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Abstract In this paper mean energy lateral histograms have been developed and used for the
translation of frames detection and for the estimation of a shift vector in large image frames.
2-D translation problem is solved by two almost independent 1-D problems based on the
mean energy lateral histograms. We formulate a simple optimization for estimating vertical
or horizontal translations of the frame. The optimization goal is to find the best match between
energies (squared norms) of rows (columns) of the image and the reference frame. The shift
estimate is calculated as the minimizer of the least squares, maximum deviation or the sum
of absolute deviations criterion. However, the first criterion is preferred, the last two almost
always gave the same results when the noise level is low. The proposed method is faster than
the FFT based phase–correlation approach. An iterative version of the algorithm is presented
which is very reliable and usually converges in at most two iterations. A randomized version
of the method which reduce further the computational cost for large images problems is also
proposed. Experimental results are provided and discussed.

Keywords Image stabilization · Shift estimation · Randomized algorithm · Lateral energy
histograms

1 Introduction

A gray-scale image may be treated as an m × n matrix of pixels, which means that it consists
of m rows and n columns. At present, images typically have 5–10 mega pixels and image
processing tasks are often optimization problems of this order of dimension. However, many
image processing techniques involve treating the image as a two-dimensional signal (Lim
1990) or as 2−D objects.
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The image (video stream) representation depends strongly among other things on geo-
metric transformations in spatial image space (Hoggar 2006; Velten and Kummert 2006)—
translation, rotation, enlargement; and transformations in pixel function space, such as color
or/and intensity corrections. Especially affine transformations are observed in image regis-
tration, image reconstruction, image recognition, motion detection, shape and deformation
measurements and many others (Alliney 1993; Brunelli 2009; Malepati 2010; Jähne 2005;
Park et al. 2003; Pratt 2001; Stone et al. 2001; Sutton et al. 2009).

Horizontal and vertical shifts estimation is a common problem in image stabilization, i.e.,
the process of removing effects of unwanted camera movements from the captured images
(video) sequence. Digital image stabilization is the algorithmic process of removing such
undesired translation and/or rotation effects present in the captured image sequence. We
want to generate a compensated image sequence using digital image processing techniques
without mechanical devices such as gyro sensors (Malepati 2010). Many image registration
algorithms are related to the stabilization of image sequences, since it frequently occurs that
a sequence of images is corrupted by movements of the camera and the scene (Alliney et al.
1996).

Thus, the digital image stabilization algorithm compensates these undesired effects by
performing translations (both vertically and horizontally) or rotations of the main part of the
image and stabilizing the current position of image objects. Rotation and translation forms
affine image transformation which retain spatial inter-pixel relations.

Various techniques have been proposed for image shift detection. Spatial-temporal
approaches include block matching techniques (Brunelli 2009; Goobic et al. 2005; Liu and
Zaccarin 1993; Malepati 2010; Rehan and Watheq 2006) direct optical flow estimation (Chang
et al. 2002; Gilbert and Johnson 2002; Sutton et al. 2009), bit-plane matching (Ko et al. 1999),
feature tracking (Censi et al. 1999) among others.

The other possibility is a method based on translational motion estimation (Stiller and
Konrad 1999). In general, motion estimation is based on several local motion vectors from
sub-images in different positions of the frame using some kind of block matching algorithm.
The image stabilization system determines the global motion of a frame by processing these
local motion vectors, and decides whether the motion of a frame is caused by undesirable
fluctuation and should be corrected.

Often the motion prediction with a Kalman filter can be used for smoothing the motion
parameters to reduce the motion noises. A Kalman filter removes short-term image fluctua-
tions with retained smooth gross movements (Chang and Lai 2006; Erturk 2003).

There are many possible choices for the similarity (dissimilarity) function for block tem-
plate matching techniques. Normalized cross-correlation is one of the methods used for
template matching, a process used for finding incidences of a pattern or object within an
image. In translated images fitting, both a registered image and a template (a reference
frame) are the same or similar size. In such a case normalized cross-correlation or cosine
similarity (cross-correlation without pixel function centering) is often used in a frequency-
domain. Phase correlation uses the FFT approach to estimate the relative translative offset
between two similar images (Brunelli 2009; Reddy and Chatterji 1996). The method can
be efficiently applied for large frame translations. Unfortunately, it can be easily applied for
cyclic-translations only. Otherwise, some kind of Gibbs effect can be observed. Furthermore,
ideally bandlimited images do not exist in practice and several enhancement techniques have
to be used (see for example Altmann and Reitbock 1984; Pratt 2001; Stone et al. 2001). More-
over, for non-integer shifts inverse transforming the phase correlation matrix would yield a
discrete Dirichlet function, that has many additional peaks, instead of a single impulse (Balci
and Foroosh 2006).
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The computational complexity of FFT and IFFT computations (Brunelli 2009; Bouguezal
et al. 1999; Lewis 1995) is 30n2 log2 n for images consisting of n × n pixels. In comparison,
costs of strict cross-correlation computations are O(n4).

Line Radon transform is another method which can be used for image translation detection
(Milanfar 1999; Robinson and Milanfar 2003). It consists of projection and integration of
image function (illumination or gray scale intensity) along the line at a given angle. It is
known that translational motion in the image domain results in translational motion in the
projection domain, so the motion analysis is made in the transform domain. It should be noted
that projections at angles 0◦ and 90◦ can be obtained by summing pixels along columns and
along rows of the image respectively (Robinson and Milanfar 2003).

The similar method of projecting is proposed by Davies under the name of the lateral
histogram technique (integral lateral histogram) (Davies 1985, 2008). Alliney and Morandi
(1986), Alliney et al. (1996) and Sibiryakov (2007) have used horizontal and vertical projec-
tions (laterals histograms) and one-dimensional FFT for determination of the displacement
of each image in the sequence with respect to the one chosen as a reference.

In the paper (Cain et al. 2001) the lateral histograms are analyzed in the space-domain
using vertical and horizontal non-normalized cross-correlation functions.

We restrict our attention to the problem of 2-D translations. In many optical applications it
is the main problem of image registration. Translations are rather small, but a large accuracy
is desirable (Chen et al. 2009; Chen and Yap 2008; Goobic et al. 2005; Guizar-Sicairos et al.
2008; Foroosh et al. 2002; Karybali et al. 2008; Ren et al. 2010; Sibiryakov 2007; Sibiryakov
and Bober 2006; Tejada et al. 2011). The method developed here is based on similar to the
integral lateral histogram technique (Davies 2005) or a mentioned projection method (Alliney
and Morandi 1986). It generalizes the method presented in Skubalska-Rafajlowicz (2011). In
our approach we compute the energy of rows and columns by adding squared pixels values
along rows and columns instead of the strict addition of pixel values. The energy matching is
closely related to normalized cross-correlation and can be used in an iterative manner leading
to precise solutions even when translations in both directions are relatively large. Furthermore,
the method is often more sensitive to small shifts than the same method based on integral
lateral histograms. We restrict our attention to integer (in pixels) translations thereby avoiding
interpolation problems. These interpolation problems, however, can be solved independently
assuming polynomial (or spline) representation of an image, but this outside the scope of this
paper. The proposed method can be used as the first stage for a sub-pixel accuracy image
registration, since in many such methods it is assumed that the integer shift has been (or can
be) estimated by some other means (Stone et al. 1999, 2001). We also propose a randomized
version of the algorithm that essentially samples the image’s columns (rows) for energy of
the rows (columns) estimation and therefore reduces the computational burden introduced
by large images. We assume, that a randomized algorithm is equipped with a random number
generator producing a sequence of independent, uniformly distributed numbers indicated
which columns and rows of the image under consideration should be chosen as a random
representation of this image. Theoretical bounds on the number of elements used for energy
estimation is similar to that obtained for random projections (Skubalska-Rafajlowicz 2011),
but the method is about n times faster than the previous one.

The rest of the paper is organized as follows: Sect. 2 defines the problem of fast similarity
matching of image frames and templates using mean energy histograms. We propose here
different criteria for comparison of mean energy projections of an image and a template.
Computational costs of the method are analyzed. Section 3 outlines the iterative procedure
for precise shift estimation and illustrates its very fast convergence. In Sect. 4 we discuss
robustness of the method in the presence of an additive noise. To this end, we propose a
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randomized algorithm scheme in Sect. 5 which enables us to reduce the computational costs,
especially in the case of large images. Section 6 provides simulations results performed both
for mean energy lateral histograms and for internal lateral projections. Finally in Sect. 7 some
concluding remarks are provided.

2 Detection of image translation

Let us assume that we have a reference frame T = {t (i, j)}m,n , an image consisting of m
rows and n columns, where t (i, j) ∈ [0, 1] is a pixel intensity in the location (i, j).

The new image F = { f (i, j)}m,n is a part of a larger scene of the size (m + 2h × n + 2h),
which can be used for the image stabilization, where h is the maximal vertical and horizontal
translation value measured in pixels. In the noiseless case we assume that there exist numbers
a, b ∈ [−h,−h + 1, . . . , 0, . . . , h] such that f (i − a, j − b) = t (i, j); i = 1, . . . , m; j =
1, . . . , n or in a more general case, i.e., if we allow affine global changes of pixel intensity:

f (i − a, j − b) = αt (i, j) + β; i = 1, . . . , m; j = 1, . . . , n. (1)

Different measures of similarity are used between the current frame and the template
(Brunelli 2009). We can formulate the following normalized optimization problem.

Find x, y ∈ [−h, h] such that

min
x,y

P(x, y) = min
x,y

m∑

i=1

n∑

j=1

(
f (i − x, j − y) − f̄ (x, y)

|| fxy − f̄ (x, y)|| − t (i, j) − t̄

||t − t̄ ||

)2

, (2)

where f̄ (x, y) = ∑m
i=1

∑n
j=1 f (i − x, j − y)/mn,

t̄ = ∑m
i=1

∑n
j=1 t (i, j)/mn and

|| fxy − f̄ (x, y)|| =
√√√√

m∑

i=1

n∑

j=1

( f (i − x, j − y) − f̄ (x, y))2

is the Frobenius norm of the centered (with respect to a mean pixel value) matrix F . Similarly,
||t − t̄ || is the Frobenius norm of the centered template T .

The goal function of the problem (2) equals to 0, if x = a and y = b. Simple reformulations
of (2), i.e.,

P(x, y) =
m∑

i=1

n∑

j=1

((
f (i − x, j − y) − f̄ (x, y)

|| fxy ||
)2

+
(

t (i, j) − t̄

||t ||
)2

)

−2
m∑

i=1

n∑

j=1

(
( f (i − x, j − y) − f̄ (x, y))(t (i, j) − t̄)

|| fxy − f̄ (x, y)|| ||t − t̄ ||

)
(3)

lead to the well-known formula of the normalized cross-correlation (Brunelli 2009; Lewis
1995).

Thus, the problem of C(x, y) maximization with respect to x, y ∈ [−h, h], where

C(x, y) =
m∑

i=1

n∑

j=1

(
f (i − x, j − y) − f̄ (x, y))(t (i, j) − t̄

)

|| fxy − f̄ (x, y)|| ||t − t̄ || , (4)

which is the normalized cross-correlation formula (Brunelli 2009; Lewis 1995).
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It is not exactly equivalent to (2), because it has the same optimal solution as the previous
problems (2) and (3). The fact is elementary in image processing. One can check the claim
just plugging-in adequate (i.e., with true shift values) images. If translations does not change
the contents of the image, i.e., if f̄ (x, y) = const for any x and y, then we obtain P(x, y) =
2(1−C(x, y)). Unfortunately, translations in the image coordinates introduce usually a part of
new pixel values, thus this equivalence is only approximate. Cross correlation based methods
are often preferred because they are more accurate (however slower) than the minimization
of the sum of squared errors (2). Unfortunately, centering the pixel intensities with respect
to their mean intensity value, i.e., the process of computing for every pixel its new value
( f (i − x, j − y) − f̄ (x, y), so that the new pixel intensity mean is zero after centering,
is a rather time-consuming task (Lewis 1995). It can be avoided in phase-correlation based
methods, but it happens on the costs of image windowing or filtration problems in frequency
domain (see Hoggar 2006; Hoge 2003; Zhang et al. 2010 among many others).

2.1 Lateral mean energy histograms

Note, that one can also formulate alternative, simpler to compute, criteria functions which
will attain their minima at the same values of x = a and y = b. As a starting point we
propose minimizing the goal function given by:

m∑

i=1

n∑

j=1

(
f (i − x, j − y) − f̄i−x .

|| fr || − t (i, j) − t̄i.
||tr ||

)2

, (5)

where f̄i. = ∑n
j=1 f (i − x, j − y)/n and similarly t̄i. = ∑n

j=1 t (i, j)/n are the local means
in the indicated rows i..|| fr || and ||tr || are the Frobenius norms of the matrices { f (i − x,

j − y) − f̄i−x .}mn and {t (i, j) − t̄i.}mn , respectively.
A similar optimization problem can be stated by changing the order of summations and

center within the image columns only.

n∑

j=1

m∑

i=1

(
f (i − x, j − y) − f̄. j−y

|| fc|| − t (i, j) − t̄. j

||tc||

)2

, (6)

where f̄. j = ∑m
i=1 f (i − x, j − y)/m, similarly t̄. j = ∑m

i=1 t (i, j)/m are the local
means in the indicated columns . j . || fc|| and ||tc|| are the Frobenius norms of the matrices
{ f (i − x, j − y) − f̄. j−y}mn and {t (i, j) − t̄. j }mn , respectively.

In all the above-mentioned problems a criterion function summarizes squared errors
between pixel intensities of the image and corresponding pixels of the template. Furthermore,
centering of the pixel intensity is done locally, separately for each row and each column of
the image. As a consequence, two independent copies of an image have to be created. One
of them, for the results of centering along rows and the other, for the results of centering
along columns. We will explain further why this method of centering is convenient and leads
to savings of computational costs when normalizing of data is necessary. We recall, that
pixel intensity centering is advisable if and only if an offset (β �= 0) in the pixel function
can be expected. Similarly, a normalization (dividing by the Frobenius norm of the image
intensity matrix) is necessary task only if changes in the piksel intensity scale (α �= 1) may
happen.

From the optimization point of view it is possible to solve problems (5) and (6) parallely
in an iterative and alternate manner, i.e., by optimizing successively in one direction at a
time. Thus, we can solve problem (5) for vertical translation estimation and simultaneously
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problem (6) for horizontal translation estimation only. The optimization search can be per-
formed in a form of successive or simultaneous iterations switched between vertical and
horizontal search (usually referred to as Gauss–Seidel or Jacobi iterations). The first strat-
egy means that a partial solution, a vertical translation estimate for example, is at once
inserted into the horizontal optimization problem and so on. The Jacobi strategy seeks for
vertical and horizontal translation estimates independently and after that adjusts both solu-
tions.

It is assumed that during the one-dimensional optimization we have to match blocks
consisting of image rows (columns) without changing pixels inside these blocks. In such a
way, instead of pixel to pixel comparisons, it is faster to match some function values defined
for image rows (columns).

Without loss of generality we can assume that each pixel value xi j ∈ [0, 1]. Let us define
function g(x) = ||x||p

p which is relatively easy to compute and simultaneously can be used
for distinguishing between vectors formed of an image rows (columns). If g(x) = ||x||1,
i.e., we obtain (Alliney and Morandi 1986) vertical and horizontal projections obtained by
summing pixels along columns and along rows of images respectively. Projections, in Davies’
terminology lateral histograms (Davies 2005), of an image are obtained by summing pixels
along rows and along columns. Note, however, that a global centering is only allowed in this
case, since centering in rows (columns) leads to a zero value in every centered sum along
row (column).

In our approach g(x) = ||x||22 is an energy of rows or columns, i.e., the function g values
are computed for every row and every column of the image under consideration and are
obtained by adding squared pixel values (centered if necessary) along rows and columns,
respectively.

Denote the mean energies of rows and columns of an image X (centered if necessary) by

ri (X) = g(xi.)/n = 1

n

n∑

j=1

x2
i j , i = 1, . . . , m,

c j (X) = g(x.j)/m = 1

m

m∑

i=1

x2
i j , j = 1, . . . , n, (7)

where xi. and x.j stand for i th row vector and j th column vector of image X , respectively.
The factors 1/n and 1/m assert that ri (X), c j (X) ≤ 1, i = 1, . . . , m, j = 1, . . . , n,
X ∈ [0, 1]mn , where X = F or X = T . So, after normalization we obtain the mean energy
projection vectors in the following form:

{
ri,norm/n = ri (X)

n
∑

i ri (X)

}
,

{
c j,norm/m = c j (X)

m
∑

j c j (X)

}
. (8)

One can verify that values of (8) do not dependent on α and β (see (1) ) by substituting
(1) and (7) into (8), where xi. and x.j stand for i-th centered row vector and j-th centered
column vector, respectively. Row and column centering with respect to individual rows or
columns means is performed in the same way as in (5) and (6).

Figure 1 shows non-normalized lateral energy histograms (ri and c j ) for a 2, 300×1, 700
image.
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Fig. 1 Image ‘Grapes’ and its lateral energy histograms

2.2 Mean energy projections of image and template comparisons

Formally, there exist artificially constructed examples (e.g. chess board and its negative) such
that two images have the same lateral histograms. Natural images are so rich in details that
one can consider lateral histograms as their signatures.

We can formulate various simple criteria for comparisons of image F histogram and a
histogram of template T , instead of comparison of images pixel by pixel.

Note that the sequences (rh+1(T ), . . . , rm−h(T )) and (ch+1(T ), . . . , cn−h(T )), where
h > 0 is an integer denoting the maximal shift value, are similar to the parts of the lateral
projections of the translated image F . So, these sequences should be matched with the mean
energy lateral histograms (r1(F), . . . , rm(F)) and (c1(F), . . . , cn(F)) of image F . Alter-
natively, one can take the sequences (rh+1( f ), . . . , rm−h(F)) and (ch+1(F), . . . , cn−h(F))

and look for the similar subsequences in histograms of template T , i.e., (r1(T ), . . . , rm(T ))

and (c1(T ), . . . , cn(T )). This approach allows to reject new information introduced by a
translated image. Thus, one may expect, that this method will be less robust to a translation
in the other direction.

However, it should be indicated, that the method centering along rows and columns can
be performed only once and does not need to be actualized. Furthermore, reorganization of
adequate subsequences of lateral mean energy histograms can be performed very quickly
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Fig. 2 LS criterion values for
vertical shift estimation obtained
for image ‘Grapes’ translated by
vector (100, −1)
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using the partial sums of ri (F) and c j (F), respectively. For the sake of simplicity only, we
will skip the normalization formulas in further considerations.

We propose here three different criteria for mean energy projections matching.

LS - least square error criteria

minx 1/(m − 2h)

m−h∑

i=h+1

(ci−x (F) − ci (T ))2, x ∈ {−h, . . . , h},

miny 1/(n − 2h)

n−h∑

j=h+1

(r j−y(F) − r j (T ))2, y ∈ {−h, . . . , h}. (9)

Figure 2 shows LS values for vertical energy projections for image ‘Grapes’ and its copy
translated by vector (100,−1) (100 pixels horizontally to the right and 1 pixel vertically
down). Function (9) attains minimum for true vertical translation, i.e., a = −1, with minimum
value equals to 0.519433. The horizontal translation is the cause that this value is greater
than 0.

MAD - maximum of absolute deviation criteria

minx maxi=h+1:m−h |ci−x (F) − ci (T )|, x ∈ {−h, . . . , h},
miny max j=h+1:n−h |r j−y(F) − r j (T )|, y ∈ {−h, . . . , h}. (10)

Sum of absolute deviations criteria (SAD)

minx 1/(m − 2h)

m−h∑

i=h+1

|ci−x (F) − ci (T )|, x ∈ {−h, . . . , h},

miny1/(n − 2h)

n−h∑

j=h+1

|r j−y(F) − r j (T )|, y ∈ {−h, . . . , h}. (11)

2.3 Criteria analysis

Let â and b̂ stand for estimated vertical and horizontal translations obtained by solving one
of the optimization problems (9), (10) or (11). Note, that in the all cases the optimization
process is very simple and independent from each other.

Figures 3 and 4 show values of criterion functions MAD, LS and SAD based on vertical
energy (non-normalized) projections of template ‘Grapes’ and its copy translated by vector
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Fig. 3 MAD (left panel) and SAD (right panel) criterion values for vertical shift estimation obtained for
image ‘Grapes’ translated by vector (10,−10)
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Fig. 4 LS criterion value for vertical shift estimation obtained for image ‘Grapes’ translated by vector
(10, −10) left panel—non-normalized data, right panel—normalized data

(10,−10). Note that all the criteria indicate the true vertical shift (a = −10) in spite of the
horizonal translation 10. The formulas computed for normalized versions of images produce
the same results (see Fig. 4 for comparisons).

Nevertheless, the vertical translation estimate can be a little biased by the true horizontal
shift and similarly, the horizontal translation estimate can be biased by the real vertical shift.

2.4 Errors introduced by orthogonal image translations

If vertical and horizontal translations are much smaller than dimensions m, n, their impact
on mean energy values in columns and rows, respectively, is also small and an additive error
can be bounded by h/m or h/n, respectively. We recall that the pixel values are in [0, 1]. The
maximal difference in row (or column) energy introduced by replacing one pixel by another
is 12 = 1. So, replacing at most h pixels by other pixels costs at most h and a mean energy
of given row (given column) changes at most by h/m (or h/n).

Figure 5 presents vertical histograms (for non-normalized data) obtained for images
‘Grapes’ and its copy translated by vector (−10, 10). The histograms are almost the same,
but a small translation between them can be observed.

3 Iterative procedure

Unfortunately, in general, the vertical translation estimate is biased by the true horizontal
shift and simultaneously the horizontal translation estimate is biased by the real vertical shift.
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Fig. 5 Vertical energy histogram obtained for images ‘Grapes’ and its copy translated by vector (10, −10)

An iterative procedure based on the successive, alternate estimation of a vertical and
horizontal translation allows us to solve this problem. Of course, the consecutive iterations
are possible, if one is able to obtain a new image corrected according to the last estimates.
We prefer simultaneous corrections for both directions, because in most cases the precise
estimate of a 2D shift was obtained at once (see Sect. 6).

Verification of the estimated shift. In the noiseless case criterions values close to zero
indicate good position match. Nevertheless, it is advisable to perform a full matching formula
for the core part of a template consisting of m − 2h central rows and n − 2h central columns
and the best matched part of an image consisting of rows h + 1 − â, . . . , m − h − â and
columns h + 1 − b̂, . . . , n − h − b̂, i.e.,

V (â, b̂) = 1

(m − 2h)(n − 2h)

m−h∑

i=h+1

n−h∑

j=h+1

(ti j − fi−â, j−b̂)
2. (12)

In the case of an additive, independent with respect to an image and a template, Gaussian
white noise with a covariance matrix σ 2 I, V (a, b)/2 estimates the noise variance σ 2, so the
variance of the observed noise should be taken into account in deciding about the acceptable
error level ε.

Algorithm To summarize, the algorithm for fast estimation of an image translation consists
of the following steps.

1. (optional) Center rows and columns of image F and template T .
2. Compute lateral mean energy histograms r and c according to (7).
3. (optional) Compute partial sums pr(s) = ∑s

i=1 ri , s = 1, . . . , m and pc(s) =∑s
j=1 c j , s = 1, . . . , n and normalization factors for the template (pr(m−h)−pr(h))−1

and (pc(m − h) − pc(h))−1, respectively. Normalization factors for the image depend
on x or y values and equal to pr(m −h − x)− pr(h − x) or pc(m −h − y)− pr(h − y),
respectively.

4. Compute the values of the chosen criterion (9, 11 or 10) for vertical and horizontal
histograms (x = −h,−h+1, . . . , h or y = −h,−h+1, . . . , h, respectively). Optionally
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one can use normalizing factors according to:

ri (T )norm = ri (T )

pr(m − h) − pr(h)
, i = h + 1, . . . , m − h,

ri−y(F)norm = ri−y(F)

pr(m − h − y) − pr(h − y)
, i = h + 1, . . . , m − h

for rows and according to

c j (T )norm = r j (T )

pc(m − h) − pc(h)
, j = h + 1, . . . , m − h,

c j−x (F)norm = c j−x (F)

pc(m − h − x) − pc(h − x)
, j = h + 1, . . . , m − h

for columns.
This means, that instead of (9) the modified objective functions

min
x

1/(m − 2h)

m−h∑

i=h+1

(ci−x (F)norm − ci (T )norm)2, x ∈ {−h, . . . , h},

min
y

1/(n − 2h)

n−h∑

j=h+1

(r j−y(F)norm − r j (T )norm)2, y ∈ {−h, . . . , h}

should be used. Similar changes should be done in formulas (11) and ( 10).
5. Find â which minimizes the chosen criterion for vertical mean energy histograms and

find b̂ which minimizes the chosen criterion for horizontal mean energy histograms.
6. If obtained optimization errors or value of (12) are not greater than the acceptable error

level ε, then STOP with â and b̂ as the result. Otherwise, locate template in the position
indicated by â and b̂, adjust optimization limits, i.e., change from: h + 1 and m − h or
n − h (for rows and columns respectively) to h + 1 + â and m − h + â (or n − h + b̂ and
go to step 1.

The algorithm can be used as direct non-recursive procedure. But, in some cases, iterative
manner allows to reduce estimation errors. In such a case, iterate until convergence occurs,
i.e., until optimization errors are smaller than ε, or until (12) decreases. Other simple criteria
combining vertical and horizontal matching errors, as for example, the sum of both of them,
can be also applied.

The obtained solutions (estimated vertical and horizontal shifts) usually (for large images
in low noise conditions) provide exact translations in one iteration. It can be verified in practice
by checking the obtained criterion function values. If these values (for both directions) are
close to zero (i.e., less than chosen level ε) then the algorithm stops. Otherwise we can repeat
the algorithm starting from previously estimated positions. Formally, the algorithm stops
when no improvement in criterion (12) is obtained. Monotonicity and boundedness from
below of criterion values imply a convergence.

It should be indicated, the new iteration of the algorithm should start from recalculation
of the image histograms. It can be done on the basis of reduced in the length (by translation
of optimization limits) image rows and columns or adding additional new rows and columns
from the image source. The last possibility means that the first iteration of the algorithm
begins with m × n images taken from the center of larger images.

123



284 Multidim Syst Sign Process (2014) 25:273–294

3.1 Computational complexity of the algorithm

The most expensive part of the algorithm is to compute energy histograms of an image
and a template (see (7)). It consists of computing energy of each image pixel x2

i j , i =
1, . . . , m j = 1, . . . , n, i.e., it needs m n multiplications. Computing both histograms costs
2 m n additions.

Notice, that, if the algorithm is used for a sequence of images, the last image becomes a
new template and its histograms are ready for use.

The optimization part of the algorithm is less costly. Namely, computing the chosen
criterion value (9, 11 or 10) needs 3 (n − 2 h) − 1 and 3 (m − 2 h) − 1 elementary opera-
tions (addition, multiplications or comparisons) repeated 2 h + 1 times. Summarizing, it is
approximately 6 (n + m) h elementary operations. Finding minimum among 2 h + 1 values,
when h is small in comparison to n and m, is negligible from the computational point of
view.

Centering (along rows and columns separately) is performed twice with respect to all
pixel values, so its computational complexity is 4 n m per image. Thus, this procedure is
more expensive than the process of computing energy histograms. Similarly as in spatial
cross-correlation, it is not necessary, if no offset in pixel intensity is expected ( β = 0 in (1)).
Due this rather uncommon centering, the normalization of energy histograms (8) can be done
relatively efficiently by using partial sums of appropriate histograms (see an optional part
of Step 4). Namely, obtaining partial sums needs n + m − 2 additions (Step 3). Further, the
normalization is repeated 2 h + 2 times, performing 2 (m + n − 4 h) elementary operations.
Summarizing, the normalization of histograms has O(m + n) complexity. When α in (1)
equals 1, i.e., we do not expect changes in the pixel intensity scale, then the normalization
should be avoided.

For comparison, 2-D phase only correlation method has O(n m(log2 n + log2 m)) com-
plexity with the implied constant depending on the method of counting operation in a complex
domain (this constant equals 15 if real operation are taken into account and complex oper-
ations are counted as adequately more costly than real, Brunelli 2009). This means that for
n = m = 1, 024 we obtain 15 · 20 n mt. Notice, that we should add also the complexity of
normalization and windowing. These costs are linear with respect to the number of image
piksels n m.

Summarizing, the computational complexity of the proposed method is about 6 n m +
6 (n + m) h, assuming that the centering and normalization are avoided. Otherwise, one
should add also 4 n m and 4 (h + 1) (m + n). Thus, the ratio of the computational costs
of our method to 2-D phase only correlation method is equal to 0.036 for h = 100 and
n = m = 1, 024.

4 Shift detection in the presence of an additive noise

The proposed methodology is robust to the moderate level of noise corrupting consecu-
tive image frames. We assume that images are perturbed by a white Gaussian noise with a
covariance matrix σ 2 I .

Theoretical analysis of behavior of formulas 9, 11 or 10 in the presence of noise is in
general a very complicated task. Nevertheless, it is relatively easy to examine some crucial
parts of these goal functions, namely the mean energy differences in the positions close to
optimum. We restrict our attention to the energy of rows, because the energy of columns
analysis is analogous. It is easy to see, that
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�i (F, T, noise) = ri (F + ε1) − ri (T + ε2) = ri (F) − ri (T )

+ 2

n

n∑

j=1

(
fi jε1i j − ti jε2i j

) + 1

n

n∑

j=1

(
ε2

1i j − ε2
2i j

)
. (13)

1
n

∑n
j=1 ε2

1i j and 1
n

∑n
j=1 ε2

2i j follow σ 2/nχ2
n distributions with the same means σ 2 and

the same variances 2σ 4. Thus, the last summand in (13) is negligible, since the expectation of
1
n

∑n
j=1(ε

2
1i j −ε2

2i j ) equals zero and its variance is rather small for σ 2 < 1. The second sum-

mand 2
n

∑n
j=1( fi jε1i j − ti jε2i j ) follows the normal distribution N (0, σ

√
2/n

∑
i ( f 2

i j + t2
i j ),

where 2/n
∑

i ( f 2
i j + t2

i j ≤ 4.
Simplifying the analysis, we can assume that �i (F, T, noise) = ri (F) − ri (T ) + Zi ,

where each Zi is iid normal random variable with zero mean and the variance smaller than
4σ 2.

So, in the case of LS error function (9) for vertical direction, we have

E

{
1/(m − 2h)

m−h∑

i=h+1

[
�i (F, T, noise)2 − (ri (F) − ri (T ))2]

}
≤ 4σ 2. (14)

The similar formula one can obtained for horizontal LS error function (9). The maximum
absolute deviation objective (10) is non robust against noise.

5 Randomized algorithm

In the previous paper (Skubalska-Rafajlowicz 2011) we concentrate mostly on the problem of
fast detection and estimation of translations in large image frames using random projections
(Vempala 2004) which can be used for fast digital image stabilization, image registration etc.
Recent results on random projections provide tools for dimensionality reduction, which retain
(with prescribed accuracy and probability) the Euclidean norm of projected vectors and the
Euclidean distances between pairs of these vectors. Random projection based image trans-
formation is a linear projection from an image space to lower dimensional Euclidean space
and may be treated as a kind of lossy compression (Jeong and Principe 2008; Tsagkatakis
and Savakis 2009). However, the mentioned random projections have been found to be com-
putationally efficient and sufficiently accurate when computationally time-consuming tasks
are performed in an approximately isometrically equivalent Euclidean space (Skubalska-
Rafajlowicz 2008), here we propose another method of defining a random projection based
on uniform columns (rows) sub-sampling. Many randomized algorithms have been intro-
duced for matrix approximation, matrix computation and image processing ( see for example
Drinea et al. 2001; Woolfe et al. 2008; Xu et al. 1990, among many others). Uniform image
columns and rows sampling during fast computing lateral energy projections r and c can be
treated as a method of defining an approximate isometry with respect to row and columns
vector norms. Instead of summing along all pixels in a row (in a column), we compute the
mean energy of a row (a column) on the basis of randomly chosen pixels. Figure 6 shows
horizontal mean energy projections for 100 × 100 image ‘Baboon’ obtained by summing
along all rows and obtained by summing along uniformly sampled 50 rows. Note, that a
lateral histogram contains a lot of other information about the image structure. Here we can
infer about the approximate column symmetry of ‘Baboon’.

The method of randomization can be seen as sampling from a finite population. Let Z be a
discrete random variable which takes values from set x2

1 , x2
2 , . . . , x2

n with equal probabilities
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Fig. 6 Horizontal mean energy projections for 100 × 100 image ‘Baboon’ obtained by summing along all
rows and obtained by summing along uniformly sampled 50 rows

1
n , where xi ∈ [0, 1]. Let Zi i = 1, . . . , k be independent, identically distributed copies of
Z . Using the well-known Hoeffding inequality (Hoeffding 1963) we obtain

P

{∣∣∣∣∣
1

k

k∑

i=1

Zi − E[Z ]
∣∣∣∣∣ > ε

}
≤ 2 exp −2ε2k, (15)

where E[Z ] = 1
n

∑n
i=1 x2

i . When x2
i stands for the energy of the i-th pixel in a row (alterna-

tively column), then E[Z ] is the exact mean energy of that row (column) and 1
k

∑k
i=1 Zi is

its estimate. Let δ > 0 stands for an acceptable level of probability that the estimate differs
from the true value E[Z ] by more than ε > 0 for every row vector. Using the union bound
we have

2m exp −2ε2k ≤ δ, (16)

Thus, we can expect that, if

k ≥ log 2m − log δ

2ε2 , (17)

then with a probability of at least 1 − δ norms of any configuration of m vectors will be
approximated with ε accuracy. Notice, that inequality (17) is formulated for m rows of the
image under consideration and subsampling is performed with respect to columns (we take
k from n columns). If ε is too small than it can happen that k > n. In such a case the required
accuracy could not be guaranteed. Nevertheless, if the image is large, then the randomized
algorithm allows us to obtain a good estimate of the mean energy histogram.

6 Experiments

In this section, we experimentally analyze the performance of the proposed method of image
displacement estimation based on energy lateral histograms and compare it with the similar
approach based on integral lateral histograms (Alliney and Morandi 1986; Davies 2005).
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Fig. 7 100 × 100 image ‘Baboon’ (left panel). Matching of horizontal energy histograms between ‘Baboon’
and its copy translated by (5, −5) pixels (right panel)

The images used for simulations are:

1. ‘Krill’ – Antarctic krill ommatidia.jpg (1,158 × 1,123 pixels). Ommatidia of eye of
Antarctic krill. We have used a gray level part of that image of the size 1,000 × 1,000
pixels, mean pixel intensity 0.235 in [0, 1] scale.

2. ‘Grapes’ – image size 2,500 × 1,700 pixels, gray level scale, mean pixel intensity 0.45
in [0, 1] scale (see Fig. 1).

3. ‘Polio’ – Polio EM PHIL 1875 lores.PNG. Electron micrograph of the poliovirus; image
size 724 × 1,000 pixels (700 × 900 pixels used), gray level scale, mean piksel intensity
0.584 in [0, 1] scale.

4. ‘Struvite’ – Struvite crystals dog with scale 1.jpg, Struvite (magnesium ammonium phos-
phate) crystals found microscopically; image size 1,427 × 1,175 pixels (1,000 × 1,000
pixels used), gray level scale, mean pixel intensity 0.847 in [0, 1] scale.

5. ‘Baboon’ – image size 150 × 150 pixels (100 × 100 pixels used), gray level scale, mean
pixel intensity 0.503 in [0, 1] scale (see Fig. 7).

6. ‘Star1’ – artificial image of the size 1,050 × 1,050 piksels, the bright circle of radius 10
px on dark (0.3) background.

7. ‘Star2’ – artificial image of the size 550 × 550 piksels, the bright circle of radius 10 px
on dark (0.3) background.

8. ‘Uniform noise’ – artificial image of the size 1,050 × 1,050 piksels. Intensity image
piksels were independently generated from the continuous uniform distribution on the
unit interval [0, 1]. Five different images were generated.

In simulations translation values are chosen at random according to the discrete uniform
distribution on [−10, 10], i.e., a replica of the image can be shifted at most by (10, 10) or by
(−10,−10).

The operation of generating randomly shifted versions of the image was repeated 1,000
times for each test image (in the noiseless circumstances and with additive white Gaussian
noise) and shift estimates are calculated by both the histogram-based methods that are used
in combination with LS, SAD and MAD objective functions. The root mean square error
(RMSE) was employed as a criterion for evaluating the accuracy of the image shift estimation
in both directions.

6.1 Noiseless conditions

We have examined the performance of all version of the proposed algorithm for all com-
binations of possible integer shifts in both directions, taken from the interval [−10, 10].

123



288 Multidim Syst Sign Process (2014) 25:273–294

100 50 50 100

0.0002

0.0004

0.0006

0.0008

100 50 50 100

0.02

0.04

0.06

0.08

100 50 50 100

0.005

0.010

0.015

0.020

0.025

Fig. 8 LS (left panel) MAD and SAD (right panel) criteria values for vertical shift estimation obtained for
image ‘Grapes’ translated by vector (10,−10) and corrupted by a white noise with dispersion σ = 0.1
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Fig. 9 LS (left panel) MAD and SAD (right panel) criteria values for vertical shift estimation obtained for
image ‘Grapes’ translated by vector (10,−10) and corrupted by a white noise with dispersion σ = 0.2

In noiseless case, the proposed method provides non erroneous shift estimates – one iteration
was sufficient for all test images, except ‘Baboon’ image.

For ‘Baboon’ , when only one iteration of the algorithm has been performed, some esti-
mation errors occurred. Namely, the obtained RMSE errors (in piksels) are: 0.44 (MAD),
0.76 (SAD) and 0.62 (LS) for energy histograms and 0.65 (MAD), 1.66 (SAD) and 1.50 (LS)
for integral histograms, respectively. After two iterations of the algorithm equipped with LS
criterion (for both types of histogram, i.e., energy and integral histograms) we have obtained
perfect (no errors) shift estimates.

6.2 Shift estimation under noisy condition—experiments

We apply the method to the situation, when images are disturbed by an additive white Gaussian
noise, different for an image and for a template. Figure 8 demonstrates that white Gaussian
noise with the dispersion σ = 0.1 added to “Grapes” test image does not degrade the method
performance (see also Figs. 4, 5 for comparisons).

The similar experiments with the noise dispersion σ = 0.2 demonstrate also robustness
of the method. See Fig. 9 for details.

However, the variability of the mean energy projections introduced by the noise is easily
visible (Fig. 10), but additive criteria, especially LS, easily eliminate this variability and lead
to good translation estimates.

Tables 1 and 2 present the results of our estimation procedure applied to each test image
and various noise variance. The results were averaged over 1,000 trials in each case. The test
images can be divided into two groups. The first one (see Table 1) contains images for which
the algorithm is relatively robust to the noise. The second one consists of test problems for
which the estimates can be degraded by an additive noise. As previously, translations ranges
from −10 to 10 pixels in both directions.

The analysis of Tables 1 and 2 leads to the conclusion that LS method is superior in
almost all cases. The other two criteria (SAD and MAD) are useful in specific cases, e.g.,
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Fig. 10 Vertical mean energy projections obtained for images ‘Grapes’ and its copy translated by vector
(10, −10) in the presence of a white Gaussian noise with σ = 0.2

Table 1 RMSE error [in piksels] of shift estimates (obtained in one iteration of the algorithm) using energy
histograms (eh) and integral histograms (ih) with different levels of noise—“easy” problems

Image Hist. type σ = 0.1 σ = 0.2 σ = 0.3

MAD SAD LS MAD SAD LS MAD SAD LS

Krill eh 0 0 0 0.59 0.17 0.07 1.09 0.59 0.50

ih 0.14 0 0 0.72 0.26 0.09 1.10 0.61 0.54

Grapes eh 0.43 0 0 1.04 0.58 0.12 1.61 0.61 0.54

ih 0.42 0 0 0.98 0.16 0.09 1.74 0.63 0.57

Polio eh 0.03 0 0 0.51 0 0 0.97 0 0

ih 0.03 0 0 0.39 0 0 1.56 0.03 0

Uniform eh 0 0 0 0.22 0 0 3.5 0 0

r. noise ih 0 0 0 0.36 0 0 3.4 0.03 0

Table 2 RMSE error [in piksels] of shift estimates (obtained in one iteration of the algorithm) using energy
histograms (eh) and integral histograms (ih) with different levels of noise—“hard” problems

Image Hist. type σ = 0.05 σ = 0.1 σ = 0.15

MAD SAD LS MAD SAD LS MAD SAD LS

Struvite eh 0.30 0 0 0.88 0.24 0.19 1.38 0.58 0.51

ih 0.43 0 0 0.96 0.10 0.10 1.22 0.54 0.48

Baboon eh 0.83 0.79 0.74 1.51 0.94 0.90 2.40 1.67 1.60

ih 1.30 1.73 1.55 1.65 1.67 1.61 2.44 1.96 1.98

Star1 eh 0.04 0.9 0.36 2.25 2.60 2.02 5.0 4.3 3.6

ih 1.48 2.07 1.45 3.40 4.12 3.17 8.6 7.4 5.9

Star2 eh 0 0.48 0 1.19 1.54 1.13 2.60 2.59 2.08

ih 0.75 1.20 0.85 2.05 2.23 1.78 4.05 3.55 3.02

when we expect outliers (rarely occurring large errors). In many cases both types of the
histograms provide comparable accuracy, but a closer look reveals that the energy histogram
is more robust against noise (see Table 2). It can be observed also that the accuracy of the
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Fig. 11 LS functions for shift estimation for image ‘Grapes’ translated by vector (50, −50) on the basis of
randomly chosen 80 columns and 100 rows: estimated vertical shift (left panel), estimated horizontal shift
(right panel)
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Fig. 12 LS functions for shift estimation for image ‘Grapes’ translated by vector (50, −50) on the basis of
randomly chosen 80 columns and 100 rows (second iteration) : estimated vertical shift (left panel), estimated
horizontal shift (right panel)

shift estimation depends more on the image contents than on signal to noise ratio (SNR).
For example, SNR for test image ‘Struvite’ and σ = 0.15 equals 15.03 dB and SNR for test
image ‘Grapes’ and σ = 0.3 equals 3.55 dB. Although SNR’s of these two images differ
essentially, in both cases we have obtained similar errors (see Tables 1, 2).

Experiments—randomized version of computing energy histograms Larger images like
‘Grapes’ allow for essential dimensionality reduction. Figure 11 demonstrates the almost
exact effects of the proposed reduction of dimensionality method (see Sect. 5) when only 80
of 1,700 columns and 100 of 2,300 were used for building mean energy histograms. In the
next iteration of the algorithm exact shifts were estimated using a L S criterion function (see
Fig. 12). The same solution can be obtained performing 1 iteration of the non-randomized
algorithm. Thus, the randomized method leads in this example to over 10 times lower com-
putational costs.

Systematic experiments have been performed on test image “Grapes” in order to determine
the influence of reduction of dimensions according to the method proposed in Sect. 5. Results
of the simulations are presented in Table 3. Usually, only the first iteration of the algorithm
has been performed. The respective results obtained for two iterations of the algorithm are
shown in brackets when such simulations has been performed. The randomized algorithm
is a way to reduce further the computational cost, which is important, especially for large
images. The random selection of k rows and columns that are used for calculating approximate
histograms allows to reduce the computational costs from 3 m n to 2 k (m + n) per image.
Simultaneously, the analysis of Table 3 reveals that there is almost no lost in the accuracy for
small noise variance. For k = 800 (obtained from (17) for δ = 0.1 and ε = 0.1) we observe
that RMSE error is zero or very small for σ = 0.1.
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Table 3 RMSE error [in piksels] of shift estimation obtained using energy histograms in noiseless conditions
and with different levels of white Gaussian noise with objective function LS

k Without noise σ = 0.1 σ = 0.2

100 0.48 (0.0) 0.99 1.79

200 0.29 (0.0) 0.71 1.37

500 0.0 0.30 (0.07) 0.96

800 0.0 0.13 (0.0) 0.82

k randomly chosen columns (rows) was taken for computing the mean energy vertical (horizontal) histograms
of test image ‘Grapes’

7 Conclusions

In this work mean energy lateral histograms have been developed and used for translation
of frames detection and to the estimation of a shift vector. In most cases it is sufficient to
use only one iteration of the algorithm for obtaining the best possible translation estimates.
The next iterations can lead to better shift detection only if the noise level is relatively low.
Unfortunately, this level of noise can not be defined in the terms of image SNR. The reason
follows from the fact, that the accuracy of the shift estimation depends more on the image
contents than on SNR.

The mean energy histogram can be seen as a second moment based method. The lateral
image histogram exploited method (Alliney and Morandi 1986) is, in this context, a first
moment based method, which is computationally very efficient but not so accurate in the
presence of noise.

The proposed algorithm is characterized by its low computational costs in comparison to
correlation based methods. Its computational complexity is O(m n) which is much smaller
than computational complexity of the 2-D phase only correlation method. The randomized
algorithm is a way to reduce further the computational cost, which is important, especially
for large images. Dimensionality reduction in image processing (and in general in signal
processing) is one of the most important problems which need further development.

The presented method is designed for images translations, but one can expect that a
mean energy histograms contain enough information for analysis of other specific affine
transformations of large images, which indicate also future research directions.
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