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Abstract In the paper the optimization problem described by some nonlinear hyperbolic
equation being continuous counterpart of the Fornasini-Marchesini model is considered. A
theorem on the existence of at least one solution to this hyperbolic PDE is proved and some
properties of the set of all solutions are established. The existence of a solution to an optimiza-
tion problem under appropriate assumptions is the main result of this paper. Some application
of the obtained results to the process of gas filtration is also presented.
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1 Introduction

In this paper we consider an optimal control problem governed by system of hyperbolic
equations of the form

∂2z

∂x∂y
(x, y) = f

(
x, y,

∂z

∂x
(x, y) ,

∂z

∂y
(x, y) , z (x, y) , u (x, y)

)
(1)

for almost every (x, y) ∈ P := [0, 1] × [0, 1] with the cost indicator

J (z) =
1∫

0

F
(
t, ϕ′ (t) , ϕ′′ (t) , ψ ′ (t) , ψ ′′ (t)

)
dt + g

(
ϕ (0) , ϕ′ (0) , ψ ′ (0)

)
,

where ϕ (t) = z (t, 0) and ψ (t) = z (0, t) for every t ∈ [0, 1].
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System (1) can be viewed as a continuous nonlinear version of the Fornasini-Marchesini
model (cf. Fornasini and Marchesini 1978/1979; Kaczorek 1985; Klamka 1991), which is
well known in the theory of discrete multidimensional systems. It should be underlined that
such discrete systems play an important role in the theory of automatic control (cf. Fornasini
and Marchesini 1976). Moreover, continuous systems of the form specified by (1) can be
used for modelling of the process of gas absorption (cf. Idczak et al. 1994; Tikhonov and
Samarski 1990) for which some numerical results can be found in Rehbock et al. (1998). For
related results on Fornasini-Marchesini models one can see Cheng et al. (2011), Yang et al.
(2007), Idczak (2008).

Furthermore, it should be noted that system (1) was investigated in many papers apart
from the aforementioned ones. Specifically, the problem of the existence and uniqueness
of solutions to (1) with boundary conditions ϕ (t) = z (t, 0) and ψ (t) = z (0, t) has been
proved for the linear case in Idczak and Walczak (2000) and for the nonlinear case in Idczak
and Walczak (1994). Moreover, some results establishing the existence of optimal solutions
for the problem governed by (1) can be found in Idczak and Walczak (1994) for the case of
the Lagrange problem with controls with bounded variation, in Idczak et al. (1994) for the
case of the problem with the cost of rapid variation of control, and in Majewski (2006) for
the case of the Lagrange problem with integrable controls. It should be underlined that both
in Idczak and Walczak (2000) and Idczak and Walczak (1994) zero initial conditions were
considered. While in this paper the problem with general initial conditions are treated. Our
considerations involve the minimization of the cost functional which depends on the bound-
ary values of the solutions to the PDE. The situation in which the boundary data appear in
the cost functional is referred to as the classical Mayer problem for ODEs. Our extension
can be seen as a new contribution towards the Mayer problem governed by PDEs which can
be useful in many practical applications.

The paper is organized as follows. In Sect. 2, the optimization problem is formulated
and the space of solutions is defined. Section 3 is devoted to formulation of the required
assumptions. Next, in Sect. 4, the theorem on the existence of a solution to the system (1)
is proved and some properties of the set of all solutions are stated. Subsequently, the main
result of the paper can be proved, namely the theorem stating that under some assumptions
optimal control problem possesses at least one solution. Finally, in Sect. 5, an application of
the obtained results to the process of gas filtration is presented.

2 Formulation of the problem

The problem under consideration is as follows:
Find a minimum of the functional

J (z) =
1∫

0

F
(
t, ϕ′ (t) , ϕ′′ (t) , ψ ′ (t) , ψ ′′ (t)

)
dt + g

(
ϕ (0) , ϕ′ (0) , ψ ′ (0)

)
, (2)

subject to

∂2z

∂x∂y
(x, y) = f

(
x, y,

∂z

∂x
(x, y) ,

∂z

∂y
(x, y) , z (x, y) , u (x, y)

)

for a.e. (x, y) ∈ P := [0, 1] × [0, 1] (3)

where ϕ (t) = z (t, 0) and ψ (t) = z (0, t) for t ∈ [0, 1],
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z ∈ Z :=
{

z ∈ AC
(

P,RN
)

: z (·, 0) , z (0, ·) ∈ H2
(

[0, 1] ,RN
)}
, (4)

u ∈ U :=
{

u : P → R
M : u is measurable and u (x, y) ∈ U for a.e. (x, y) ∈ P

}
(5)

where U ⊂ R
M is a given compact set.

In the definition of Z given in (4), AC
(
P,RN

)
denotes the set of absolutely continuous

functions of two variables defined on P . A function z : P → R is said to be absolutely
continuous on P if

1. the associated function Fz of an interval defined by the formula

Fz ([x1, x2] × [y1, y2]) = z (x2, y2)− z (x1, y2)+ z (x1, y1)− z (x2, y1)

for all intervals [x1, x2] × [y1, y2] ⊂ P is an absolutely continuous function of an
interval (see Łojasiewicz (1988) for details),

2. the functions z (·, 0) and z (0, ·) are absolutely continuous on [0, 1].

A function z = (z1, . . . , zN ) : P → R
N is said to be absolutely continuous on P if

all coordinates functions zi are absolutely continuous on P for i = 1, . . . N . In the paper
Walczak (1987), the author proved that a function z : P → R

N is absolutely continuous if
and only if there exist functions lz ∈ L1

(
P,RN

)
, l1

z , l
2
z ∈ L1

(
[0, 1] ,RN

)
, and a constant

c ∈ R
N such that

z (x, y) =
x∫

0

y∫
0

lz (s, t) dsdt +
x∫

0

l1
z (s) ds +

y∫
0

l2
z (t) dt + c (6)

for all (x, y) ∈ P. Moreover, an absolutely continuous function z having the representation
(6) possesses, in the classical sense, the partial derivatives

∂z

∂x
(x, y) =

y∫
0

lz (x, t) dt + l1
z (x) ,

∂z

∂y
(x, y) =

x∫
0

lz (s, y) ds + l2
z (y) ,

∂2z

∂x∂y
(x, y) = lz (x, y)

for a.e. (x, y) ∈ P.
It is obvious that z ∈ Z if and only if it has the following representation

z (x, y) =
x∫

0

y∫
0

l (s, t) dsdt + ϕ (x)+ ψ (y)− z (0, 0) for (x, y) ∈ P, (7)

where l ∈ L1
(
P,RN

)
, ϕ, ψ ∈ H2

(
[0, 1] ,RN

)
and ϕ (0) = ψ (0) . Furthermore,

we have that ϕ (x) = z (x, 0) , ψ (y) = z (0, y) for x, y ∈ [0, 1] and z possesses

derivatives ∂2z
∂x∂y ,

∂z
∂x ,

∂z
∂y and ∂2z

∂x∂y (x, y) = l (x, y) , ∂z
∂x (x, y) = ∫ y

0
∂2z
∂x∂y (x, t) dt +

ϕ′ (x) , ∂z
∂y (x, y) = ∫ x

0
∂2z
∂x∂y (s, y) ds + ψ ′ (y) for a.e. (x, y) ∈ P .

By H2
(
[0, 1] ,RN

)
we denote the space of absolutely continuous functions defined on

[0, 1] such that x ′ is absolutely continuous and x ′′ ∈ L2
(
[0, 1] ,RN

)
.
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3 Basic assumptions

In the paper we shall use the following assumptions.

(A1) The function

P � (x, y) �→ f (x, y, z1, z2, z, u) ∈ R
N

is measurable for (z1, z2, z, u) ∈ R
N × R

N × R
N × R

M and the function

R
M � u �→ f (x, y, z1, z2, z, u) ∈ R

N

is continuous for (z1, z2, z) ∈ R
N × R

N × R
N and a.e. (x, y) ∈ P.

(A2) There exists a constant L > 0 such that

| f (x, y, z1, z2, z, u)− f (x, y, w1, w2, w, u)| ≤ L (|z−w| + |z1 − w1| + |z2 − w2|)
for (z1, z2, z) , (w1, w2, w) ∈ R

N × R
N × R

N , u ∈ U and a.e. (x, y) ∈ P.
(A3) There exists b > 0 such that

| f (x, y, 0, 0, 0, u)| ≤ b

for a.e. (x, y) ∈ P and u ∈ U.

(A4) The function

[0, 1] � t �→ F (t, v) ∈ R
N

is measurable for every v ∈ R
4N and the function

R
4N � v �→ F (t, v) ∈ R

N

is continuous for a.e. t ∈ [0, 1].
(A5) For every bounded set B ⊂ R

4N there is a function υB ∈ L1
([0, 1],R+)

such that

F (t, v) ≤ υB (t)

for a.e. t ∈ [0, 1] and every v ∈ B.
(A6) There are positive constants αi and functions βi ∈ L2 ([0, 1] ,R) , γi ∈ L1 ([0, 1] ,R) ,

i = 1, 2, 3, 4 such that

F (t, v1, v2, v3, v4) ≥
4∑

i=1

(
αi |vi |2 + βi (t) |vi | + γi (t)

)

for a.e. t ∈ [0, 1] and every vi ∈ R
N , i = 1, 2, 3, 4.

(A7) The function g : R
3N → R is lower semicontinuous and coercive, i.e. g (v) → ∞ if

|v| → ∞.

4 Existence of solution and the main result

To begin with we shall prove the theorem on the existence of solution to the system (3). We
also formulate some properties of the set of all solutions.

Theorem 1 Let assumptions (A1)–(A4) be satisfied. Then, for each control u ∈ U , and each
ϕ,ψ ∈ H2

(
[0, 1] ,RN

)
such that ϕ (0) = ψ (0) there exists a unique solution zu,ϕ,ψ ∈ Z to

(3) satisfying condition zu,ϕ,ψ (x, 0) = ϕ (x) , and zu,ϕ,ψ (0, y) = ψ (y) for x, y ∈ [0, 1].
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Moreover, for any c > 0 there exists ρ > 0 such that if ϕ,ψ ∈ H2
(
[0, 1] ,RN

)
, ϕ (0) =

ψ (0) and |ϕ (x)| , |ψ (x)| , ∣∣ϕ′ (x)
∣∣ , ∣∣ψ ′ (x)

∣∣ ≤ c for x ∈ [0, 1] , then

∣∣∣∣∂
2zu,ϕ,ψ

∂x∂y
(x, y)

∣∣∣∣ ,
∣∣∣∣∂zu,ϕ,ψ

∂x
(x, y)

∣∣∣∣ ,
∣∣∣∣∂zu,ϕ,ψ

∂y
(x, y)

∣∣∣∣ ,
∣∣zu,ϕ,ψ (x, y)

∣∣ ≤ ρ

for a.e. (x, y) ∈ P and u ∈ U .

Proof For a fixed u ∈ U and ϕ,ψ ∈ H2
(
[0, 1] ,RN

)
such that ϕ (0) = ψ (0), consider the

operator T : L1
(
P,RN

) → L1
(
P,RN

)
defined by

T (l) (x, y) = f

⎛
⎝x, y,

y∫
0

l (x, t) dt + ϕ′ (x) ,
x∫

0

l (s, y) ds + ψ ′ (y) ,

x∫
0

y∫
0

l (x1, y1) dx1dy1 + ϕ (x)+ ψ (y)− ϕ (0) , u (x, y)

⎞
⎠ .

It can be proved by applying the Banach Contraction Principle, in the same manner as in
Idczak and Walczak (1994), that the operator T possesses a unique fixed point l̃ ∈ L1

(
P,RN

)
and consequently, if we define

zu,ϕ,ψ (x, y) :=
x∫

0

y∫
0

l̃ (s, t) dsdt + ϕ (x)+ ψ (y)− ϕ (0) , (x, y) ∈ P

we have that zu,ϕ,ψ ∈ Z is the unique solution to (3) satisfying conditions ϕ (x) =
zu,ϕ,ψ (x, 0) and ψ (y) = zu,ϕ,ψ (0, y) for x, y ∈ [0, 1] .

Moreover, from the proof of Banach Contraction Principle it follows that for ln := T n (0) ,
we get that ln → l̃ in L1

(
P,RN

)
. Next, for k ≥ 2, by (A2)-(A3), it is possible to show that

|lk (x, y)− lk−1 (x, y)| is bounded by a sum of 3k−1 terms each of them is a product of Lk−1

and some multiple integral. In each of this multiple integral we have at least
[ k−2

2

]
integra-

tions with respect to variable which appears as the upper limit of the integration. Therefore,
using the Cauchy formula for multiple integral we obtain

|lk (x, y)− lk−1 (x, y)| ≤ (3L)k−1 c1[ k−2
2

]!
for a.e. (x, y) ∈ P and k ≥ 2, where c1 is independent of (x, y) and k. Passing then, if
necessary, to a subsequence, we get the following estimate

∣∣∣l̃ (x, y)
∣∣∣ ≤ lim

j→∞

j∑
k=2

|lk (x, y)− lk−1 (x, y)| + |l1 (x, y)| ≤
∞∑

k=2

c1
(3L)k−1[ k−2

2

]! + c2

for a.e. (x, y) ∈ P , where c2 is independent of (x, y) and k. Eventually,
∣∣∣∣∂

2zu,ϕ,ψ

∂x∂y
(x, y)

∣∣∣∣ ≤ ρ1 < ∞,

∣∣zu,ϕ,ψ (x, y)
∣∣ ≤

x∫
0

y∫
0

∣∣∣l̃ (s, t)
∣∣∣ dsdt + |ϕ (x)| + |ψ (y)| + |ϕ (0)| ≤ ρ1 + 3c := ρ,
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∣∣∣∣∂zu,ϕ,ψ

∂x
(x, y)

∣∣∣∣ ≤
y∫

0

∣∣∣l̃ (x, t)
∣∣∣ dt + ∣∣ϕ′ (x)

∣∣ ≤ ρ1 + c ≤ ρ

and

∣∣∣∣∂zu,ϕ,ψ

∂y
(x, y)

∣∣∣∣ ≤
x∫

0

∣∣∣l̃ (s, y)
∣∣∣ ds + ∣∣ψ ′ (y)

∣∣ ≤ ρ1 + c ≤ ρ

for a.e. (x, y) ∈ P, which completes the proof. ��

Theorem 1 forms the basis for the proof of the main result of this paper.

Theorem 2 Assume (A1)–(A7). If the set

Q (x, y, z) :=
{
(ζ1, ζ2, ζ3) ∈ R

3N : ∃ u ∈ U such that ζ1 = f (x, y, ζ2, ζ3, z, u)
}

is convex for a.e. (x, y) ∈ P and any z ∈ R
N , then problem (2–5) possesses at least one

solution.

Proof Let {zn}n∈N be a minimizing sequence for J . By (A6–A7), there is a constant c̄ > 0
such that

1∫
0

∣∣ϕ′
n (x)

∣∣2
dx,

1∫
0

∣∣ψ ′
n (x)

∣∣2
dx,

1∫
0

∣∣ϕ′′
n (x)

∣∣2
dx,

1∫
0

∣∣ψ ′′
n (x)

∣∣2
dx,

|ϕn (0)| ,
∣∣ϕ′

n (0)
∣∣ , |ψn (0)| ,

∣∣ψ ′
n (0)

∣∣ ≤ c̄,

for n ∈ N, where ϕn (t) = zn (t, 0) and ψn (t) = zn (0, t). Therefore,

|ϕn (x)| ≤
x∫

0

∣∣ϕ′
n (s)

∣∣ ds + |ϕn (0)| ≤
1∫

0

∣∣ϕ′
n (s)

∣∣ ds + c̄ ≤

√√√√√
1∫

0

∣∣ϕ′
n (s)

∣∣2
ds + c̄ ≤ c,

where c > 0 and similarly |ψn (x)| ,
∣∣ϕ′

n (x)
∣∣ , ∣∣ψ ′

n (x)
∣∣ ≤ c for x ∈ [0, 1] and n ∈ N. By

virtue of Theorem 1, we have
∣∣∣∣ ∂

2zn

∂x∂y
(x, y)

∣∣∣∣ ,
∣∣∣∣∂zn

∂x
(x, y)

∣∣∣∣ ,
∣∣∣∣∂zn

∂y
(x, y)

∣∣∣∣ , |zn(x, y)| ≤ ρ (8)

for a.e. (x, y) ∈ P and n ∈ N, thus
{
∂2zn
∂x∂y

}
n∈N

,
{
∂zn
∂x (·, 0)

}
n∈N

,
{
∂zn
∂y (0, ·)

}
n∈N

are equiab-

solutely integrable and therefore {zn}n∈N is equiabsolutely continuous (see Idczak and Wal-
czak 2000, Th. 3.3).

Next, applying the Arzelà-Ascoli theorem (see Idczak and Walczak 2000, Th. 3.4) and the
Dunford-Pettis theorem (see Cesari 1983, Th. 10.3.i), we may assume that zn ⇒ z0 ∈ Z on

P uniformly, and ∂2zn
∂x∂y ⇀

∂2z0
∂x∂y ,

∂zn
∂x ⇀ ∂z0

∂x ,
∂zn
∂y ⇀ ∂z0

∂y weakly in L1
(
P,RN

)
as n → ∞.

Since zn is a solution to (3), then
(
∂2zn

∂x∂y
(x, y) ,

∂zn

∂x
(x, y) ,

∂zn

∂y
(x, y)

)
∈ Q (x, y, zn(x, y))
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for a.e. (x, y) ∈ P. Consequently, by Filippov’s Lemma (Cesari 1983, Th. 10.6.i), we have
(
∂2z0

∂x∂y
(x, y) ,

∂z0

∂x
(x, y) ,

∂z0

∂y
(x, y)

)
∈ Q (x, y, z0(x, y))

for a.e. (x, y) ∈ P. Furthermore, from the implicit function theorem (Kisielewicz 1991, Th.
3.12) we infer that there exist a control u0 ∈ U such that

∂2z0

∂x∂y
(x, y) = f

(
x, y,

∂z0

∂x
(x, y) ,

∂z0

∂y
(x, y) , z0(x, y), u0 (x, y)

)
for a.e. (x, y) ∈ P.

Moreover, since zn ⇒ z0, then ϕn (·) = zn (·, 0) ⇒ z0 (·, 0) =: ϕ0 (·) and ψn (·) =
zn (0, ·) ⇒ z0 (0, ·) =: ψ0 (·) . Finally, by (A4), (A5), and invoking the Lebesgue domi-
nated convergence theorem, we get that z0 is optimal, which completes the proof. ��

5 Example of application

Consider a gas filter in the form of a pipe filled up with an appropriate absorbent. A mixture
of gas and air is pressed through the filter with a speed v(x, t) > a > 0,where x is a distance
from the inlet of the pipe, t is a time. Let z (x, t) be the concentration of the gas in the pores
of the absorbent. If we assume that the speed v is sufficiently large to neglect the process of
diffusion then the process of gas absorption can be described by the following equation

∂2z

∂x∂t
(x, t)+ β

v (x, t)

∂z

∂t
(x, t)+ βγ

∂z

∂x
(x, t) = 0,

where β, γ are some physical quantities characterizing the given gas. For more details con-
cerning the derivation of the equation we refer the reader to Rehbock et al. (1998), Tikhonov
and Samarski (1990).

Let ϕ (x) = z (x, 0) be the concentration of the gas at a distance x at the time t = 0 and
ψ (t) = z (0, t) be the concentration of a gas at the time t at the inlet of a pipe. Without
loss of generality, we may assume that (x, t) ∈ [0, 1] × [0, 1] . Suppose that we can control
the process of gas absorption by changing the speed v (x, t) ∈ [a, vmax] to minimize the
following cost indicator

J (z) =
1∫

0

F
(
τ, ϕ′ (τ ) , ϕ′′ (τ ) , ψ ′ (τ ) , ψ ′′ (τ )

)
dτ + g

(
ϕ (0) , ϕ′ (0) , ψ ′ (0)

)
,

where F and g are chosen to satisfy assumptions (A3)–(A7). The quantity ϕ′ can be inter-
preted as a change of gas concentration per unit of distance x at the time t = 0 and ψ ′ can
be interpreted as a change of gas concentration per unit of time at the inlet. Consequently,
ϕ′′ and ψ ′′ are rates of speed of such changes.

It is easy to check that the assumptions (A1)–(A2) are satisfied. Moreover, since the equa-
tion is linear, the convexity assumption required by Theorem 2 is also satisfied. To sum up,
there is an optimal speed v (x, t) which minimizes the functional J.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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