2n3(t + δt) = Cn1n2n3(t) + μe(t)sn1n2n3(t) (22)

to direct the mean squared error (MSE) toward zero, where μ is the step size or convergence
factor and controls the convergence speed and stability of the calculations, sn1n2n3(t) is the

123



Multidimensional Systems and Signal Processing (2019) 30:1937–1950 1947

-80 -60 -40 -20 0 20 40 60 80

angle

-60

-50

-40

-30

-20

-10

0

10

dB

Elevation Patterns, 0= -50 °

Fig. 11 Elevation patterns for 3–4 GHz with the desired value of φ = −50◦ using Fourier transform algorithm
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Fig. 12 Azimuth patterns for 3–4 GHz with the desired value of θ = 70◦ using LMS algorithm

input signal, e(t) is the error and δt is the time interval between two successive iterations.
The result of simulation is demonstrated in Figs. 12 and 13 for azimuth and elevation angles,
respectively. As it is observed, the results are not as good as the case of L = 2 in Figs. 6 and 7
or the case of L = 18 in Figs. 8 and 9 for sidelobe levels, 10 dB beamwidth and frequency
independence.
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Fig. 13 Elevation patterns for 3–4 GHz with the desired value of φ = −50◦ using LMS algorithm
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Fig. 14 Azimuth patterns for 7.5–10 GHz with the desired value of θ = 70◦ when L = 2

Finally, to investigate the frequency range and bandwidth dependency of the proposed
algorithm, Figs. 6 and 7 for azimuth and elevation angles of θ = 70◦ and φ = −50◦,
respectively, have been repeated for a higher and wider frequency range of 7.5–10 GHz
which is the higher portion of the ultra wideband (UWB) technology spectrum mask with a
fractional bandwidth of about 30%. The results are shown in Figs. 14 and 15, respectively.
As we can see, as long as the fractional bandwidth is kept constant, the performance of the
designed beamforming is basically the same across the whole UWB frequency domain.
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Fig. 15 Elevation patterns for 7.5–10 GHz with the desired value of φ = −50◦ when L = 2

5 Conclusions

A simple method for the design of a cubic array system with a real-valued multiplier for each
antenna element was presented. The fully spatial beamformer can steer the beam toward
both azimuth and elevation directions covering the whole three dimensional space. The
configuration benefits from the frequency invariance of the patterns within a relatively large
fractional bandwidth of about 30%, which may be used in the whole UWB spectrum for
different applications. The real multipliers were calculated based on matrix manipulation
methods. However, the dimension of the matrices and vectors used in the computations can
be much lower than the total number of antenna elements. Simulation results show that,
even with the minimum number of required focal points (L = 2), the designed array shows
an appropriate level of directivity and frequency independence for a fractional bandwidth
of 30% within the UWB spectral mask from 3 to 10 GHz. Moreover, a comparison was
made with the Fourier transform based and adaptive LMS algorithm methods in terms of the
directivity and sidelobe levels to show the advantages of the proposed algorithm.
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