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Abstract
Real-world multibody systems do not have ideal joints; most joints have some clearance.
The clearance allows the connected bodies to undergo a misalignment, and the resulting dy-
namics is governed by the contacts thus formed. Two approaches are typically taken to deal
with contacts: the commonly used continuous dynamics approaches assume the Hertzian
nature of the contact modeled by nonlinear unilateral spring-damper elements; while the
nonsmooth dynamics approach results in a complementarity problem. This paper employs
a nonsmooth dynamics approach to develop a coherent framework for the simulation of
multibody systems having frictionless joints with clearances. Because clearances are of
small magnitude relative to the dimensions of the mechanical components, the nature of
the contact in the joints is assumed to be inelastic. Using this assumption and the general
nonsmooth dynamics framework, the parametric formulations for cylindrical, prismatic, and
revolute joints with clearances are derived. The equations of motion are formulated, and their
time-discretized counterparts are cast as a nonlinear programming problem. The proposed
scheme also enforces normalization constraint on Euler parameters in contrast to state-of-
the-art methods that is conducive to stability of the solution for a suitable range of step sizes.
In addition, a variable time-stepping scheme that includes the step size as an extra variable
in the optimization is introduced and its stability properties are discussed. The versatility of
the proposed framework is demonstrated through numerical experiments.
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1 Introduction

Modern methods for simulating multibody dynamics include algebraic constraint equations
to represent mechanical joints. Such equations enforce absolute alignment of the connected
bodies in the desired direction of relative motion, and thus represent “ideal joints”. However,
real mechanical systems have joints with clearances, and the condition of absolute alignment
is not always followed. In real-world applications, the motion is governed by intermittent
formation of one or multiple contacts. The resulting contact forces are highly nonlinear
phenomena that are challenging to model.

Multibody dynamics studies mechanical systems consisting of several bodies that are
interconnected with kinematic constraints. These constraints, in the form of mathematical
equations, restrict their relative movement and are subjected to the acting external forces
that may include gravitational forces, time dependent forces, or contact forces generated
by the contacts between the bodies. Indeed, these kinematic constraints enforce absolute
alignment of the interacting bodies in a specific direction of the relative motion. However,
in the real-world systems, the mechanical components also have clearances and gaps, and
the condition of absolute alignment cannot be always expressed by kinematic constraint
equations. In such cases, the motion is governed by the formation of contacts at one or
multiple points. Consequently, a contact-evaluation procedure must be able to model the
dynamics of the contact between compliant surfaces.

The foundations of pure elastic contact models were laid by Heinrich Rudolf Hertz [1].
He concluded that a contact area can be roughly assumed to be elliptical, and no energy dis-
sipation was considered for the contact to be elastic. This led several researchers to develop
more advanced contact-force models that take this energy dissipation into account. Hertz’s
contact law relates the contact force to a nonlinear power function of the indentation and
can be expressed as

Fc = K δn, (1)

where K is the contact-stiffness coefficient and δ is the relative indentation between the
bodies. The lack of energy dissipation can be overcome by including hysteresis damping
after the evaluation of contact force. The model developed by Kelvin and Voigt [2] includes
energy dissipation, where contact is modeled as a linear spring and a linear damper element
as follows:

Fc = Kδ + Dδ̇, (2)

where D represents the damping coefficient and δ̇ is the relative normal velocity of indenta-
tion. However, the Kelvin and Voigt model does not address the nonlinearity of the contact
formation process. Hence, a popular general method for evaluating contact forces has the
form

Fc = Kδn + χδnδ̇. (3)

Several contact force models were formulated based on different methodologies to evaluate
the damping coefficient χ and the deformation δ. Some of the most popular contact mod-
els include [3–9]. Further, recent rich literature reviews [10–12] provide a comprehensive
review of major continuous contact models worked out hitherto.

Besides contact force evaluation, contact detection is another challenge. Corral et al. [13]
introduced a geometry-based contact model that considers penetration for evaluating dis-
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placement and restitution. One interesting feature of this model is that it formulates infinite
planes to identify the contact points; however, this model does not combine well with differ-
ential algebraic equations (DAEs) or ordinary differential equations (ODEs) for constrained
multibody systems.

Dopico et al. [14, 15] and Choi et al. [16] proposed a contact model that can be in-
corporated in index-3 DAE models. This approach uses a discretized mesh representation
of geometry to identify the contact points. Therefore, the resulting constraint manifold is
defined with equations corresponding to each node. These methods account for contact dy-
namics by forcing penalty factors using an augmented Lagrangian method. The equations of
motion at the contact point are solved by projection of velocity and acceleration at contact
points to solve for static equilibrium.

The contact model developed by Nikravesh and Lankarani [17] has been widely adopted,
including in commercial software packages. This model uses a combination of nonlinear
spring and damping elements to simulate the unilateral contact. Using this model, Shen et
al. [18] developed a formulation for simulating impact dynamics by using dynamic opti-
mization with energy loss being the objective function. A drawback of this contact model
is that high stiffness values of the nonlinear springs result in “stiff” differential equations,
which require very small time step sizes for numerical integration. Furthermore, separate
detection of each contact and subsequent evaluation of contact forces makes the approach
computationally inefficient, especially when multiple contacts occur intermittently. Using
interpenetration for evaluating contact forces violates the constraints manifold.

Mechanical joints with clearances pose a special condition of “small gap systems” where
contact formation and breaking-off can happen at high frequencies. Dynamics with clear-
ance in joints was studied in Sharf and Zhang [19] and [20]. Sharf and Zhang in [19] founded
the geometry-based contact models. Zakhariev [20] described an approach for calculating
the reaction and friction forces between pairs of bodies in spatial mechanical systems as well
as contact points in joints with clearances. Matrix methods were used to derive the nonlinear
kinematic constraint equations, and the external and inertia forces for each configuration of
the kinematic chain the contact points and corresponding normal forces were calculated. A
drawback of the methodology in [20] is that the derived equality constraints do not account
for all the possible orientations of the contact formation.

Further developments regarding joints with clearance include the work by Ibrahimi et
al. [21], Flores and Lankarani [22], and Xiang et al. [23], demonstrated through a number
of simulations on planar systems formulated as DAEs and contact model referenced from
[17]. Time independent sensitivity analysis for planar systems was also included in [21].
Bauchau et al. [24] used unilateral contact conditions to simulate planar and spatial joints by
adding additional rotational state variables and using nonholonomic inequality constraints
with introduction of slack variables.

Another approach to deal with contact problems is the nonsmooth dynamics method.
Moreau formulated the noncontinuous properties of nonsmooth mechanics [25–27]. Pana-
giotopoulos studied problems involving inequalities [28] and developed the formulations
for hemivariational inequalities for mechanics, robotics, and neural network problems [29].
Moreover, the book [30] illustrates a proof about the validity of the impact theory given
by Jean and Moreau. Since 1970s and 1980s, the theoretical and the mathematical for-
mulation have substantially progressed, and have been demonstrated in industrial applica-
tions. Further, a comprehensive textbook by Acary and Brogliato [31, 32] covers a wide
range of applications in mechanical and electrical systems. The book by Leine [33] inves-
tigates bifurcations of equilibrium in nonsmooth systems. Furthermore, Jean and Moreau
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[34] contributed substantially to modeling dry friction and frictional impacts. This topic is
covered in great detail by Brogliato [35]. The evolution of such processes has been cov-
ered in great detail in the literature such as Fremond [36], Glocker [37], Pfeiffer [38], and
Wriggers [39].

Solving nonsmooth problems requires effective numerical solution strategies [31, 40].
The problem for planar nonsmooth systems results into a linear complementarity problem
(LCP) and for spatial systems a nonlinear complementarity problem (NCP). The extended
linear programming theories assure the existence of a solution for LCPs. For NCPs various
formulations have been suggested and demonstrated through case-studies [41–43]. Further,
Cosimo et al. [44, 45] gave efficient numerical algorithms based on decoupling methods ap-
plied with α-integration schemes. The comprehensive work by Brogliato et al. [46] includes
various numerical methods for solving nonsmooth problems. Moreover, one of the most effi-
cient theories of multibody systems with contacts, as given by Bremer [47] and Bremer and
Pfeiffer [48], essentially applies projection methods on multibody dynamics theory. With
time, this type of multibody theory has been combined with inequality formulations to de-
scribe the unilateral behavior of multiple contacts [49–51]. The applicability of this theory
to continuous and discontinuous systems, as well as impact dynamics, makes it a versatile
formulation [52–54].

Recently, the effectiveness of nonsmooth dynamics approaches has been demonstrated
in many-body dynamics problems such as simulation of sand particles, stacking of bricks,
and stacking of multiple balls in a box [55–57]; in all these applications the formulation
of constraints is straightforward. When implementing a nonsmooth dynamics approach to
multibody systems, a crucial aspect is the formulation of constraints. Because of shape and
geometry of the components, the constraint formulation should capture the possibilities of
multiple contact points at different locations while retaining the analytical nature of the con-
straint expression. Negrut et al. [58] described a methodology through which this can be
achieved. The methodology poses the dynamics of the rigid bodies as a nonlinear program-
ming problem (NLP) and uses dynamic optimization for minimizing an objective function
derived from augmented Lagrangian approach. The definitions of cylindrical and revolute
clearance joints given by Orden [59], Ambrosio et al. [60, 61], Liu [62], and Marques and
Flores [63–65] consider angular misalignment as an inequality constraint instead of con-
straining both the possible contact points individually. These definitions have widely been
used in rp formulations with continuous contact models. However, in the rA formulation,
the constraint on angular misalignment is not needed. This was discussed in detail in Sec-
tion 3.1. Further, the discussed methodologies were demonstrated on spherical joints [66]
and planar prismatic joints in [67], and more recently, on a spatial revolute joints in [68–70].
While the formulation explained in [68] uses a similar approach to define revolute joints
with clearance as discussed in this paper, it only considers radial clearance in the defini-
tion of joint and neglects axial clearance. On the other hand, Akhadkar et al. [69, 70] used
commercial software packages for contact detection, and the formulation of joints was not
covered by the authors. Further, planar prismatic joints were studied in detail by Flores et
al. [67, 71]. However, the spatial prismatic joints have not received much attention, and
hence the requirement of a robust definition of a spatial prismatic joint needs to be real-
ized.

Studying a vast background of the literature, a need is thus realized to provide the gen-
eral reader a framework for computer implementation of nonsmooth methods on multibody
systems with clearances. This paper provides the reader a nonsmooth dynamics based frame-
work dedicated to the simulation of multibody systems having frictionless ideal joints and
joints with clearances. Specific contributions of this paper are as follows:
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1. Analytical constraint expressions are derived for several fundamental joints with clear-
ances: cylindrical, revolute, and prismatic. Key differences between the proposed formu-
lation of cylindrical and revolute joints and their precursors are discussed.

2. Not much work has been previously devoted to spatial prismatic joints with clearance.
Here, a detailed definition of spatial prismatic joint with clearances is included.

3. A general NLP formulation is given for discretizing multibody dynamics of systems
encompassing these fundamental joints with clearances.

4. An adaptive time-stepping scheme is discussed for the discrete NLP time integration.
5. The versatility of the framework is demonstrated through numerical experiments.

The remainder of this paper is structured as follows. Section 2 reviews the general NLP
formulation applied to the time discretization of multibody systems. Section 3 formulates
constraint expressions for spatial joints with clearances as functions of the rigid body pair’s
geometric features. Section 4 presents the case studies considered for testing the proposed
formulation. Section 5 reports numerical results that illustrate the capabilities of the pro-
posed approach and highlight the different dynamical behavior observed when joint clear-
ances are accounted for. Section 6 concludes with key observations and a discussion on
further scope of the work.

2 Methodology

2.1 Multibody dynamics in NLP formulation

This section illustrates the formulation of multibody systems in the general form of a non-
linear programming problem. Subsection 2.1.1 describes the equations of motion for rigid
bodies undergoing motion in the absence of any constraints. Subsection 2.1.2 illustrates a
method to evaluate contact forces on a set of rigid bodies. Subsection 2.1.3 combines the
elements of free body dynamics and contact forces into an NLP of a general form. Finally, in
Subsection 2.1.4, strategies to solve the general NLP problem through temporal discretiza-
tion are discussed.

2.1.1 The free body dynamics

Formulation of equations of motion for three-dimensional systems in the body-frame coor-
dinates results in a constant full rank and invertible 6×6 mass matrix for each body [72–74].
Considering these essential requirements, this section describes the free body dynamics.

Consider a rigid body of mass m, inertia matrix J, generalized coordinates (placed at
the center of mass) q = [rT ,pT ]T ∈ R

7 in global frame, and the corresponding time deriva-
tives of generalized coordinates q̇ = [ṙT , ṗT ]T ∈ R

7, where r ∈ R
3 is the set of Cartesian

[x, y, z] coordinates and p ∈ R
4 is the set of Euler parameters [e0, eT ]T , all in global frame

of reference. The equations of motion from D’Alembert’s principle [75] are as follows:

δrT (m r̈ − FA) + δπ ′ T (
J ω̇′ + ω̃′ Jω′ − τ ′

A
) = 0, (4)

where δr ∈ R
3 are the infinitesimally small virtual displacements in global coordinate sys-

tem and δπ ′ ∈ R
3 and virtual rotations in body-fixed coordinate system. The operator ‘.̃’
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gives out the skew-symmetric matrix of the body-fixed vector of angular velocity ω′. The
vector FA ∈R

3 represents externally applied forces in global reference frame, and τ ′
A ∈R

3

are the externally applied torques in body-fixed reference frames. Equation (4) can thus
be decomposed into the following set of equations in the absolute coordinate system, also
called rA coordinate formulation [76, 77]:

m r̈ = FA, (5a)

J ω̇′ + ω̃′ Jω′ = τ ′
A. (5b)

Equations (5a) and (5b) can be written in a matrix form as follows:
[
mI 0
0 J

][
r̈
ω̇′

]
+

[
0

ω̃′ Jω′

]
−

[
FA

τ ′
A

]
= 0. (6)

Similarly, for a system of N bodies, equation (6) takes the form

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

m1I 0 0 0 0 . . . 0
0 J1 0 0 0 . . . 0
0 0 m2I 0 0 . . . 0
0 0 0 J2 0 . . . 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . mN I 0
0 0 0 0 . . . 0 JN

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

r̈1

ω̇′
1

r̈2

ω̇′
2

...

r̈N

ω̇′
N

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

+

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

01

ω̃′
1 J1 ω′

1

02

ω̃′
2 J2 ω′

2
...

0N

ω̃′
N JN ω′

N

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

−

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

FA1

τ ′
A1

FA2

τ ′
A2
...

FAN

τ ′
AN

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

= 0, (7)

which in a matrix form reads

M v̇ + S (q, q̇) − QA = 0. (8)

In (8), v̇ ∈ R
6N is the vector of time derivatives of the body-fixed velocity vector v ∈ R

6N

for N bodies. The matrix M ∈ R
6N×6N combined mass matrix of N bodies in the absolute

coordinate system. The vector S (q, q̇) ∈ R
6N represents the vector of forces because of

rotation, and the vector QA ∈R
6N represents external forces (in global frame) and torque (in

body fixed coordinate system) acting on the body neglecting friction. The mapping between
the body-fixed angular velocity vector ω′ and the time derivatives of Euler parameters ṗ is
given using the matrix G(p) composed of orthogonal column vectors as follows [75]:

G (p) := [−e −ẽ + e0I
]
,

ṗ = 1

2
GT (p) ω′,

ω′ = 2 G (p) ṗ.

(9)

Unless the contact happens, the bodies move freely as an unconstrained system and have the
unconstrained accelerations:

v̇uc = −M−1
(
S (q, q̇) − QA

)
. (10)

2.1.2 Dynamics with contact

Consider two bodies A and B in contact, as shown in Figure 1. Their respective centers of
mass are cA and cB , and their coordinates in the absolute coordinate system are rA and rB ,
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Fig. 1 Schematic representation of bodies in contact (Color figure online)

respectively. The contact point is detected at a location indicated by body fixed vectors s′
A

and s′
B in bodies A and B respectively. Let nj be the normal unit vector along which the

contact force acts on body A at the j th contact in the global reference frame. This is required
because all the forces are evaluated in the global reference frame [58]. The corresponding
unit vector for body B will be −nj . If the magnitude of contact force at the j th contact is
denoted by λj , the combined vector of contact forces in the global reference frame and the
torques generated by them in body-fixed frame can be evaluated by equation (11), as derived
in [58]:

FCj =

⎡

⎢
⎢
⎣

nj

s̃′
A AT (pA)nj

−nj

−s̃′
B AT (pB)nj

⎤

⎥
⎥
⎦λj = Dj λj , (11)

where A ∈ R
3×3 is the rotation matrix as a function of the Euler parameters of bodies A

and B , Dj ∈R
6N×1 is the contact matrix, and the operator ‘.̃’ gives out the skew-symmetric

matrix of the underlying arbitrary vector. Similarly, for a number of possible M contacts
between the two bodies, the total contact force FC is the sum of all the contact forces acting
on the respective bodies, where D ∈R

6N×M and λc ∈ R
M×1, and is given as follows:

FC = [
D1 D2 . . . DM

]

⎡

⎢⎢⎢
⎣

λ1

λ2
...

λM

⎤

⎥⎥⎥
⎦

= Dλc. (12)

Using the same construct, the relative normal velocity between the two bodies at the contact
point j in the mixed frame of reference is [58]

vrelj = DT
j

⎡

⎢⎢
⎣

ṙA

ω′
A

ṙB

ω′
B

⎤

⎥⎥
⎦ = DT

j v. (13)
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2.1.3 The nonlinear programming problem

Equation (10) is an expression to evaluate the unconstrained accelerations in the absolute
coordinates. In addition, the orthonormality of Euler parameters has to be enforced for each
body as a bilateral equality constraint [75]:

B(q) =

⎡

⎢⎢⎢
⎣

pT
1 p1 − 1

pT
2 p2 − 1

...

pT
N pN − 1

⎤

⎥⎥⎥
⎦

= 0. (14)

Therefore, there exists a set of Lagrange multipliers λeq ∈ R
N×1 such that

M v̇ + BT
q (q) λeq + S(q, q̇) − QA = 0, (15)

where Bq(q) is the Jacobian matrix of B(q) in equation (14). The state-of-the-art nonsmooth
method proposed by [58] has been demonstrated on granular materials of spherical structure.
Such particles have minute inertia and are uniformly distributed because of the spherical
shape. In such cases, rotation does not impact the state variables to a significant extent,
and hence (14) can be neglected for such cases. However, for rigid bodies, the inertia is
significant and is often not uniformly distributed. Indeed, the rotation of the component can
affect the stability of the solution [78]. Hence, in cases of rigid bodies, the normalization
constraint on Euler parameters needs to be enforced to ensure orthogonality of basis vectors
of the body-fixed frame.

Further, let the gap function �ineq ∈ R
M×1 represent the vector of algebraic inequali-

ties for M unilateral contacts in the system. Let the condition of nonzero gap be such that
�

ineq
j ≤ 0, j ∈ 1,2, . . . ,M , where each element j of �ineq has a negative value. If the contact

is formed, i.e., �
ineq
j = 0, j ∈ 1,2, . . . ,M , the addition of the contact forces thus generated

Dλc results in constrained equation of motion as follows, where v̇ is the vector of con-
strained accelerations:

v̇ = −M−1
(
S (q, q̇) + BT

q (q)λeq + D(q)λc − QA
)
, (16a)

�ineq (q) ∗ λc = 0;λc ≥ 0, (16b)

where the notation �ineq(q) ∗ λc represents the element-wise product of every expression in
the constraint manifold and the corresponding magnitude of contact force. This complemen-
tarity condition states that when there is no contact, the j th constraint expression �

ineq
j < 0

and the contact force’s magnitude λcj = 0. However, when the contact happens, �
ineq
j = 0

and the contact force’s magnitude λcj > 0.
Furthermore, Gauss’ principle of least constraint [79, 80] states that the true acceleration

of a mechanical system of N particulate masses r̈j ∈ R
3 is the minimum of the following

quantity:

J =
N∑

j=1

mj

∥
∥∥
∥ r̈j − Fj

mj

∥
∥∥
∥

2

∀j ∈ [1,2,3, ...,N ], (17)

where the j th particle has mass mj , position vector rj ∈ R
3, and applied vector of noncon-

straint force Fj ∈ R
3 acting on the mass. Equation (17) is also applicable to rotational ac-
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celerations as shown by Udwadia and Yang et al. [79, 80] and Glocker [37]. With a constant
mass matrix M and plugging equations (10), (16a) and (16b) in equation (17), the govern-
ing objective function for the system can be represented as the minimum of the difference
between constrained and unconstrained accelerations as shown in equation (18).

J = (v̇ − v̇uc)
T M (v̇ − v̇uc)

= (
M−1(Dλc + BT

q λeq)
)T

M
(
M−1(Dλc + BT

q λeq)
)
.

(18)

Since M is a constant symmetric matrix, equation (18) can be written as follows:

J = (
Dλc + BT

q λeq
)T

M−1
(
Dλc + BT

q λeq
)
. (19)

It must be noticed that the objective function in (17) holds true for hyperstatic case be-
cause the contacting bodies are rigid. For simulating soft (flexible) contacts, an additional
damping matrix gets added to the Schur complement [D BT

q ]T M−1[D BT
q ], as described

in [81]. Further, flexible systems often result in under-constrained mathematical models, and
dealing with such systems is out of the scope of the work presented here. Hence the rigid-
body dynamics problem can be stated as a nonlinear programming problem (20) for the
vector of state variables Y := [λc

T ,λeq
T , q̇T ,qT ]T . Here the objective function (19) is min-

imized subject to the constraints imposed by equations of motion and the complementary
constraints (16a) and (16b), and the normalized Euler parameters (14):

Ŷ = arg min
Y

(
Dλc + BT

q λeq
)T

M−1
(
Dλc + BT

q λeq
)

s.t. M v̇ + BT
q (q)λeq + D(q)λc + S (q, q̇) − QA = 0,

B(q) = 0,

�ineq (q) ≤ 0 ⊥ λc ≥ 0.

(20)

Furthermore, to simulate a multibody system with a combination of equality type constraints
�eq = 0, i.e., for ideal joints, the manifold �eq can be appended to the bilateral constraint
manifold (14), as discussed in Section 2.2. The capacity of the described NLP formulation
to deal with ideal as well as contact-driven constraints makes it an all-inclusive formulation.

2.1.4 Discretization and solution strategy

Consider now the discrete version of the dynamics. At time tn−1 one has available the global
frame time derivatives of generalized coordinates q̇n−1, the velocities vn−1, and the positions
of the generalized coordinates qn−1 as follows:

qn−1 = [
rT
n−1 pT

n−1

]T
, (21a)

vn−1 = [
ṙT
n−1 (2 G (pn−1) ṗn−1)

T
]T

, (21b)

q̇n−1 = [
ṙT
n−1 ṗT

n−1

]T
. (21c)

Let hn be the time step size. Then, at the new derivatives of generalized coordinates
q̇n, the velocities vn and the positions of the generalized coordinates qn must be evaluated at
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time tn = tn−1 +hn. Hence, using half implicit Euler’s expansion [82], we have the following
relationships:

q̇n = [
ṙT
n ṗT

n

]T
, (22a)

qn = qn−1 + hnq̇n (22b)

vn = [
ṙT
n (2 G (pn−1) ṗn)

T
]T

, (22c)

v̇n = vn − vn−1

hn

, (22d)

tn = tn−1 + hn. (22e)

The bilateral constraint expressions (14) can be further discretized using Taylor’s expansion.
The unilateral constraints can be discretized using the relative velocities in equation (13).
These discretizations are represented in the following equations:

B (qn) ≈ B (qn−1) + hn Bq(qn−1) q̇n = 0, (23)

�ineq(qn) ≈ �ineq(qn−1) + hn DT (qn−1)vn ≤ 0. (24)

Incorporating equations (21a)–(21c), (22a)–(22e), (23), and (24) in NLP (20) we get the
following NLP in discretized form, with respect to the vector of optimization variables
[hn,Yn]:

[
ĥn, Ŷn

] = arg min
hn,Yn

TT
n M−1 Tn

s.t. M(vn − vn−1) + hn Kn = 0,

B(qn−1) + hn Bq(qn−1) q̇n = 0,

�ineq(qn−1) + hn DT
n−1 vn ≤ 0,

λcn ≥ 0,

hmax ≥ hn ≥ hmin,

(25)

where ĥn and Ŷn are the resulting step size and solution, respectively, and Tn and Kn are
defined as follows:

Tn := D(qn−1)λcn + BT
q (qn−1)λeqn

, (26a)

Kn := Tn + S (qn−1, q̇n−1) − QA(qn−1). (26b)

Here, the optimal values of hn, λcn, λeqn
, and q̇n need to be found at time tn. The scalar

terms hmin and hmax respectively are the minimum and maximum finite positive values of
time step size. Once the optimization problem (25) has been solved at time tn, the values of
q̇n and hn can then be utilized to evaluate and store the accelerations v̇n and the positions qn

using equations (22a)–(22e).
It can be noticed that time step size has been considered as a variable parameter bounded

by hmin and hmax respectively. This time-stepping scheme is purely based on enforcing the
feasibility of both: discretized inequality (complementary) constraints representing contact
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Fig. 2 Visual representation of step size variation (Color figure online)

and equality constraints that include equations of motion and discretized equality constraints
velocities. Figure 2 shows the feasible region of inequality and equality constraints sets
represented by �n ≤ 0 and Bn = 0 respectively. Equation (22a)–(22e) gives the integrand
qn at nth time step. The step size h, essentially, defines the fraction of the length of the vector
q̇. Further, there could be a situation with fixed step size such that the next step solution lies
out of the feasible region hence resulting in violation of constraints. The two plots in Figure 2
represent such a general situation. In the left plot, hopt indicates the optimal value of h as
per the condition imposed by the linearized inequality constraint. In the right plot, however,
a situation is shown where the step size hopt violates the linearized equality constraints; in
such a condition, hmin will be chosen by the algorithm. If the vector q̇ is bound to attain a
certain magnitude for convergence, then the bounded variable h provides an extra degree of
freedom and helps attain convergence. However, it also results in increase in dimensionality
of the problem.

It must be mentioned here that the approach described in this section inherently assumes
an inelastic nature of the contact, which is suitable for the scope of this work. The clearances
are very small compared to the other dimensions of the components in a machine, and hence
the components do not gain enough pre-collision velocities for the contact to fall in the
elastic domain.

2.2 Implementation of frictionless ideal joints using the nonsmooth framework

Consider two bodies A and B in constrained to each other between points P and Q by a
set of algebraic equations �(qA,qB) = 0. Their respective centers of mass Cartesian coor-
dinates in the global coordinate system are rA and rB , respectively. With a set of algebraic
constraints defined for the kth body in the system of N bodies with M total constraint equa-
tions, the constraint forces Fk and torques T′k acting on the bodies can be evaluated in
absolute coordinates using the approach discussed in [77], as presented in equation (27):

Qk
const =

[
Fk

T′k
]

const

=
[

�T
r

�′T (�)

]

k

λck = Ckλck, (27)

where λk is the Lagrangian multiplier associated with the kth body equation �k = 0 and
�r is the Jacobian matrix of � with respect to Cartesian coordinates r ∈ [rA, rB, . . . , rN ].
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The operator �′ ∈ [�′
A,�′

B, . . . ,�′
N ] on the constraint describes the first order variation of

the joint frame located by s′ in the body frame. In addition to this, the reference [77] also
describes the method to formulate following fundamental constraints. Similarly, the vector
Qc comprising the constraint forces and torques for a system of N bodies can be defined as
in equation (28), where λc is the vector of all λck .

Qc =

⎡

⎢
⎢⎢
⎣

C1

C2

. . .

CN

⎤

⎥
⎥⎥
⎦

λc = C(q)λc. (28)

Hence, using the methods for deriving NLP (20), the equations of motion for a smooth
system using nonsmooth framework can be stated as NLP (29) for the vector of state vari-
ables Y := [λc

T , q̇T ,qT ]T :

Ŷ = arg min
Y

H(q,λc,λeq)M−1 H(q,λc,λeq)

s.t. M v̇ + H(q,λc,λeq) + S (q, q̇) − QA(q) = 0,

B(q) = 0,

� (q) = 0,

(29)

where

H(q,λc,λeq) = Bq
T (q)λeq + C(q)λc. (30)

It can be noticed that the contact matrix D in NLP (20) is replaced by a mapping C
and the inequality constraints vanish, leaving the rest of the structure unchanged. Using
equations (21a)–(21c) and (22a)–(22e), the time-discretized equations for continuous sys-
tems can thus be written as follows with respect to the vector of optimization variables
Yn = [hn,λc

T
n ,λeq

T
n
, q̇T

n ]T :

Ŷn = arg min
Yn

HT
n M−1 Hn

s.t. M(vn − vn−1) + hn(Kn) = 0,

B(qn−1) + hn Bq(qn−1) q̇n = 0,

�(qn−1) + hn CT
n−1 vn = 0,

(31)

where Ŷn is the resulting solution, and Hn and Kn are defined as follows:

Hn := C(qn−1)λcn + BT
q (qn−1)λeqn

, (32a)

Kn := Hn + S (qn−1, q̇n−1) − QA(qn−1). (32b)

2.3 Algorithm

A step-by-step procedure to implement the formulation discussed in Sections 2.1 and 2.2.
For a target simulation time tmax, the initial values of Y0 at time t0 should be such that all
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Algorithm 1 Nonsmooth multibody dynamics

1: Inputs: t0, tfinal, hmin, hmax, Y0 
 The initial states Y0 = [λc
T
0 ,λeq

T
0 , q̇T

0 ]T
2: n ← 0
3: while tn < tfinal do
4: n ← n + 1

5:

{
ĥmin = min{hmin, tfinal − tn−1}
ĥmax = min{hmax, tfinal − tn−1} 
 Ensure tn ≤ tfinal

6: [hn,Yn] ← Solution of NLP(Yn−1, ĥmin, ĥmax) 
 Solve (25) or (31)
7: [λc

T
n ,λeq

T
n
, q̇T

n ] := YT
n 
 Extract the state variables

8:

⎡

⎣
qn

vn

v̇n

⎤

⎦ ←
⎡

⎣
qn−1 + hnq̇n[

ṙT
n (2 G (pn−1) ṗn)

T
]T

1
hn

(vn − vn−1)

⎤

⎦ 
 from equation (22a)–(22e)

9: tn ← tn−1 + hn

10: end while

constraint equations are satisfied. For the initial values of generalized coordinates satisfying
a negative value of gap function, the initial value of Lagrangian multipliers λc0 should be
assumed zero.

The values of state variables obtained at the nth time-step in step 7 of the Algorithm 1
can be later used to evaluate contact forces and torques using equation (12).

3 Parametric definitions of joints with clearances

In this section, the formulations for three fundamental joints used in mechanical systems
are presented. The gap function �ineq should provide both the normal distance and the nor-
mal unit vector between the potential contact points to suit equation (11). Keeping this key
requirement in consideration, the parametric formulations for joints with clearances are pre-
sented in this section.

3.1 Cylindrical joint with clearances

Figure 3 shows a system of two bodies i and j forming a cylindrical joint with radial clear-
ance c. The generalized coordinates of bodies are qi ∈ R

7 and qj ∈ R
7 respectively. Let

points Pi1 and Pi2 represent the two ends of center-line of body i in the global frame of ref-
erence. Let points Pj1 and Pj2 represent the two ends of center-line of body j in the global
frame of reference. The perpendicular distances of points Pi1 and Pi2 from the center axis of
body j are ds1 and ds2 , along with the unit vectors ns1 and ns2 , respectively. Let A(pi ) and
A(pj ) be the rotation matrices of the respective bodies. Given the local coordinate vector
s′

kx of an arbitrary point Pkx with x ∈ [1,2] in a body with respect to the centroid k ∈ [i, j ],
the position of point Pkx can be evaluated in global frame as rkx using equation (33).

rkx = rk + A(pk) s′
kx . (33)

The body with the smaller axial length will have one or both of the end faces making contact
with the longer body. Assuming that body i is the smaller body and considering Pj1 as the
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Fig. 3 Schematic representation of a spatial cylindrical joint with clearance (Color figure online)

reference point with position vector rj1 , the perpendicular vectors dsx , x ∈ [1,2] pointing
towards the contact points Pkx can be evaluated via the following equations:

dsx = (rix − rj1) − (rix − rj1)
(rix − rj1)

T (rj2 − rj1)

‖rix − rj1‖‖rj2 − rj1‖
, (34)

nsx = dsx

‖dsx ‖
= dsx

dsx

. (35)

Considering c of a very small magnitude in comparison to other dimensions of the compo-
nents, the perpendicular distances ds1 and ds2 must abide the following inequalities:

�cylindric (q) =
[
ds1 − c

ds2 − c

]
≤ 0. (36)

Assuming the hole inside the body i has a radius R, the position of the corresponding contact
points cx in the global reference frame can be calculated as follows:

cx = ri + A(pi )s′
ix − R nsx . (37)

It must be noticed that the definition of cylindrical and revolute clearance joints defined in
[59–65] considers angular misalignment as an extra inequality constraint. These definitions
have widely been used in rp formulations with continuous contact models. However, the re-
quirement is to define the constraints for clearance joints in the rA formulation such that the
normal vector at a contact point must be obtained as a function of the gap present between
the colliding points, and the contact matrix thus formed must satisfy equation (24). For this
requirement, it is essential that the inequality constraint set � must exclusively comprise
distance quantities similar to what is defined in [68]. Hence, the cylindrical joint defined in
equation (36) is �cylindric ∈ R

2. Also, it can be noticed that the normal vector n required for
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Fig. 4 Schematic representation of a spatial prismatic joint with clearance

evaluating D is a direct indicator of the relative normal direction at the contact. Hence, with
the proposed definition, the joint is conducive to and can be integrated with the nonsmooth
dynamics framework described in the previous sections. Since the function is evaluated in
terms of absolute distance with λc ≥ 0 and the normal vector is defined along the direction
of the distance vector, the angular misalignment is automatically considered in this approach
for all possible combinations of relative orientations of the bodies.

3.2 Prismatic joint with clearances

The spherical, revolute, and cylindrical joints with clearance [59–64, 66] and planar pris-
matic joints [67, 71] have been studied extensively. However, the spatial prismatic joints
have not received much attention in the past. The prismatic joint with a clearance poses a
special intricacy because of its exclusive dependence on geometric parameters. Tradition-
ally, a prismatic joint consists of shapes with vertices and planes to constrain the rotational
motion about the longitudinal axis, and these vertices form the contact points. A prismatic
joint without clearance does not require these to be included as the contact forces are not
evaluated on individual vertex. However, when clearance is included, each vertex of the
inner body (minimum six are required for a spatial prismatic joint) needs to be individ-
ually constrained to not penetrate the enveloping body’s two adjacent planes. Hence, the
geometric locations of all the vertices are required with respect to the local coordinate sys-
tem.

Figure 4 shows a system of two bodies i and j forming a prismatic joint with clearance.
The generalized coordinates of the bodies are qi ∈R

7 and qj ∈R
7 respectively. Each vertex

of body i (inner body) at front and back faces is constrained to two adjacent planes, as shown
in Figure 5. For example, points P4f and P4b are constrained to planes 1 and 4, points P1f

and P1b are constrained to plane 1 and plane 3, and so on. It requires at least three points to
define a plane. The planes 1–4 are defined by the vertices in the above figure. For example,
plane 1 is defined using points Q1f , Q4f , and Q4b , plane 2 is defined by P1f , P2f , P1b , and
so on.
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Fig. 5 Each pair of vertices
results in two values of
directional distance vector (Color
figure online)

With this methodology, a polygon of any regular or irregular shape can be defined with
the help of all the vertices and planes. Each vertex of an N sided polygon is constrained to
two adjacent planes at both the faces. This results in 4N equations of distance constraint.
Obviously, each vertex’s global coordinates need to be calculated as per equation (33).
The perpendicular distance between a point P on body i, where P ∈ [P1f ,P2f , . . .,PNf ,

P1b,P2b, . . .,PNb], and a plane obtained from vertices on body j can be calculated as fol-
lows:

dP = (rP − rQ)T nQP ≥ 0, (38)

where nQP is the normal vector of the bounding plane pointing towards the point P , Q is
any point in the bounding plane, and rP and rQ are the vectors associated with point P and
point Q in the global reference frame evaluated with equation (33). Hence, for a joint of rigid
bodies forming a prismatic joint, with the internal body having 2M vertices and bounded
by external body having M planes, the constraint manifold is given as per the following
inequality:

�prismatic (q) =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

−dPf 1

...

−dPf 2M

−dPb1
...

−dPb2M

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

4M×1

≤ 0. (39)

Here, the subscripts ‘f ’ and ‘b’ respectively signify the vertices in front and back, as shown
in Figure 4. It can be inferred from equation (39) that the dimensionality of NLP (25) in-
creases with the number of vertices in the joint. This is another justification for the lack of
studies on prismatic joints with clearances, as compared to other fundamental joints.

3.3 Revolute joint with clearances

The spatial revolute joint is essentially an axially constrained cylindrical joint. Let body i

in Figure 3 be axially constrained at the ends of body j such that there remains an axial
clearance ca . The normal vectors nj1 and nj2 at the constraining planes at Pj1 and Pj2 ,
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Table 1 Case study
specifications: Cylindrical joint
(Color figure online)

Property Value Units

m 3.2 kg

L 100 mm

l 20 mm

R 5 mm

‖s′f ‖ 30 mm

F 50 N

respectively, are evaluated as per the following equations:

nj1 = rj2 − rj1

‖rj2 − rj1‖
, nj2 = −nj1 . (40)

Consequently, the construction of the joint requires that the distance of points Pi1 and Pi2

from Pj1 and Pj2 , projected on the normal vectors nj1 and nj2 , respectively, is positive.

−(ri1 − rj1)
T nj1 ≤ 0,

−(ri2 − rj2)
T nj2 ≤ 0.

(41)

Hence, the constraint manifold for a revolute joint with clearances is given as the following
set of inequalities:

�revolute (q) =
⎡

⎣
�cylindric (q)

−(ri1 − rj1)
T nj1−(ri2 − rj2)
T nj2

⎤

⎦ ≤ 0. (42)

4 Case studies

This section discusses the three relevant case studies that were used to test the methodology
discussed in Sections 2 and 3.

4.1 Case study: cylindrical joint

Figure 6 shows a simple case study of a spatial cylindrical joint with clearance to illustrate
the proof of concept for the proposed formulation. The case study comprises of a slider of
mass m with its center of mass denoted by the generalized coordinates q ∈ R

7 and a mass-
less rod of radius R fixed at both ends. There is a radial clearance c = 0.1 mm between
the slider and the rod and gravity acts along the −Y axis. An external force F acts on the
slider at a point marked by a body-frame vector s′

f . The system specific details illustrated
in Figure 6 are shown in Table 1.

4.2 Case study: prismatic joint

Figure 7 shows a simple case study of a spatial prismatic joint with clearance c = 0.3 mm.
As it can be observed, the bodies have triangular cross-section with each edge of the cavity
in body j of length ej ; the corresponding length for body i is ei . The slider i has mass
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Fig. 6 Schematic diagram of the
cylindrical joint with clearance

Fig. 7 Schematic diagram of the triangular prismatic joint with clearance (Color figure online)

m with its center of mass denoted by the generalized coordinates q ∈ R
7 and a mass-less

triangular prism is fixed at both ends. The gravity acts along the −Y axis and an external
force F acts on the slider at a point marked by a body-frame vector s′

f . The topmost vertices
of the slider are labeled Pf1 and Pb1 respectively. The trajectory of these two contact points
is tracked and discussed in Section 5.2. The system specific details illustrated in Figure 7
are shown in Table 2.

4.3 Case study: revolute joint

Figure 8 shows a simple case study of a pendulum i forming a revolute joint with a hinge
pin j of radius R. The radial and axial clearances are denoted by c and ca . The center of
mass of the pendulum is located at cmx and cmz units along local X and Z directions. As
can be observed, the bob of the pendulum is a rod protruding out of the XZ plane. This odd
shape has been chosen to induce motion along Z direction as well. The pendulum i has mass
m with its center of mass denoted by the generalized coordinates q ∈R

7 and the hinge pin j
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Table 2 Case study
specifications: Prismatic joint
(Color figure online)

Property Value Units

m 3.2 kg

L 100 mm

l 20 mm

ei 17.67 mm

ej 17.32 mm

‖s′f ‖ 30 mm

F 40 N

Fig. 8 Schematic diagram of the revolute joint with clearance (Color figure online)

Table 3 Case study
specifications: Revolute joint Property Value Units

m 2 kg

l 20 m

c 0.1 m

R 5 m

ca 0.1 m

cmx 30.9 m

cmz 11.97 m

is mass-less and fixed at both ends. The gravity acts along the −Y axis. The system specific
details illustrated in Figure 8 are shown in Table 3.

5 Results and discussion

The simulation results were achieved using sequential quadratic programming (SQP) avail-
able in MATLAB® toolbox. The SQP algorithm uses the penalty method proposed by
[83, 84], where the penalty parameter for kth iteration rki

corresponding to ith constraint
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Fig. 9 Cylindrical joint in Figure 6: Residuals Equation of motion (Color figure online).

Fig. 10 Cylindrical joint in Figure 6: X and Y coordinates of the centers of left and right ends (Color figure
online).

is given as follows:

rki
= max(λi,

λi + rk−1i

2
), (43)

where λi is the Lagrange multiplier associated with ith constraint.
The case-studies of cylindrical and prismatic joints were conducted with time step h

varying between hmin = 10−3 and hmax = 10−2 seconds, while the revolute joint case study
was conducted with h varying between hmin = 10−3 and hmax = 2 × 10−3 seconds. Further,
to study the convergence and stability properties and to highlight the effects of numerical
damping, the total mechanical energy in the pendulum (revolute joint with clearance) was
studied with different ranges of step sizes. The SQP algorithm comes with the advantage of
fast convergence and its ability to efficiently deal with a large number of constraints [85].
The constraint violation was observed ‖�ineq(q)‖ ≤ 10−10 upon the contact formation. At
the same time the equations of motion (16a) and (16b) were satisfied within the limits of
10−9.

5.1 Cylindrical joint

As shown in Figure 9, the equations of motion residuals were found to be of order 10−9.
Figure 10 shows the positions of X and Y components of the left-hand and the right-hand
ends of the slider. As can be expected, the external force F generates torques and tilts the
slider. Hence, the left end descends down and makes contact with the shaft, while the right
end moves up to make contact with the shaft. After the contact is formed at the diametrically
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Fig. 11 Cylindrical joint in Figure 6: Contact forces against time (Color figure online).

Fig. 12 Cylindrical joint in Figure 6: X and Y velocities of center of mass (Color figure online).

Fig. 13 Cylindrical joint in Figure 6: Z velocity of center of mass.

opposite ends of the rod j , the slider starts moving in the Z direction. Figure 11 shows
the contact forces CF − x, CF − y, and CF − z in X, Y, and Z directions respectively.
Figure 12 represents the X and Y velocities of the center of mass. The lateral velocities (in X-
Y directions) gained by slider are very small, though periodically varying. These oscillations
of low magnitude arise because in the absence of friction, minute perturbations in X-Y
plane can rotate the slider about Z axis, which also happens to be the major axis of the
slider. Figure 13 represents the Z-velocity of the center of mass of the slider, and Figure 14
represents the displacement of slider Z direction from the initial position. Since the external
force is constant, the acceleration is constant, and hence the velocity and position profiles
are straight-line and parabola respectively.

Figure 15 shows the step size adaptation over time. It can be observed that the dramatic
fluctuations in the step size correlate well with the lateral micro-oscillations of the contact
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Fig. 14 Cylindrical joint in Figure 6: Z coordinate of center of mass.

Fig. 15 Cylindrical joint in Figure 6: Time step size.

Fig. 16 Prismatic joint in Figure 7: Equations of motion residuals.

points that undergo sliding while maintaining the contact, as observed in Figure 10. In cylin-
drical slider, the rotational degree of freedom about Z axis is free and remains so even after
contact is formed. Moreover, the torque generated by external force is acting about the in-
termediate axis of the slider. The torque generated by external force is acting throughout
the simulation. Since rotation about intermediate axis is unstable to numerical perturbations
along global X and Y [78], the step size also oscillates between the bounds in this case.
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Fig. 17 Prismatic joint in Figure 7: Y coordinates of contact points Pf 1 and Pb1 (Color figure online).

Fig. 18 Prismatic joint in Figure 7: Contact forces against time (Color figure online).

5.2 Prismatic joint

The equations of motion residuals, as shown in Figure 16, are in order of 10−9. Figure 17
shows the positions of Y components of the points Pf1 and Pb1 shown in Figure 7. The
external force F generates a torque and tilts the slider, similar to the cylindrical joint’s case.
However, the contact happens on all the six vertices. After the contact is formed at the body
j , the slider starts moving in the Z direction. Figure 18 shows the contact forces CF − x,
CF − y and CF − z in X, Y, and Z directions respectively. Figure 19 represents the X and
Y velocities of the center of mass. Once the steady contact is formed (around t = 0.2s),
the center of mass does not move in X-Y plane. Figure 20 represents the Z-velocity of
the center of mass, and Figure 21 represents the motion of slider’s center of mass along Z
direction. Since the external force is constant, the acceleration is constant, and hence the
velocity profile is straight line and the position profile is parabolic. The Figure 22 represents
the step size adaptations against time. In case of prismatic slider, the external torque (by the
applied force) is acting about the intermediate axis, which eventually tilts the slider until
the contact is made at the vertices such that the only remaining degree of freedom remains
sliding along the Z axis. It can be observed that once a steady contact is maintained, the
step size also stabilizes to the maximum value of 10−2. The main reason why Figure 15 is
noisy and Figure 22 is not is that in prismatic slider, rotational perturbations about Z cannot
destabilize the solution as formation of contact at vertices immediately nullifies that degree
of freedom.

5.3 Revolute joint

In this section, the results obtained from the proposed methodology have been discussed
for the revolute joint case study. The counterparts from an ideal joint case, i.e., without any
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Fig. 19 Prismatic joint in Figure 7: X and Y velocities of center of mass (Color figure online).

Fig. 20 Prismatic joint in Figure 7: Z velocity of center of mass.

Fig. 21 Prismatic joint in Figure 7: Z position of center of mass.

clearance, have also been compared. The ideal joint case was evaluated using tangent space
ODE (TSODE) formulation [75]. For brevity, the term “NLP” represents the nonsmooth
solution of the respective system with clearance. The rationale behind choosing a separate
well-established methodology for simulating an ideal joint case was to check the credibility
of the solution obtained from the method proposed in this work.

Figure 23 shows the residuals of equations of motion. Figure 24 shows the positions of
X and Y components of the contact points on the hinge pin’s surface. It can be observed
that because of rotation the system undergoes intermittent formation and breaking off of the
contact. Figure 25 shows the contact forces CF − x, CF − y, and CF − z in X, Y, and Z
directions respectively. The counterparts from an ideal joint case, i.e., without any clearance,
have also been compared. It can be observed that the general pattern of the variation of the
contact forces is sinusoidal, excluding the peaks. When juxtaposed to the ideal-joint case, a
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Fig. 22 Prismatic joint in Figure 7: Time step size.

Fig. 23 Revolute joint in Figure 8: 2-norm residuals of equations of motion

Fig. 24 Revolute joint in Figure 8: X and Y coordinates of the centers of left and right ends (Color figure
online).

similar pattern can be observed; however, with a slight lag. This lag can be attributed to the
fact that the pendulum, when released, first falls as a free body and consumes the clearance.
Then the contact is made and the expected motion begins. Figure 26 represents the X and Y
velocities of the center of mass.

The effect of lag can also be observed in the initial moments of time in Figure 26, while
the rest of the velocity profiles overlap the ideal-joint counterparts. This overlap can also
be observed in the position profiles. Figure 27 represents the positions of center of mass
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Fig. 25 Revolute joint in Figure 8: Contact forces against time. Joint with clearance formulated as NLP (25).
Ideal joint case formulated as a TSODE [75] (Color figure online).

Fig. 26 Revolute joint in Figure 8: X and Y velocities of center of mass (Color figure online).

Fig. 27 Revolute joint in Figure 8: X and Y coordinates of center of mass (Color figure online).

in X-Y plane. In Figure 28, the axial displacement of the center of mass of the pendulum
is shown evolving with time. As can be expected, the ideal-joint case does not exhibit any
displacement along the Z direction. Furthermore, it must be noticed that the center of mass
is located at a significant distance from the axis of rotation. Hence, the displacement of
center of mass along Z is a combination of the tilting effect on the hinge pin because of
radial clearance as well as the prismatic displacement in the Z direction because of axial
clearance.

Figure 29 represents the variation of step size with time. It can be observed that step
size changes when the contact points acquire high relative sliding speeds. Moreover, the nu-
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Fig. 28 Revolute joint in Figure 8: Z coordinates of center of mass (Color figure online).

Fig. 29 Revolute joint in Figure 8: Time step size variation in NLP solution of the system with clearance.

Table 4 Case study
specifications: Revolute joint Property Value Units

m 2 kg

l 20 m

R 5 m

cmx 30.9 m

c 0.1 m

merical damping because of large range of step size happens to be a source of dissipation.
This is confirmed in Figure 30 where the total mechanical energy is plotted for different
ranges of step size. Recall that our base-line step size range was 10−3 < h < 2 × 10−3. The
convergence analysis shows that limiting the range to smaller values of maximum step size
(5 × 10−4 < h < 10−3) resulted in significant improvement in energy conserving properties.
Further, the stability analysis compares the two baseline convergence ranges with their re-
spective increased and decreased range, keeping the maximum step size same, i.e., 10−3 and
2 × 10−3 respectively. It can be observed that energy loss is expected with larger step sizes,
but it can be restored using smaller step sizes. Further, with the maximum step size fixed,
improved stability comes with smaller minimum step size.

5.4 Ideal joint pendulum

Figure 31 shows a simple case study of a pendulum i forming a revolute joint with a hinge
pin j of radius R. The center of mass of the pendulum is located at cmx along the local X
direction. The pendulum i has mass m with its center of mass denoted by the generalized
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Fig. 30 Revolute joint in Figure 8: Stability and convergence properties for different ranges of step size
(Color figure online).

Fig. 31 Schematic diagram of a pendulum demonstrating a revolute joint (Color figure online)

coordinates qi ∈ R
7 and the hinge pin j is mass-less and fixed at both ends. The gravity

acts along the −Y axis and the clearance in the revolute joint is c. The system specific
details illustrated in Figure 31 are shown in Table 4. Two cases of the showed pendulum are
considered: 1. Joint with clearance using NLP (25); 2. Ideal joint using NLP (31). Further,
the fixed step size studies were conducted with two step size values: h = 2 × 10−4 and h =
10−3 for both cases. The effect of step size range bounds was also compared by simulated
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Fig. 32 Pendulum in Figure 31: The center of mass position represented in X-Y coordinates (Color figure
online)

Fig. 33 Pendulum in Figure 31: Center of mass velocity represented as the rate of change of X-Y coordinates
(Color figure online)

Fig. 34 Pendulum in Figure 31: Total, kinetic, and potential energies (Color figure online)

both cases with two ranges of bounded step size: 2 × 10−4 ≤ h ≤ 10−3 and 10−3 ≤ h ≤ 2 ×
10−3. Based on inferences from Figure 30, the aim is to investigate the effect of numerical
damping on entities other than mechanical energy.

Figures 32 and 33 respectively compare the X-Y positions and velocities of the cen-
ter of mass. The effect of clearances is more noticeable in velocity plots, especially in the
beginning. Figure 34 compares the total mechanical energy and its kinetic and potential
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Fig. 35 Pendulum in Figure 31: Contact forces along global X, Y, and Z directions. Large step size induces
numerical damping that reduces the number of peaks (Color figure online).

Fig. 36 Pendulum in Figure 31 with ideal joint: Norm of kinematic constraints (Color figure online).

components for the two cases, where only gravitational potential energy was considered to
calculate total mechanical energy. The nonsmooth behavior in total energy can be observed
in the interval 0 < t < 2.

Figure 35 compares the variation in spatial components of contact forces between clear-
ance joint and ideal joint, both cases simulated by the discussed NLP approach. In Figure 35,
it can be observed that numerical damping comes into effect with large step sizes as the num-
ber of peaks go down with range of larger step sizes. Figure 36 shows that the formulation
does satisfy the kinematic constraints in case of ideal joint. The plot in the top represents
the X and Y coordinates of left and right ends of the pivot end’s centerline. It can be noticed
that the clearance constraint of 0.1 m is not violated. In case of ideal joint, the constraints
are satisfied well. This case study demonstrates the effectiveness of the proposed framework
to deal with smooth as well as nonsmooth systems. Further, Figure 37 compares the com-
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Fig. 37 Pendulum in Figure 31: Total iterations between t = 0s and t = 10s, and computational time (Color
figure online).

putational aspects of the two cases studied in this section. The advantage of bounded step
size over fixed step size can hence be argued based on the observations in case of joints with
clearances. However, there is no significant improvement in case of ideal joints if the hmin

is kept same, i.e., 10−4 or 10−3. However, increasing the step size range indeed reduces the
computation time and induces numerical damping, at the cost of energy loss, as observed in
Figure 30. Moreover, it must be noticed that contact problems consume significantly more
computational resources than smooth problems.

6 Conclusions

This work provides a nonsmooth dynamics based framework for the purpose of simulating
multibody systems with clearances in the joints. Nonsmooth dynamics of spatial cylindrical,
prismatic, and revolute joints with clearances have been derived assuming inelastic nature of
the contact. The mathematical representations of constraint inequalities have been carefully
derived to ensure that they capture all the possible scenarios of contact formation. Simulation
results demonstrate the computational effectiveness of the proposed framework. Moreover,
the tolerance limits of constraints during contact are also satisfied within significant accu-
racy. The proposed framework was also successfully applied to simulate ideal joints in rA
formulation, and constraint requirements were also well preserved.

The paper proposes a novel adaptive time step strategy based on treating the time step
size h as a variable in the NLP problem. To preserve rotations, normalization constraint on
Euler parameters was enforced. As a result, the velocity of generalized coordinates q̇ was
included as an optimization variable and the integration scheme was incorporated within the
optimization process. The stability analysis showed that the deviation in total energy can
be mitigated by selecting appropriate bounds on the step size. Smaller values of minimum
bounds were found conducive to reduce energy deviation. Furthermore, looking at the level
of complexity of problems considered and the computational time consumed, a limitation of
the proposed framework can be observed. Indeed, this is an open task for future work.

This work focuses on frictionless contacts in the joints with clearances. On-going work
by the authors seeks to extend this study to the simulation of joints with clearance and
friction, which will shed further light on the impact of clearances on multibody system
dynamics.

The industrial approach of assigning tolerances, and hence clearances, is primarily based
on manufacturability related aspects. However, the effects of accumulated clearances on
the kinematic and dynamic parameters of a mechanical system are often neglected. The
presented work can be impactful in rationalizing the design procedures because tolerance
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assignment is a critical task on engineering drawings. Understanding the effect of tolerances
on the system’s dynamic response can be helpful in optimizing the design of a machine’s
components.
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