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Abstract This paper investigates the problem of stability analysis and stabilization for
two-dimensional (2-D) discrete fuzzy systems. The 2-D fuzzy system model is established
based on the Fornasini–Marchesini local state-space model, and a control design procedure
is proposed based on a relaxed approach in which basis-dependent Lyapunov functions are
used. First, nonquadratic stability conditions are derived by means of linear matrix inequality
(LMI) technique. Then, by introducing an additional instrumental matrix variable, the sta-
bilization problem for 2-D fuzzy systems is addressed, with LMI conditions obtained for the
existence of stabilizing controllers. Finally, the effectiveness and advantages of the proposed
design methods based on basis-dependent Lyapunov functions are shown via two examples.
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1 Introduction

As is well known, many practical systems can be modeled as two-dimensional (2-D) systems
(Chen et al. 1999; Kaczorek 1985), such as those in image data processing and transmission,
thermal processes, gas absorption and water stream heating. During the last few decades, the
investigation of 2-D systems in the control and signal processing fields has attracted consid-
erable attention and many important results have been reported to the literature. Among these
results, the stability problem of 2-D systems has been investigated in Du and Xie (1999),
Hinamoto (1997), Liu et al. (1998), Lu et al. (1994). Du et al. investigated the stability prob-
lem and gave some stability conditions obtained by the Lyapunov function for 2-D systems
(Du and Xie 1999). They showed that the stability of 2-D discrete systems can be guaranteed
if there are some matrices satisfying a certain linear matrix inequality (LMIs). The controller
and filter design problems have been addressed in Du et al. (2000), Gao et al. (2004), Liu et al.
(1998), Liu and Zhang (2003), Lu and Antoniou (1992), Xie et al. (2002), Lin et al. (2001),
Wu et al. (2007, 2008). Gao et al. (2004) addressed the controller and filter design prob-
lems of controllers and filters for 2-D systems. They extended the results obtained for from
one-dimensional (1-D) Markovian jump systems to investigate the problems of stabilization
and H∞ control for two-dimensional (2-D) systems with Markovian jump parameters. In
addition, the model reduction of 2-D systems has also been solved in Du et al. (2001), Xu
et al. (2005).

However, it is disappointing that many basic issues of 2-D systems still remain. Among
them, the issue of 2-D nonlinear system is quite typical as no systematic and effective approach
can handle its problem up to now. One of the main reasons might be the difficulty in modeling
the nonlinearity. It is noticeable that, in the one-dimensional (1-D) case, the Takagi-Sugeno
(T-S) fuzzy model (Jadbabaie 1999; Tanaka and Wang 2001; Tanaka et al. 2001; Zhou and Li
2005) has shed some light on this difficult problem, based on the fact that the T-S fuzzy model
can approximate the smoothly nonlinear system on a compact set. This model formulates
the 1-D nonlinear systems into a framework consisting of a set of local models which are
smoothly connected by some membership functions. Based on the local linearities, the sta-
bility and performance analysis approaches for 1-D linear systems can be fully developed for
1-D nonlinear systems in this framework. In virtue of this advantage, a number of important
issues in 1-D nonlinear fuzzy control systems have been well studied. Among these results,
stability analysis has been studied in Jadbabaie (1999), Kim and Kim (2002), Kim and Lee
(2000), systematic design procedures have been proposed in Wang et al. (1996), robustness
and optimality have been investigated in Liu et al. (2005), Lu and Doyle (1995), Yoneyama
(2006), Zhou and Li (2005), the problems of stability analysis and stabilization for a class
of discrete-time T-S fuzzy systems with time-varying state delay has been studied in Wu
et al. (2011), the robust fault detection problem for T-S fuzzy Ito stochastic systems has been
tackled in Wu and Ho (2009).

On the other hand, it is noted that the aforementioned research efforts have been focused
on the use of a single quadratic Lyapunov function (de Oliveira et al. 2002; Haddad and
Bernstein 1995), which tends to yield more conservative conditions. More recently, there
appeared a number of results on stability analysis and control synthesis of 1-D dynamic
systems based on basis-dependent Lyapunov functions (Choi and Park 2003; Gao et al.
2009; Guerra and Vermeiren 2004; Zhou et al. 2007). It is shown that, with the use of a
basis-dependent Lyapunov function, less conservative results can be obtained than those
with the use of a single Lyapunov quadratic function. Examples of reduced conservative con-
ditions based on basis-dependent Lyapunov functions can be found in Choi and Park (2003),
Guerra and Vermeiren (2004), Lam and Zhou (2007).
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As explained above, although many problems on 2-D linear systems have been studied,
the synthesis problems for 2-D nonlinear systems have not been fully investigated. On the
other hand, basis-dependent Lyapunov function has not been used in the study of 2D nonlin-
ear systems. This motivates our study. In this paper, we represent the 2-D nonlinear systems
using the T-S fuzzy model and thus solve the problems of 2-D nonlinear fuzzy control systems
with the use of basis-dependent Lyapunov functions. In detail, the 2-D fuzzy system model
is established based on the Fornasini–Marchesini local state-space (FMLSS) model (Chen
et al. 1999; Xie et al. 2002), and the controller design procedure is presented based on a
relaxed approach in which basis-dependent Lyapunov functions are used. First, nonquadratic
stability is derived by means of linear matrix inequality (LMI) technique (Boyd et al. 1994).
Then, by introducing an additional instrumental matrix variable, the stabilization problem for
2-D fuzzy systems is addressed, with LMI conditions obtained for the existence of stabilizing
controllers. Finally, two illustrative examples are provided to show the effectiveness and it
is shown that the results based on basis-dependent Lyapunov functions are less conservative
than those based on basis-independent Lyapunov functions.

The rest of the paper is organized as follows. The problem under consideration is formu-
lated in Sect. 2. Stability analysis is given in Sect. 3, based on which controller designs are
presented in Sect. 4. Illustrative examples are given in Sect. 5 to demonstrate the effectiveness
of the results. Finally, the paper is concluded in Sect. 6.

Notation: The notation used throughout the paper is standard. The superscript T stands for
matrix transposition; R

n denotes the n-dimensional Euclidean space and the notation P > 0
means that P is real symmetric and positive definite; The notation |·| refers to the Euclidean
vector norm; and λmin(·), λmax(·) denote the minimum and the maximum eigenvalues of
the corresponding matrix respectively. In symmetric block matrices or long matrix expres-
sions, we use an asterisk (∗) to represent a term that is induced by symmetry and diag {· · · }
stands for a block-diagonal matrix. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2 Problem formulation

Let us first recall the well known 2-D discrete FMLSS model (Fornasini and Marchesini
1978) given by:

F : xi+1, j+1 = A1xi, j+1 + A2xi+1, j + B1ui, j+1 + B2ui+1, j , (1)

where xi, j ∈ R
n is the local state vector and ui, j ∈ R

m is the input; A1, A2, B1, B2 are
system matrices. Similar to the well-established fuzzy model of 1-D system (Gahinet et al.
1995), we consider 2-D discrete fuzzy model based on a suitable choice of a set of linear
subsystems, according to rules associated with some physical knowledge and some linguis-
tic characterization of the properties of the system. The linear subsystems describe, at least
locally, the behavior of the nonlinear system for a pre-defined region of the state space. The
T-S model for the nonlinear system is given by the following IF-THEN rules:

Model Rule k: IF θ1(i, j) is μk1 and θ2(i, j) is μk2 and . . . and θp(i, j) is μkp , THEN

xi+1, j+1 = A1k xi, j+1 + A2k xi+1, j + B1kui, j+1 + B2kui+1, j ,

where μk1, . . . , μkp are fuzzy sets; A1k, B1k, A2k, B2k are constant matrices; r is the number
of IF-THEN rules and θi, j = [

θ1(i, j), θ2(i, j), . . . , θp(i, j)
]

is the premise variable vector.
Throughout the paper, it is assumed that the premise variables do not depend on the input
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variables explicitly. Then, the final output of the fuzzy system is inferred as

S : xi+1, j+1 =
r∑

k=1

hk(θi, j )
{

A1k xi, j+1 + A2k xi+1, j + B1kui, j+1 + B2kui+1, j
}
, (2)

where

hk
(
θi, j

) = ωk(θi, j )
/ r∑

k=1

ωk(θi, j ),

ωk(θi, j ) =
p∏

l=1

μkl(θl(i, j)),

with μkl(θl(i, j)) ∈ [0, 1] representing the grade of membership of θl(i, j) in μkl . We have

r∑

k=1

ωk(θi, j ) > 0,

ωk(θi, j ) ≥ 0, k = 1, 2, . . . , r,

for all i, j . Therefore, for all i, j we have

r∑

k=1

hk(θi, j ) = 1,

hk(θi, j ) ≥ 0, k = 1, 2, . . . , r.

The boundary conditions are defined by

Xh
0 = [

xT
0,1 xT

0,2 . . . xT
0,M

]T
,

Xv
0 = [

xT
1,0 xT

2,0 . . . xT
N ,0

]T
.

Denote

Xr = sup
{∣∣xi, j

∣∣ : i + j = r, i, j ∈ Z
}
.

Assumption 1 The boundary condition is assumed to satisfy

lim
N→∞

⎧
⎨

⎩

N∑

η=1

(∣∣x0,η

∣∣2 + ∣∣xη,0
∣∣2
)
⎫
⎬

⎭
< ∞.

Then we give the following stability definition which will be used in the paper.

Definition 1 The 2-D discrete fuzzy system S in (2) is said to be asymptotically stable if
lim

r→∞Xr = 0 under the zero input and any boundary conditions such that X0 < ∞.

3 Stability analysis

In this section, we are concerned with the stability analysis of the 2-D discrete fuzzy sys-
tems and we will give some stability conditions obtained with the use of a basis-dependent
Lyapunov function. Before presenting Theorem 1, we first introduce the following lemma
which will be used in the proof of Theorem 1.
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Lemma 1 For matrices P ≥ 0, A, B with appropriate dimensions, the following matrix
inequality holds.

AT PB + BT PA ≤ AT PA + BT PB. (3)

Then, the following theorem shows that the stability of 2-D discrete fuzzy systems can be
guaranteed if there exist some matrices satisfying certain LMIs.

Theorem 1 Consider the 2-D fuzzy system S in (2) under Assumption 1. The 2-D discrete
fuzzy system S in (2) is asymptotically stable if there exist matrices Xk > 0, Yk ≥ 0 and
Zk > 0 satisfying

⎡

⎢
⎣

−Xm −Ym AT
1m Qk

∗ −Zm AT
2m Qk

∗ ∗ −Qk

⎤

⎥
⎦ < 0, (4)

⎡

⎢⎢⎢
⎣

−Xm − Xn −Ym − Yn AT
1m Qk AT

1n Qk

∗ −Zm − Zn AT
2n Qk AT

2m Qk

∗ ∗ −Qk 0

∗ ∗ ∗ −Qk

⎤

⎥⎥⎥
⎦

< 0, (5)

where k = 1, 2, . . . , r; 1 ≤ m < n ≤ r and Qk := Xk + 2Yk + Zk .

Proof To establish the stability of system S , assume ui, j = 0. Then the system S in (2)
can be represented by

xi+1, j+1 =
r∑

k=1

hk(θi, j )
{

A1k xi, j+1 + A2k xi+1, j
}
.

First, by Schur complement equivalence (Boyd et al. 1994), LMIs (4) and (5) are equivalent to
[

AT
1m Qk A1m − Xm AT

1m Qk A2m − Ym

∗ AT
2m Qk A2m − Zm

]

< 0, (6)

[
AT

1m Qk A1m + AT
1n Qk A1n − Xm − Xn AT

1m Qk A2n + AT
1n Qk A2m − Ym − Yn

∗ AT
2m Qk A2m + AT

2n Qk A2n − Zm − Zn

]

<0. (7)

Consider the following index

J := W1 − W2, (8)

with

W1 =
[

xT
i+1, j+1 xT

i+1, j+1

]( r∑

k=1

h+
k Pk

)[
xi+1, j+1

xi+1, j+1

]
,

W2 = x̃ T

(
r∑

k=1

hk Pk

)

x̃,

123



400 Multidim Syst Sign Process (2013) 24:395–415

where h+
k = hk

(
θi+1, j+1

)
, x̃ =

[
xi, j+1

xi+1, j

]
, and Pk :=

[
Xk Yk

∗ Zk

]
> 0. By some algebraic

manipulations, we have

J = xT
i+1, j+1

[
I I

]
(

r∑

k=1

h+
k Pk

)[
I
I

]
xi+1, j+1 − x̃ T

(
r∑

k=1

hk Pk

)

x̃

= xT
i+1, j+1

(
r∑

k=1

h+
k Qk

)

xi+1, j+1 − x̃ T

(
r∑

k=1

hk Pk

)

x̃

= x̃ T

{
r∑

k=1

h+
k

(
r∑

m=1

r∑

n=1

hm(θi, j )hn(θi, j )M1

)}

x̃

= x̃ T

⎧
⎪⎪⎨

⎪⎪⎩

r∑

k=1

h+
k

⎛

⎜⎜
⎝

r∑

m=1
h2

m(θi, j )M2

+
r∑

m=1

∑

n>m
hm(θi, j )hn(θi, j )M3

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
x̃

≤ x̃ T

⎧
⎪⎪⎨

⎪⎪⎩

r∑

k=1

h+
k

⎛

⎜⎜
⎝

r∑

m=1
h2

m(θi, j )M2

+
r∑

m=1

∑

n>m
hm(θi, j )hn(θi, j )M4

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
x̃

= x̃ T �(θi, j , θi+1, j+1)̃x, (9)

where M1, M2, M3, M4 satisfying

M1 =
[

AT
1m Qk A1n − Xm AT

1m Qk A2n − Ym

AT
2m Qk A1n − Ym AT

2m Qk A2n − Zm

]

,

M2 =
[

AT
1m Qk A1m − Xm AT

1m Qk A2m − Ym

∗ AT
2m Qk A2m − Zm

]

,

M3 =
[

AT
1m Qk A1n + AT

1n Qk A1m − Xm − Xn AT
1m Qk A2n + AT

1n Qk A2m − Ym − Yn

∗ AT
2m Qk A2n + AT

2n Qk A2m − Zm − Zn

]

,

M4 =
[

AT
1m Qk A1m + AT

1n Qk A1n − Xm − Xn AT
1m Qk A2n + AT

1n Qk A2m − Ym − Yn

∗ AT
2m Qk A2m + AT

2n Qk A2n − Zm − Zn

]

.

(10)

Hence, from the conditions in (6) and (7), we have �(θi, j , θi+1, j+1) < 0. Then, for x̃ �= 0,

we have

W1 − W2

W2
= − x̃ T

(−�(θi, j , θi+1, j+1)
)

x̃

x̃ T
(∑r

k=1 hk(θi, j )Pk
)

x̃
. (11)
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It is noted that

− �(θi, j , θi+1, j+1) =
r∑

k=1

h+
k

⎛

⎜
⎜
⎝

r∑

m=1
h2

m(θi, j )(−M2(m, k))

+
r∑

m=1

∑

n>m
hm(θi, j )hn(θi, j )(−M4(m, n, k))

⎞

⎟
⎟
⎠ . (12)

Since

r∑

m=1
h2

m(θi, j )(−M2(m, k)) +
r∑

m=1

∑

n>m
hm(θi, j )hn(θi, j )(−M4(m, n, k))

≥
[

λmin(−M2(m, k))

r∑

m=1

h2
m(θi, j ) + λmin(−M4(m, n, k))

r∑

m=1

∑

n>m

hm(θi, j )hn(θi, j )

]

I

≥
⎡

⎣λmin(−M2(m, k))

r∑

m=1

h2
m(θi, j ) + 1

2
λmin(−M4(m, n, k))

r∑

m=1

r∑

n �=m

hm(θi, j )hn(θi, j )

⎤

⎦I

≥
[

min

{
λmin(−M2(m, k)),

1

2
λmin(−M4(m, n, k))

} r∑

m=1

r∑

n=1

hm(θi, j )hn(θi, j )

]

I

=
[

min

{
λmin(−M2(m, k)),

1

2
λmin(−M4(m, n, k))

}]
I, (13)

where λmin(·) is taken to mean the minimum eigenvalue out of all the matrices over the
appropriate indices m, n and k, we have

λmin(−�(θi, j , θi+1, j+1)) ≥ min

{
λmin(−M2(m, k)),

1

2
λmin(−M4(m, n, k))

}
. (14)

Similarly,

r∑

k=1

hk(θi, j )Pk ≤
r∑

k=1

Pk . (15)

It follows from (14) and (15) that

W1 − W2

W2
≤ −min

{
λmin(−M2(m, k)), 1

2λmin(−M4(m, n, k))
}

λmax
(∑r

k=1 Pk
) = α − 1.

Since

min
{
λmin(−M2(m, k)), 1

2λmin(−M4(m, n, k))
}

λmax
(∑r

k=1 Pk
) > 0,

we have α < 1.

Obviously,

α ≥ W1

W2
≥ 0,

that is, α belongs to [0, 1) and is independent of x̃ . Therefore, we have

W1 ≤ αW2,
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that is,

[
xT

i+1, j+1 xT
i+1, j+1

]
(

r∑

k=1

h+
k Pk

)[
xi+1, j+1

xi+1, j+1

]

≤ α
[

xT
i, j+1 xT

i+1, j

]
(

r∑

k=1

hk Pk

)[
xi, j+1

xi+1, j

]
. (16)

Then, it can be established that

[
xT
η,1 xT

η,1

]
(

r∑

k=1

h+
k Pk

)[
xη,1

xη,1

]
≤ α

[
xT
η−1,1 xT

η,0

]
(

r∑

k=1

hk Pk

)[
xη−1,1

xη,0

]

≤α

r∑

k=1

hk

{
xT
η,0 (Yk+Zk) xη,0+xT

η−1,1 (Xk+Yk) xη−1,1

}

≤ α

r∑

k=1

hk

{
xT
η,0 Qk xη,0+xT

η−1,1 (Xk+Yk) xη−1,1

}
,

...
[

xT
1,η xT

1,η

]( r∑

k=1

h+
k Pk

)[
x1,η

x1,η

]
≤ α

[
xT

0,η xT
1,η−1

]( r∑

k=1

hk Pk

)[
x0,η

x1,η−1

]

≤ α

r∑

k=1

hk

{
xT

1,η−1 (Yk + Zk) x1,η−1 + xT
0,η Qk x0,η

}
.

Adding both sides of the above inequality system yields

η+1∑

j=0

xT
η+1− j, j

(
r∑

k=1

h+
k Qk

)

xη+1− j, j ≤ α

η∑

j=0

xT
η− j, j

(
r∑

k=1

hk Qk

)

xη− j, j

+xT
η+1,0

(
r∑

k=1

hk Qk

)

xη+1,0 + xT
0,η+1

(
r∑

k=1

hk Qk

)

x0,η+1.

Using this relationship iteratively, we can obtain

η+1∑

j=0

xT
η+1− j, j

(
r∑

k=1

h+
k Qk

)

xη+1− j, j ≤ αη+1xT
0,0

(
r∑

k=1

hk Qk

)

x0,0

+
η∑

j=0

α j

[

xT
η+1− j,0

(
r∑

k=1

hk Qk

)

xη+1− j,0 + xT
0,η+1− j

(
r∑

k=1

hk Qk

)

x0,η+1− j

]

,

≤
η+1∑

j=0

α j

[

xT
η+1− j,0

(
r∑

k=1

hk Qk

)

xη+1− j,0 + xT
0,η+1− j

(
r∑

k=1

hk Qk

)

x0,η+1− j

]

.

Therefore, we have

η+1∑

j=0

∣∣xη+1− j, j
∣∣2 ≤ μ

η+1∑

j=0

α j
[∣∣xη+1− j,0

∣∣2 + ∣∣x0,η+1− j
∣∣2
]
, (17)
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where

μ := λmax
(∑r

k=1 hk Qk
)

λmin
(∑r

k=1 h+
k Qk

) .

We note that

μ ≤ τ := λmax
(∑r

k=1 Qk
)

mink(λmin(Qk))
.

Now denote χκ := ∑κ
j=0

∣
∣xκ− j, j

∣
∣2 , and then using the above inequality, we have

χ0 ≤ τ
(∣
∣x0,0

∣
∣2 + ∣

∣x0,0
∣
∣2
)

,

χ1 ≤ τ
{
α
(∣
∣x0,0

∣
∣2 + ∣

∣x0,0
∣
∣2
)

+
(∣
∣x1,0

∣
∣2 + ∣

∣x0,1
∣
∣2
)}

,

...

χN ≤ τ
{
αN

(∣
∣x0,0

∣
∣2 + ∣

∣x0,0
∣
∣2
)

+ αN−1
(∣
∣x1,0

∣
∣2 + ∣

∣x0,1
∣
∣2
)

+ · · · +
(∣
∣xN ,0

∣
∣2 + ∣

∣x0,N
∣
∣2
)}

.

Adding both sides of the above inequality system yields

N∑

η=0

χη ≤ τ
1 − αN+1

1 − α

N∑

k=0

{∣∣xk,0
∣∣2 + ∣∣x0,k

∣∣2
}
.

Then from Assumption 1, the right side of the above inequality is bounded, which means:
limη→∞χη = 0 , that is,

∣∣xi, j
∣∣2 → 0 as i + j → ∞, hence limr→∞ Xr = 0 and then the

proof is completed. 	

Remark 1 Theorem 1 provides the LMI based conditions for the asymptotic stability of 2-D
fuzzy systems, which can be solved efficiently by employing standard numerical software
(Gahinet et al. 1995). Actually from the proof of Theorem 1, we see that the conditions
M2 < 0 and M3 < 0 can be used for the stability analysis of system S . However, it is
noticed that the product terms between the system matrices and the matrix Qk can not be
eliminated in this case. Therefore, the conditions M2 < 0 and M3 < 0 is not powerful for
controller synthesis.

If the basis-dependent Lyapunov functions reduce to a common quadratic Lyapunov function,
by following similar lines as in the proof of Theorem 1, we obtain the following corollary.

Corollary 1 Consider the fuzzy system S in (2) with Assumption 1. The 2-D discrete fuzzy
system S in (2) is asymptotically stable if there exist matrices X > 0, Y ≥ 0 and Z > 0
satisfying

⎡

⎢⎢
⎣

−X −Y AT
1m Q

∗ −Z AT
2m Q

∗ ∗ −Q

⎤

⎥⎥
⎦ < 0,

⎡

⎢⎢
⎣

−X −Y AT
1m Q AT

1n Q
∗ −Z AT

2n Q AT
2m Q

∗ ∗ −Q 0
∗ ∗ ∗ −Q

⎤

⎥⎥
⎦ < 0. (18)

where m, n = 1, 2, . . . , r; m < n ≤ r and Q := X + 2Y + Z .
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Remark 2 From Corollary 1, we can find that the basis-independent result is a special case of
basis-dependent result. Thus Theorem 1 is less conservative than that based on Corollary 1.

Remark 3 From the proof of Theorem 1, we see that when the systems are linear time-
invariant and the basis-dependent Lyapunov functions become basis-independent Lyapunov
functions, M1 ≡ M2 and M3, M4 disappear. Therefore, LMIs (4) and (5) become

⎡

⎣
−X −Y AT

1 Q
∗ −Z AT

2 Q
∗ ∗ −Q

⎤

⎦ < 0, (19)

which has been obtained in Tuan et al. (2002). From this point of view, Theorem 1 and
Corollary 1 can be seen as an extension of Tuan et al. (2002) to 2-D fuzzy systems.

Since Theorem 1 is derived from Tuan’s results (Tuan et al. 2002), in the following we
will show that we can also establish the asymptotic stability on the basis of another elegant
stability result for 2-D systems proposed in Xie et al. (2002). As the proof is analogous to
that of Theorem 2 in Gao et al. (2005), it is omitted for brevity.

Theorem 2 LMIs (4) and (5) in Theorem 1 hold if and only if there exist matrices Rk > 0
and Tk > 0 satisfying

⎡

⎢⎢
⎣

Tm − Rn 0 AT
1m Rk

∗ −Tm AT
2m Rk

∗ ∗ −Rk

⎤

⎥⎥
⎦ < 0, (20)

⎡

⎢⎢⎢⎢⎢
⎣

Tm − Rm + Tn − Rn 0 AT
1m Rk AT

1n Rk

∗ −Tm − Tn AT
2n Rk AT

2m Rk

∗ ∗ −Rk 0

∗ ∗ ∗ −Rk

⎤

⎥⎥⎥⎥⎥
⎦

< 0, (21)

where k, m, n = 1, 2, . . . , r; m < n ≤ r .

Remark 4 Similar to Remark 3, when the systems are linear time-invariant and the basis-
dependent Lyapunov functions become common quadratic Lyapunov functions, LMIs (20)
and (21) will reduce to

⎡

⎢⎢
⎣

T − R 0 AT
1 R

∗ −T AT
2 R

∗ ∗ −R

⎤

⎥⎥
⎦ < 0, (22)

which has been obtained in Xie et al. (2002).

Remark 5 Theorem 2 is in fact equivalent to Theorem 1 [please refer to Theorem 3 in Gao
et al. (2005)]. In the following, we will only present the stabilization results based on The-
orem 1, and equivalent results based on Theorem 2 can be readily obtained by employing
similar arguments.
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4 Stabilization of 2-D fuzzy systems

In this section, we shall deal with the problem of stabilization for systems via a parallel dis-
tributed compensation (PDC) fuzzy controller. More specifically, we are interested in finding
a PDC fuzzy controller such that the closed-loop system with this controller is asymptotically
stable.

In the PDC design, each control rule is designed from the corresponding rule of a T-S
fuzzy model. The designed fuzzy controller shares the same fuzzy sets with the fuzzy model
in the premise parts. For the fuzzy models in (2), we construct the following fuzzy controller
via the PDC:

Control Rule k: IF θ1(i, j) is μk1 and θ2(i, j) is μk2 and . . . and θp(i, j) is μkp , THEN

ui, j = −Fk xi, j .

The overall fuzzy controller is represented by

ui, j = −
r∑

k=1

hk(θi, j )Fk xi, j .

First, the closed-loop system with the PDC fuzzy controller can be given by

xi+1, j+1 =
r∑

p=1

r∑

q=1

h p(θi, j )hq(θi, j )
{ (

A1p − B1p Fq
)

xi, j+1 + (
A2p − B2p Fq

)
xi+1, j

}
.

Before stating the main result of this section, we present the following proposition first, which
is useful in establishing our results.

Proposition 1 Consider the 2-D fuzzy system S in (2) with given boundary condition. The
2-D discrete fuzzy system S in (2) is asymptotically stable if there exist matrices Xk >

0, Yk ≥ 0, Zk > 0 and Vk satisfying

⎡

⎣
−Xm −Ym AT

1m Vk

∗ −Zm AT
2m Vk

∗ ∗ Qk − Vk − V T
k

⎤

⎦ < 0, (23)

⎡

⎢⎢
⎣

−Xm − Xn −Ym − Yn AT
1m Vk AT

1n Vk

∗ −Zm − Zn AT
2n Vk AT

2m Vk

∗ ∗ Qk − Vk − V T
k 0

∗ ∗ ∗ Qk − Vk − V T
k

⎤

⎥⎥
⎦ < 0, (24)

where k = 1, 2, . . . , r; 1 ≤ m < n ≤ r and Qk := Xk + 2Yk + Zk .

Proof If LMIs (23) and (24) hold, we have Vk + V T
k − Qk > 0. From the conditions

Xk > 0, Yk ≥ 0, Zk > 0, we have Qk > 0, so that Vk is nonsingular. In addition, we have(
Qk − V T

k

)
Q−1

k (Qk − Vk) ≥ 0, which implies

− V T
k Q−1

k Vk ≤ Qk − Vk − V T
k . (25)
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Therefore, we can conclude from (23) and (24) that
⎡

⎢
⎢
⎣

−Xm −Ym AT
1m Vk

∗ −Zm AT
2m Vk

∗ ∗ −V T
k Q−1

k Vk

⎤

⎥
⎥
⎦ < 0, (26)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−Xm − Xn −Ym − Yn AT
1m Vk AT

1n Vk

∗ −Zm − Zn AT
2n Vk AT

2m Vk

∗ ∗ −V T
k Q−1

k Vk 0

∗ ∗ ∗ −V T
k Q−1

k Vk

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0. (27)

Performing a congruence transformation to (26) and (27) by diag
{

I, I, V −1
k Qk

}
and

diag
{

I, I, V −1
k Qk, V −1

k Qk

}
yields (4) and (5), and then the proof is completed. 	


Based on Proposition 1, we are in a position to establish conditions to the stabilization
problem for system S in (2).

Theorem 3 The 2-D fuzzy system S in (2) can be stabilized via a PDC fuzzy controller if
there exist matrices Xk > 0, Yk ≥ 0, Zk > 0, Fl and Gl satisfying

⎡

⎢⎢⎢
⎣

−Xm −Ym GT
l AT

1m − Fl
T

BT
1m

∗ −Zm GT
l AT

2m − Fl
T

BT
2m

∗ ∗ Qk − GT
l − Gl

⎤

⎥⎥⎥
⎦

< 0, (28)

⎡

⎢⎢⎢⎢⎢
⎣

−Xm − X p −Ym − Yp GT
l AT

1m − Fl
T

BT
1m GT

l AT
1p − Fl

T
BT

1p

∗ −Zm − Z p GT
l AT

2p − Fl
T

BT
2p GT

l AT
2m − Fl

T
BT

2m

∗ ∗ Qk − GT
l − Gl 0

∗ ∗ ∗ Qk − GT
l − Gl

⎤

⎥⎥⎥⎥⎥
⎦

< 0. (29)

Moreover, if the above conditions have feasible solutions, the controller gain matrices are
given by

Fl = Fl G
−1
l , (30)

where Qk � Xk + 2Yk + Zk; k, l = 1, 2, . . . , r; 1 ≤ m ≤ p ≤ r.

Proof According to Proposition 1, the closed-loop system is asymptotically stable if there
exist matrices Xk, Yk, Zk and Vl satisfying

⎡

⎣
−Xm −Ym (A1m − B1m Fl)

T Vl

∗ −Zm (A2m − B2m Fl)
T Vl

∗ ∗ Qk − Vl − V T
l

⎤

⎦ < 0, (31)

⎡

⎢⎢⎢
⎣

−Xm − X p −Ym − Yp (A1m − B1m Fl)
T Vl

(
A1p − B1p Fl

)T
Vl

∗ −Zm − Z p
(

A2p − B2p Fl
)T

Vl (A2m − B2m Fl)
T Vl

∗ ∗ Qk − Vl − V T
l 0

∗ ∗ ∗ Qk − Vl − V T
l

⎤

⎥⎥⎥
⎦

< 0. (32)

123



Multidim Syst Sign Process (2013) 24:395–415 407

The congruence transformations to (31) and (32) by diag
{

V −1
l , V −1

l , V −1
l

}
and diag

{
V −1

l ,

V −1
l , V −1

l , V −1
l

}
together with a change of variables by

Xm � V −T
l Xm V −1

l , Ym � V −T
l Ym V −1

l ,

Zm � V −T
l Zm V −1

l , Gl � V −1
l , Fl � Fl V

−1
l (33)

yield LMIs (28) and (29). In addition, we know that if LMIs (28) and (29) are feasible, the
control law can be given by (30) and the proof is completed. 	

Remark 6 Theorem 3 solves the stabilization problem on the basis of Proposition 1. It should
be pointed out that the LMI conditions in Theorem 1 contain product terms between the sys-
tem matrices and the matrix Qk (which is a substitute for Xk +2Yk + Zk). Therefore, it is not
an easy task to solve the stabilization problem based on Theorem 1. On the other hand, by
introducing the slack variable Vk, Proposition 1 eliminates the product terms involving the
matrix Qk . In such a way, the dilated LMI conditions in Proposition 1 are not only preferable
for stability analysis of the systems, but also powerful for controller synthesis.

5 Illustrative examples

In this section, we will use two examples to illustrate the applicability of the approach
proposed in this paper.

Example 1 We consider a 2-D system with the following system matrices:

A1 =
[−0.15 + γ sin(x1(i, j+1)) 0.5

−0.15 0.0025

]
,

A2 =
[

0.06 −0.5
−0.3 0.005

]
, (34)

where xi, j is the local state of coordinates (i, j) and

xi, j ∈
(
−π

2
,
π

2

)
.

We have the fuzzy model for the nonlinear system

xi+1, j+1 =
2∑

k=1

hk(θi, j )
{

A1k xi, j+1 + A2k xi+1, j + B1kui, j+1 + B2kui+1, j
}
,

with

A11 =
[

γ − 0.15 0.5
−0.15 0.0025

]
, A12 =

[−γ − 0.15 0.5
−0.15 0.0025

]
,

A21 =
[

0.06 −0.5
−0.3 0.005

]
, A22 =

[
0.06 −0.5
−0.3 0.005

]

and

h1(θi, j ) = 1 + sin(x1(i, j+1))

2
,

h2(θi, j ) = 1 − sin(x1(i, j+1))

2
.
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Fig. 1 State variable x1 of
open-loop system in Example 1
(γ = 0.5)
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Fig. 2 State variable x2 of
open-loop system in Example 1
(γ = 0.5)
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When γ = 0.5, using LMI Control Toolbox to solve LMIs (18) in Corollary 1, we obtain the
following feasible solutions:

X=
[

66.8992 −26.1721
−26.1721 70.1356

]
, Y=

[
28.8264 −9.1054
−9.1054 38.7482

]
, Z=

[
48.2373 −5.7484
−5.7484 73.1166

]
.

By solving LMIs (4) and (5) in Theorem 1, our results give the following feasible solutions:

X1 =
[

0.7461 −0.0484
−0.0484 0.8671

]
, X2 =

[
0.4919 −0.0227

−0.0227 0.5640

]
,

Y1 =
[

0.2556 −0.0262
−0.0262 0.2920

]
, Y2 =

[
0.1607 −0.0070

−0.0070 0.1291

]
,

Z1 =
[

0.6641 −0.0257
−0.0257 0.8673

]
, Z2 =

[
0.4298 −0.0059

−0.0059 0.5641

]
,

Q1 =
[

1.9214 −0.1265
−0.1265 2.3185

]
, Q2 =

[
1.2431 −0.0427

−0.0427 1.3862

]
.

Figures 1 and 2 show the state variables of the above system. It shows that both the basis-
dependent and basis-independent results can guarantee stability for the system S in (2).
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Fig. 3 State variable x1 of
open-loop system in Example 1
(γ = 0.8)
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Fig. 4 State variable x2 of
open-loop system in Example 1
(γ = 0.8)
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When γ = 0.8, using LMI Control Toolbox to solve LMIs (18) in Corollary 1, the LMIs
are infeasible. However, by solving LMIs (4) and (5) in Theorem 1, our results give the
following feasible solutions:

X1 =
[

1.2577 −0.4595
−0.4595 1.0741

]
, X2 =

[
0.7389 −0.2237

−0.2237 0.7193

]
,

Y1 =
[

0.5106 −0.1041
−0.1041 0.4019

]
, Y2 =

[
0.2872 −0.0292

−0.0292 0.2010

]
,

Z1 =
[

0.7286 −0.0713
−0.0713 1.1435

]
, Z2 =

[
0.5048 −0.0417

−0.0417 0.7484

]
,

Q1 =
[

3.0074 −0.7390
−0.7390 3.0215

]
, Q2 =

[
1.8181 −0.3237

−0.3237 1.8696

]
.

Figures 3 and 4 show the state variables of the above system. It shows that the basis-dependent
results can guarantee stability for the system S in (2), while basis-independent results can-
not. Therefore results based on basis-dependent Lyapunov functions are less conservative
than those based on single quadratic Lyapunov functions.
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Example 2 Consider a 2-D system with two variables xi, j+1, xi+1, j and the following system
matrices

A1 =
[

0.5 sin(x1(i, j+1)) 0
0 0.5

]
,

A2 =
[

0.5 1
0 1

]
,

B1 =
[

0.5
0.5

]
, B2 =

[
0.5
1

]
. (35)

For simplicity, we assume that

x(i, j) ∈
(
−π

2
,
π

2

)
.

We have the fuzzy model for the nonlinear system

xi+1, j+1 =
2∑

k=1

hk(θi, j )
{

A1k xi, j+1 + A2k xi+1, j + B1kui, j+1 + B2kui+1, j
}
, (36)

with

A11 =
[

0.5 0
0 0.5

]
, A12 =

[−0.5 0
0 0.5

]
,

A21 = A22 =
[

0.5 1
0 1

]
, B11 = B12 =

[
0.5
0.5

]
,

B21 = B22 =
[

0.5
1

]

where

h1(θi, j ) = 1 + sin(x1(i, j+1))

2
,

h2(θi, j ) = 1 − sin(x1(i, j+1))

2
.

Figures 5 and 6 show the state variables of the above system. It can be seen that the
open-loop system is not asymptotically stable. Our purpose now is to design a controller

Fig. 5 State variable x1 of
open-loop system in Example 2
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Fig. 6 State variable x2 of
open-loop system in Example 2
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Fig. 7 State variable x1 of
closed-loop system in Example 2
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such that the closed-loop system is asymptotically stable. By solving LMIs (28) and (29) in
Theorem 3, we can obtain a feasible solution with

X1 =
[

0.1349 −0.0277
−0.0277 0.0980

]
, X2 =

[
0.0634 0.0172
0.0172 0.0689

]
,

Y1 =
[

0.0363 0.0109
0.0109 0.0389

]
, Y2 =

[
0.0545 0.0145
0.0145 0.0451

]
,

Z1 =
[

0.0530 0.0156
0.0156 0.0677

]
, Z2 =

[
0.0590 0.0094
0.0094 0.0683

]
,

Q1 =
[

0.2605 0.0098
0.0098 0.2436

]
, Q2 =

[
0.2314 0.0557
0.0557 0.2275

]
.

Then, from (30), the corresponding controller gain matrices are given by

F1 = [ 0.0192 1.0082 ],
F2 = [ 0.1642 1.0791 ].

Figures 7 and 8 show that the state variables of the closed-loop system converge to zero.
This shows that the PDC fuzzy controller designed in the paper can stabilize the originally
unstable system.

123



412 Multidim Syst Sign Process (2013) 24:395–415

Fig. 8 State variable x2 of
closed-loop system in Example 2
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6 Conclusions

In this paper, we have investigated the problem of stability analysis and stabilization for 2-D
fuzzy discrete systems. The 2-D fuzzy system model is established based on the FMLSS
model, based on which nonquadratic stability conditions are derived. Then by introducing
an additional instrumental matrix variable, a control design approach is proposed based on
basis-dependent Lyapunov functions. Both the stability and controller existence conditions
are expressed as LMI conditions, which can be solved efficiently. Two illustrative examples
have been used to show the advantage and effectiveness of the obtained results.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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