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Abstract
Computational models are conventionally created with input data, script files, programming
interfaces, or graphical user interfaces. This paper explores the potential of expanding model
generation, with a focus on multibody system dynamics. In particular, we investigate the
ability of Large Language Model (LLM), to generate models from natural language. Our
experimental findings indicate that LLM, some of them having been trained on our multi-
body code Exudyn, surpass the mere replication of existing code examples. The results
demonstrate that LLM have a basic understanding of kinematics and dynamics, and that
they can transfer this knowledge into a programming interface. Although our tests reveal
that complex cases regularly result in programming or modeling errors, we found that LLM
can successfully generate correct multibody simulation models from natural-language de-
scriptions for simpler cases, often on the first attempt (zero-shot).

After a basic introduction into the functionality of LLM, our Python code, and the test
setups, we provide a summarized evaluation for a series of examples with increasing com-
plexity. We start with a single mass oscillator, both in SciPy as well as in Exudyn, and
include varied inputs and statistical analysis to highlight the robustness of our approach.
Thereafter, systems with mass points, constraints, and rigid bodies are evaluated. In particu-
lar, we show that in-context learning can levitate basic knowledge of a multibody code into
a zero-shot correct output.

Keywords Large language models · Text-based simulation · Modeling · Natural language

1 Introduction

The current state-of-the-art for creation of multibody dynamics simulation models can be
classified into graphics user interface (GUI)-based methods, such as with commercial codes
Adams (Hexagon), or RecurDyn (FunctionBay), specialized input files or script languages
[9, 17] or using the underlying programming language of the simulation code [10, 18].

Natural Language Processing (NLP), an integral part of artificial intelligence, empowers
computers to comprehend, interpret, and generate human language [15]. It explores diverse
aspects of language, such as syntax – the structure of word arrangement in sentences – and
semantics, which focuses on the meaning of words in context. NLP has been impacted by
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the introduction of LLM, particularly the transformer architecture [25]. These LLMs, like
Generative Pre-trained Transformer (GPT), have a massive number of parameters and have
shown capabilities beyond NLP, such as code completion and generation [1]. Furthermore,
they have potential in transforming natural-language descriptions into programmed simula-
tion models.

Recent developments show an upward trend in the size of LLM, see also Fig. 1. Ka-
plan et al. show in their study on scaling laws that the crossentropy loss correlates with
dataset size, computational power, and the number of parameters [16]. The research team
of Google Deepmind found that training data should be scaled together with the model
size [12]. Notably, GPT-3 showcased the improved few-shot performance of LLM [3], and
public attention peaked with the introduction of ChatGPT in 2022. A competing chat system
based on LLM is Google Bard, which initially used Language Model for Dialogue Appli-
cations (LaMDA) [24], a 137-billion parameter model. As of May 2023, Bard has transi-
tioned to PaLM-2, whose dimensions remain undisclosed but are smaller than its predeces-
sor PaLM, which had 540 billion parameters, due to compute-optimal scaling of parameter
size. Chowdhery et al. [5] noted that in the development of their 540-billion parameter Path-
ways Language Model (PaLM) the effect of the model scale does not seem to be saturated
yet. According to a leak the GPT-4 model has 1760 billion parameters, but it is not officially
disclosed.

A key challenge for LLM development is the curation and preparation of datasets. For
instance, GPT-3 utilized a diverse mix of sources, including WebText2 and Wikipedia, to-
taling 499 · 109 tokens [3]. Similarly, PaLM was trained on 780 · 109 tokens from various
sources, such as Github and social-media conversations [5]. Ensuring test-tasks are not part
of the training dataset is crucial to prevent dataset contamination.

Due to the large amount of data required for training of LLM, HuggingFace has emerged
as a platform in the world of Large Language Models (LLM), offering a rich repository of
training datasets essential for LLM development [28]. The more than 69k datasets, ranging
from tiny to huge ones, include comprehensive sets such as Wikipedia as well as GitHub.

1.1 LLM in science and engineering

Specialized LLM have been created, e.g., for science, see Galactica [23], for software en-
gineering [13], or a method focusing on micromechanics, see Ref. [4]. SciBERT [2], based
on a pretrained BERT (Bidirectional Encoder Representations from Transformers) [6] base
model, has been specifically trained on scientific texts. SciBERT has been trained on a broad
corpus of scientific publications and therefore outperforms BERT and surpasses previous
models in several categories. Notably, models like BERT and SciBERT have a relatively
compact size, allowing for their training without the need for computers with petaFLOPS
range performance. Furthermore, the BERT model has been expanded into MatSciBERT
[11], a Language Learning Model (LLM) specifically focused on materials science.

1.2 Aims and methods

This paper introduces an approach to generate (multibody) dynamics simulation models
using natural language. We briefly mention GPT and their current status, relying to open-
source models and closed models as far as data is accessible. Our exploration seeks to under-
stand the capabilities of LLM that have been trained on codes, in particular simulation codes
to showcase the current capabilities of existing LLMs in reflecting future advancements. We
provide a brief overview of the Exudyn Python interface for setting up simulation models
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Fig. 1 Number of parameters of LLM over the past five years. Significant advances were made by Mega-
tron in 2019 and GPT-3 in 2020. ∗The number of parameters of GPT-4 is not officially disclosed but was
presumably leaked

and its status at the time that training data had been created, which is September 2021. To
validate our approach, we present a dedicated test set and evaluate its performance across
various LLM, with full-text responses available in the supplementary material. Using LLM
to create Python code for geometrical modeling has been applied, for example, with Blender
[7]. In the present paper, we only focus on evaluation of existing LLM. We apply in-context
learning [22], which is widely accepted as a means to improve the performance of LLM, but
do not attempt full-scale training or fine tuning of open-source LLM.

1.3 Mechanical and simulation models

It should be mentioned that the creation of simulation models also means that a mechani-
cal model is underlying the simulation model, which is why the term (mechanical) model
is used in the following as a synonym for both kinds of simulation and mechanical mod-
els. To produce a (mechanical) model from natural language, an LLM needs more than just
general NLP capabilities. It also requires foundational knowledge in mechanical engineer-
ing, including geometry, kinematics, statics, and dynamics. Training an LLM solely on the
documentation of a simulation code would not be sufficient.
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2 Brief notes on LLM and transformers

In this research we look into different LLM, being GPT-3.5 and GPT-4 [19], which are
proprietary models developed by OpenAI, well known by the ChatGPT application.1 Fur-
thermore, Google’s Bard, which currently uses PaLM-2,2 as well as LLaMA-23 from Meta
AI are considered in the present paper.

There are only technical reports on GPT-3.5, GPT-4, and PaLM-2 with little information
on the underlying model. Many more details are available for LLaMA, which is why we
focus here on more detailed descriptions of LLaMA and LLaMA-2. However, the basic
transformer structure is the same for all models used here, as far as technical reports disclose.

2.1 Transformers and large language models

The transformer architecture is a neural-network design introduced in 2017 [25], primar-
ily for sequence-to-sequence tasks in natural-language processing. The evolution of trans-
formers departs from recurrent neural networks and long short-term memory (LSTM)-based
models by relying entirely on attention mechanisms to draw global dependencies between
input and output. The architecture consists of an encoder and/or a decoder, each compris-
ing multiple layers of self-attention and feedforward neural networks. The key innovation,
attention [25], allows the model to weigh the significance of different words in a sequence,
enabling it to capture long-range dependencies and context effectively. This design has be-
come foundational in the subsequent development of large-scale language models and is
shown in the originally proposed architecture in Fig. 2.

Transformers have then been further developed, such as the early model BERT [6, 21] and
its subsequent iterations. Generative Pre-trained Transformers (GPT) are a subset of models
specifically designed for language tasks. Their core structure is the transformer, which uses a
decoder-only variant. Characterized by their massive number of parameters, usually between
a billion and a trillion, these models excel in generating coherent, contextually relevant
text over lengthy passages. Their foundational neural networks, which are key elements
in the various attention heads in transformers, encompass tens to hundreds of millions of
parameters, necessitating extensive training data.

The central feature of the transformer is the self-attention mechanism, which enables a
word to compute its context by checking the relevance of all other words in the sentence,
see Fig. 2. This is done using Query (Q), Key (K), and Value (V) vectors. Herein, the query
represents the current word or token one attention mechanism is focusing on and determines
how much attention should be paid to other tokens. The key represents all tokens in the
input and scores each token’s relevance to the current focus. The value provides the content
from the input tokens, which, when weighted by the attention scores, gives the output for the
current token. In the multi-head attention mechanism of the transformer, multiple attention
heads work in parallel, each producing its own output. These outputs are then concatenated
and linearly transformed to produce the final output. The model also includes positional
encodings to understand the sequence of words, as transformers do not inherently recognize
order. The “pretrained” aspect means that GPT models are first trained on vast amounts of
text to predict the next word in a sequence. This foundational training equips them with
knowledge about grammar, context, and general information. They can be further fine-tuned

1https://help.openai.com/en/articles/6825453-chatgpt-release-notes.
2https://bard.google.com/updates.
3https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI.

https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://bard.google.com/updates
https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI
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Fig. 2 The original transformer architecture and the operations performed in the multi-headed attention
block [25]

for specific tasks, such as chat or code completion. To generate text, a GPT inputs a user-
defined text (prompt) and predicts subsequent words in sequence.

In the context of programming, LLM can assist developers by predicting the next lines
of code, suggesting code optimizations, or even generating entire code snippets based on a
given prompt. LLM showed enormous capabilities in code completion and code generation
rather early [1]. By training on vast repositories of code, including code examples, docu-
mentation, issue trackers, bug reports, discussion forums, and Q&A pages, these models
have gained an understanding of various programming languages and their idiomatic pat-
terns. This not only accelerates the coding process [20] but also aids in reducing bugs and
enhancing code quality. If all code resources are available on open-source platforms, such
as GitHub, larger LLM may have already performed training on that code.

In addition to direct code completion, LLM have demonstrated the ability to translate
natural-language descriptions into functional code. This means that a developer can provide
a plain English request, such as “create a function that calculates all prime numbers smaller
than 20 in C++,” and the model can generate the corresponding code. This capability bridges
the gap between domain experts without coding expertise and software development, en-
abling more intuitive and collaborative software-design processes.

In particular, LLM may also be trained with the repository of a simulation code, includ-
ing documentation, the code itself, as well as code examples. However, in order to generate
a simulation model from natural language, besides general NLP capabilities, the LLM also
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requires some mechanical-engineering knowledge such as geometry, kinematics, statics or
dynamics. Therefore, particular training of LLM solely with the documentation of a simu-
lation code could be insufficient.

2.2 The LLaMA model

LLaMA-2, introduced in July 2023 as a collaboration between Meta AI and Microsoft,
represents a further refinement of LLaMA-1, often denoted as LLaMA.4 It was launched
in three model sizes: 7B, 13B, and 70B parameters. While retaining the architecture of
LLaMA-1, LLaMA-2 boasted a 40% increase in training data, with its foundational models
being trained on a 2-trillion token dataset. This dataset was curated to omit sites that might
disclose personal information and emphasized the inclusion of trustworthy sources and al-
lows a maximum context length of 4096 tokens. While LLaMA-2 is freely available for
many commercial applications, debates persist regarding its status as open source. LLaMA
is based on the transformer architecture, which has been a cornerstone for language models
since 2018. Notably, in contrast to GPT-3, LLaMA uses the SwiGLU activation function
instead of ReLU, adopts rotary positional embeddings over absolute positional embedding,
and applies root-mean-squared layer normalization.

To operate LLaMA-2, sufficient memory, either through RAM or VRAM on a GPU, is
essential for model inference (obtain the output from a trained model). The 7-billion param-
eter model demands 14 GB since the parameters are in half-precision floating-point format
(16 bit). The larger models, with 13 billion and 70 billion parameters, require 26 GB and
138 GB, respectively. It is worth noting that these memory requirements are for inference;
training demands more memory to store the gradients.

In addition to the vast memory requirements, as previously mentioned, the computa-
tional resources for training or fine tuning are also greater than most researchers have avail-
able. For LLM, the number of operations needed for training is also called compute or
training compute and is often given in floating-point operations (FLOPS), GPU-hours, or
petaFLOPS days as the number of operations are becoming very high. The state-of-the-art
model LLaMA-2 70B, which is still too small to solve the problems mentioned in the present
paper, required 1.7 million GPU hours of training and very large data sources, requiring at
least a cluster with 1000 GPUs and appropriate data-transfer rates in order to perform simi-
lar training tasks. For GPT-3 approximately 3.14 · 1023 FLOPS or 3634 petaFLOPS – days
of compute were used. This leads to the conclusion that training an existing model is fully
out of sight for the present research.

An alternative approach is Low-Rank Adaption (LoRA) [14] of LLM. With LoRA the
weights of the pretrained model are frozen and additional trainable rank decomposition ma-
trices are injected into each layer of the transformer architecture. The authors claimed that
this approach reduced the trainable parameters by 10 000 times and the GPU memory re-
quirement by a factor of 3 for the 175-billion version of the GPT-3 model with similar
performance than full fine tuning.

3 Multibody simulation models built from Python code

Since 2019, the Python library Exudyn [10] has been developed for creation and simulation
of multibody system models. Several popular LLM have been trained occasionally on this

4https://github.com/facebookresearch/llama.

https://github.com/facebookresearch/llama
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code and have some basic capabilities to create models from natural language. In particular,
the training date of our evaluated versions of GPT-3.5 and GPT-4 ended in September 2021,
which is of particular interest for subsequent investigations.

The Exudyn repository has been uploaded on GitHub and made publicly available on
January 9, 2020. On September 14, 2021 (Exudyn version 1.1.0), the library had only 4
forks and 15 stars, the latter being a common criterion to select repositories from GitHub for
training. OpenAI (GPT-3.5 and GPT-4) does not provide information about which GitHub
repositories have been used for training. In the literature on different LLM focusing on code,
rather large thresholds for number of GitHub stars are mentioned, being at least 50 stars for
the dataset used by PolyCoder [29]. An explanation for several LLM, as shown later, to
chose Exudyn for training may be the completely open and clearly stated BSD-3 license,
a larger set of files as compared to many higher-ranked repositories and a large number of
annotated examples. In particular, a significant amount of documentation, throughout code
commenting and file headers may have further influenced the decision to train on this code,
as this information is essential in the context of code completion. The highly structured data
and widely documented code in the repository included 88 examples and 56 test models in
version 1.1.0 may have been a further reason to be chosen for training by several LLM.5

3.1 Setup of models in Exudyn

Exudyn models are created solely using the Python language. Python is also available in
other multibody codes, such as ProjectChrono [18] or PyDy [8]. As a difference from the
latter codes, Exudyn includes a large set of annotated examples. Furthermore, the setup
of a rigid-body model, studied within the present paper, follows a simple and systematic
approach based on redundant coordinates and constraints.

After import of basic Python libraries, a simulation model is setup by creating a new
system, usually denoted as mbs. Hereafter, different items are added, such as nodes, ob-
jects, markers, loads, and sensors. Nodes are added for definition of (unknown) kinematic
quantities. Computational objects are then added to represent bodies, connectors or joint
constraints. The relation between nodes and bodies is rather simple, such as mass points
requiring point nodes or rigid bodies requiring rigid-body nodes, e.g., based on Euler pa-
rameters. Connectors, such as spring-dampers as well as constraints are attached to mark-
ers, which need to be attached to bodies or nodes. Hereafter, a spring-damper is created by
providing two markers, a spring constant, a damping constant, and a reference length.

All of the items can be added to the mbs by using simple commands such as
n=mbs.AddNode(...) or o=mbs.AddObject(...), in which n is the returned
node index and o is the according object index. Finally, the structure for definition of a
node or object is embedded into a class structure, such that a mass point with 5 kg is at-
tached to node n by writing:

o=mbs.AddObject(MassPoint(nodeNumber = n, physicsMass=5))

Finally, the according definition of a multibody system highly depends on the geometry,
joint constraints, inertia, and mechanical parameters. In order to create the Python code, the
underlying mechanical model needs to be known by the LLM.

The subsequent functions for performing a transient simulation are straightforward and
are well reproduced by state-of-the-art LLM. The basic steps for starting the simulation are:

5In view of further development and training, it should be noted that there are currently 152 examples and 93
test models in Exudyn version 1.7.0. With 114 stars on GitHub, a future training could lead to significantly
improved results.
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1) finalizing the multibody system: mbs.Assemble();
2) setting up simulation settings: sims = exu.SimulationSettings();
3) adjustment of the simulation settings parameters;
4) calling the solver: mbs.SolveDynamic(sims).

There are some variants such as static solvers as well as special explicit and implicit solver
types, not mentioned here. Most of the examples also include commands to add visual-
ization and to start the 3D visualization during or after simulation, which is therefore also
reproduced by LLM.

3.2 In-context learning

Even though the approach in Exudyn is highly systematic and versatile, it seems to be more
complicated than in other multibody simulation software. One reason for the higher com-
plexity is the availability of flexible bodies, such as beams or modally reduced bodies, which
require different approaches, e.g., to represent finite-element nodes. As a main difference
from other Python modeling codes that most LLM have been trained on, we mention that
rigid bodies require underlying nodes, and cannot be created by one single function. Fur-
thermore, joints are attached to markers, but cannot be directly attached to bodies, similar
to loads. This systematic, but more complex approach often leads to wrong assumptions by
LLM (and also confuses human users). As a solution, simplified functions have been added
to Exudyn since May 2023, all of them available in version 1.7.0. Simplified functions obtain
a prefix Create and can be directly called for the multibody system, such as mbs.Cre-
ateRigidBody(...), which adds a rigid body to the system with simple arguments and
also allows to add gravity without defining loads or markers.

In order to provide the information on the simplified commands, in-context learning is
used in many of our tests. The following listing shows the first 22 lines of the information,
later denoted as context information for mass points, which are pasted into the chat prompt
at the beginning of each session:
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Table 1 Overview of the used LLM. References are given to release notes and homepages and an asterisk∗
marks undisclosed values. The number of parameters are only officially known for GPT-3 as well as LLaMA-
2. The parameters for GPT-4 are from discussion forums and unofficial leaks. The exact number of parameters
and max. tokens for Bard are according to PaLM-2, as it is said that Bard is powered by PaLM-2

Model Max. tokens Parameters

GPT-3.5 2048 175B

GPT-4 4096 1760B∗
Bard 8192∗ 540B∗
LLaMA-2 4096 70B

This context contains only information on systems with mass points, distance constraints,
and spring-dampers and is represented by 680 tokens in GPT-3. For rigid-body systems, a
more comprehensive file is used, see the supplementary material, which is represented by
2842 tokens and therefore requires a minimum context length of 4096 tokens to read the
input and additionally generate some useful output. The specific comments at the beginning
of the context information were added because initial tests resulted in regular syntax errors,
such as using 2D vectors instead of 3D.

The objective of the remainder of the paper is to evaluate the capabilities of different
GPT regarding accurate creation of multibody dynamics models. In particular, the number
of errors in Python models are used to evaluate and compare different approaches. In order
to improve the performance, some recent simplifications in Exudyn’s Python interface have
been added and are made available to the LLM in the local context. As we will show, the
simplified modeling, as well as the additional context, boosts the performance in particular
for rigid-body systems.

4 Examples and tests

In the present research, we presents six categories of examples for the evaluation of the
performance of different LLM. The list of examples is summarized in Table 2, related to
knowledge of Exudyn and the creation of basic dynamic and multibody systems. All ex-
amples are tested and evaluated with several LLM, using GPT-3.5, GPT-4, Bard (PaLM-2),
and LLaMA-2,6 see Table 1 for details. GPT-3.5 and GPT-4 are accessed using ChatGPT.

Note that the maximum number of tokens are crucial for our tests, as they limit the input
as well as the output text. In order to be processed more efficiently, LLM convert text into
tokens, often with approximately 32 000 different tokens. Many common English words are
represented by only one token. The number of tokens provided in Table 2 are obtained with

6For LLaMA-2 we use standard settings temperature: 0.9, Top-p (nucleus sampling): 0.6, Repetition penalty:
1.2.
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Table 2 Examples and context information for the creation of basic dynamic and multibody dynamics sys-
tems; number of tokens counted with Tokenizer. For Examples 4–6.1 the additional context information is
not included in the tokens count

Example Description Tokens (input)

Example 1 mass–spring-damper SciPy 72

Example 1.1 mass–spring-damper SciPy (rephrased question) 66

Example 2 keyword 7

Example 3 mass–spring-damper Exudyn (without context) 101

Example 4 mass–spring-damper Exudyn 155

Example 4.1 5-mass–spring-damper Exudyn 170

Example 5 double pendulum 118

Example 5.1 10-mass pendulum 11

Example 6 pendulum with rigid bodies 90

Example 6.1 slider-crank mechanism 30

context information description tokens

context mass points mass points, spring-dampers, and constraints 680

context rigid bodies mass points, rigid bodies, and joints 2842

Tokenizer.7 We assume that all LLM in this paper represent text by a similar number of
tokens.

All examples are given in text form only, using natural language with no or only few
technical instructions, e.g., there is no hint on which solver or which method to be used.
As all LLM generate nondeterministic results, tests are usually repeated with three trials.
The expectation of the tests is to obtain a Python code from the LLM that can be directly
processed in Python using the Exudyn package.8 Tests are evaluated based on correct code
syntax and on correct modeling of the dynamic system. In order to clearly distinguish be-
tween the two error types, syntax errors (counted by esyn) are all errors that raise a Python
error when the code is executed, except for Exudyn’s solver failures due to modeling errors.
All remaining errors are model errors (counted by emod ), which are more severe because the
user has to detect such errors. Note that syntax errors could be even less severe, because
they could be resolved by feeding the error back to the LLM – as we will show in some of
the examples.

4.1 Example 1: Create a mass–spring-damper in Python/SciPy

Example 1 is aiming to create the mathematical model and compute the solution of a lin-
ear mass–spring-damper undergoing a constant force. The example is used to compare the
different LLM as all of them are able to generate Python code and to use SciPy [26]. It is
not fully known to what extent the considered LLM have been trained on SciPy. However,
looking at larger datasets available on HuggingFace [28], we find typical datasets9 that are

7https://platform.openai.com/tokenizer.
8Due to the widely backwards compatibility of Exudyn with the version from September 2021, all tests are
evaluated with Exudyn version 1.7.0. We did not observe syntax errors in the LLM outputs related to a change
of version.
9HuggingFace’s dataset: python_code_instructions_18k_alpaca at https://huggingface.co/
datasets/iamtarun/python_code_instructions_18k_alpaca.

https://platform.openai.com/tokenizer
https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca
https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca
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Fig. 3 Test examples based on mass points; a) is used for Example 1, Example 1.1, Example 3, and Example
4; b) for Example 4.1, c) for Example 5 and d) for Example 5.1

Fig. 4 Test examples based on rigid bodies; a) is used for Example 6 and b) for Example 6.1

Table 3 Prompts for mass–spring-damper system, see Fig. 3a) using SciPy. a) is used for Example 1; b) for
Example 1.1

Prompt

a) Consider a mass–spring-damper system with the following properties: mass m = 8 kg, stiffness k =
5000 N/m, and damping d = 50 Ns/m. The force applied to the mass is f = 100 N. Create a
simulation model using SciPy to simulate the dynamics of the mass–spring-damper system.

b) Create a simulation model in Python using SciPy to simulate the dynamics of a
mass–spring-damper system with the following properties: mass m = 4 kg, stiffness k = 2500 N/m,
and damping d = 25 Ns/m. The force applied to the mass is f = 50 N.

solely related to Python, comprising of 18k instructions, of which 67 instructions are directly
related to SciPy.

The definition of the model in text form is given in Table 3a). For clarity, the expected
model is shown in Fig. 3a), which is not available to the LLM. Example 1.1 uses a slight
variation of the input, see Table 3b), in order to evaluate the sensitivity on the specific input
text. The results of these tests are summarized in Table 4 and some of the responses are given
in Appendix A.1. It is clearly shown that all LLM have been trained for SciPy, however,
LLaMA-2 generated many errors and even wrong Python syntax.
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Table 4 Number of modeling errors (emod ) and syntax errors (esyn) of Example 1 and Example 1.1 with
SciPy

GPT-3.5 GPT-4 Bard LLaMA-2

emod esyn emod esyn emod esyn emod esyn

Example 1

trial 1 0 0 0 0 1 2 1 2

trial 2 0 0 0 0 1 1 2 1

trial 3 0 0 0 0 0 2 2 1

Example 1.1

trial 1 0 0 0 0 0 0 2 1

trial 2 0 0 0 0 0 1 2 1

trial 3 0 0 0 0 0 0 2 1

Table 5 Results of Example 2 for the keyword question “Do you know Exudyn”. The LLM was trained (yes)
or not trained (no) with sources and documentation of Exudyn

GPT-3.5 GPT-4 Bard LLaMA-2

interpretation of result yes yes yes no

Table 6 Prompt for mass–spring-damper in Exudyn, see Fig. 3

Prompt

Example 3 Consider a mass–spring-damper system with the following properties: mass m = 8 kg,
stiffness k = 5000 N/m, and damping d = 50 Ns/m. The force applied to the mass is f =
100 N. Create a simulation model using Exudyn to simulate the dynamics of the
mass–spring-damper system. The spring has a length of 5 cm and is relaxed in the
initial position. Please write the code with no comments and in one block.

4.2 Example 2: Do you know Exudyn?

Before continuing with further Exudyn examples, we assess whether the LLM is trained
on Exudyn. While a definitive answer is elusive, we can infer from responses to specific
questions. Representatively, the question “Do you know Exudyn?” is asked in a new prompt
without any context. While all models say yes, we evaluate for the following keywords that
are specific for Exudyn, namely multibody, simulation, rigid and flexible bodies, connectors,
Python and C++. If most of these keywords are present in the answer, we consider the LLM
to know the library, meaning that the according GitHub files have been used for training.

The results of these tests are summarized in Table 5 and the responses are given in Ap-
pendix A.2. It is clearly shown that only GPT-3.5, GPT-4, and Bard have been trained with
sources and documentation of Exudyn, while LLaMA-2 cannot generate information clearly
related to Exudyn, in particular containing a wrong focus on powder dynamics.

4.3 Example 3: Create a mass–spring-damper in Exudyn

This example is aiming to create the simulation model of a linear mass–spring-damper un-
dergoing a constant force with Exudyn. The example is used to compare the different LLM,
which have been trained on Exudyn. The definition of the model in text form is given in
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Table 7 Number of modeling errors (emod ) and syntax errors (esyn) of Example 3 with Exudyn. If the code
is riddled with syntax or modeling errors the number of modeling or syntax errors is not available (n.a)

GPT-3.5 GPT-4 Bard LLaMA-2

emod esyn emod esyn emod esyn emod esyn

Example 3

trial 1 1 4 0 4 n.a. n.a. n.a. n.a.

Table 6. For clarity, the model is given in Fig. 3a), which is not available to the LLM. The
results of these tests are summarized in Table 7. It is clearly shown in Table 7 that only
GPT-3.5 and GPT-4 have been trained with sufficient codes and documentation of Exudyn.
Only one trial has been evaluated in detail, but we did not achieve any fully correct output
within several trials.

4.4 Examples 4, 4.1, 5, and 5.1 based on mass points in Exudyn with context

The examples of this section summarize results of LLM regarding mass points with spring-
dampers and distance constraints modeled in Exudyn. Since none of the LLM could cor-
rectly solve the task posed in Sect. 4.3, in-context learning is applied from now on by
prompting appropriate text, see Sect. 3.2, prior to the queries given in Appendix A.3. For
clarity, the expected models are shown in Fig. 3, which are not available to the LLM. The
results of these tests are summarized in Table 8 and Table 9. We observe the excellent per-
formance of GPT-4, as it only produced one model error. The performance of GPT-3.5 and
Bard is worse, while for GPT-3.5 in Example 4, it would be possible to feed back syntax
errors within a second iteration. Remarkably, while we observed that Bard did not know
Exudyn’s way of modeling, it could easily learn from the context and produced only a few
errors as compared to Example 3. LLaMA-2 could not sufficiently learn from the provided
context and even produced highly erroneous Python syntax.

Clearly, the solution to Example 4 is almost included in the context information. The
LLM only has to select the right commands and adjust input parameters, which is already
too difficult for LLaMA-2. Example 4.1 goes further beyond the context information, as,
for example, spring-dampers are added between mass points, which is not described in the
context information.

We also observe variations of GPT-4, using a gravity constant of 10 in Example 5 (and
5.1), trial 1, versus 9.81 in the other trials of the same example. As the specification in
Example 5.1 was intentionally a little unclear, the solutions differ considerably. For example,
the distances of the 10 mass points are different in the trials, but we marked them as correct.
Furthermore, the ways to create bodies and joints vary notably in Example 5.1, showing the
abilities of GPT-4 to work with the learned context.

4.5 Examples 6 and 6.1 based on rigid bodies in Exudyn with context

Similar to the examples with mass points, in-context learning based on information for the
creation of rigid bodies, joints, spring-dampers, and mass points is used also for Examples
6 and 6.1. For details of the context information for rigid bodies, see the supplementary
material, but we note that it does not contain particular information to create chain-like
or slider-crank mechanisms. As shown in Table 2, the number of tokens is more than 2048,
which would theoretically only work with GPT-4, Bard and LLaMA-2. However, evaluation
shows that GPT-3.5 is also able to generate some correct output.
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Table 8 Number of modeling errors (emod ) and syntax errors (esyn) of Example 4 and Example 4.1 with
Exudyn with context. If the simple task of Example 4 was erroneous, we skipped (skp) Example 4.1. If the
code is riddled with syntax or modeling errors the number of modeling or syntax errors is not available (n.a)

GPT-3.5 GPT-4 Bard LLaMA-2

emod esyn emod esyn emod esyn emod esyn

Example 4

trial 1 0 1 0 0 1 0 n.a. n.a.

trial 2 0 1 0 0 1 0 n.a. n.a.

trial 3 0 1 0 0 n.a. n.a. n.a. n.a.

Example 4.1

trial 1 4 0 0 0 2 1 skp skp

trial 2 4 0 1 0 1 1 skp skp

trial 3 4 1 0 0 n.a. n.a. skp skp

Table 9 Number of modeling errors (emod ) and syntax errors (esyn) of Example 5 and Example 5.1 with
Exudyn with context. If the simple task of Example 5 was erroneous, we skipped (skp) Example 5.1

GPT-3.5 GPT-4 Bard

emod esyn emod esyn emod esyn

Example 5

trial 1 2 3 0 0 2 1

trial 2 2 6 0 0 4 2

trial 3 0 2 0 0 2 3

Example 5.1

trial 1 skp skp 0 0 skp skp

trial 2 skp skp 0 0 skp skp

trial 3 skp skp 0 0 skp skp

The definitions of the models in text form are given in Appendix A.4. For clarity, the
models are given in Fig. 4, but are not available to the LLM. The results of these tests
are summarized in Table 10 and some exemplary outputs are given in Appendix A.4. We
observe that GPT-4 produced two wrong lines of code, which could be fixed by putting the
error message back as a prompt. Still, GPT-3.5 and GPT-4 performed comparatively well,
mostly using wrong position vectors for joints relative to the bodies’ reference positions.

In some cases, feeding error back in a second iteration, appropriate training, improved
fine tuning or vision-based inputs (with multimodal LLM) could resolve such problems in
the future.

Figure 5 shows a screenshot of the triple-pendulum (Example 6) and of the slider-crank
mechanism (Example 6.1) created from the output of GPT-4. Note that the geometry of
the slider-crank mechanism would not work for full revolutions of the crank, because the
crank and conrod have the same lengths. Nevertheless, the direct extension from the triple-
pendulum to a slider-crank mechanism has been performed correctly.
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Fig. 5 Visualization in Exudyn using the Python scripts created by GPT-4: triple pendulum with rigid bodies
(left, Example 6) and slider-crank mechanism (right, Example 6.1); the visualization parameters (shadow,
colors, loads, font size) and the drawing size of joints have been slightly adapted in order to improve visibility
(Color figure online)

Table 10 Number of modeling errors (emod ) and syntax errors (esyn) of Example 6 and Example 6.1 in
Exudyn with context. If the simple task of Example 6 was erroneous, we skipped (skp) Example 6.1. If the
code is riddled with syntax or modeling errors the number of modeling or syntax errors is not available (n.a)

GPT-3.5 GPT-4 Bard

emod esyn emod esyn emod esyn

Example 6

trial 1 4 0 0 0 0◦ 0

trial 2 0◦ 1 0 2* 4 0

trial 3 3 0 0 0 3 0

Example 6.1

trial 1 skp skp 0 0 0 1

trial 2 skp skp 0 0 skp skp

trial 3 skp skp 0 0 skp skp

*corrected by putting the error message back as a prompt
◦visualization is erroneous

5 Conclusions and outlook

The performed experiments can be summarized as follows. Even the smallest tested LLM
are able to sketch basic simulation codes for dynamic systems, for example in Python/SciPy,
nevertheless producing many syntax and some model errors. Advanced LLM, such as GPT-
4 that is currently leading in many LLM benchmarks, are highly reliable in writing basic
simulation codes for dynamic systems. Furthermore, as shown in [3], simplified modeling
language and appropriate information provided in the context greatly improves the reliabil-
ity of LLM in producing correct simulation code. Regarding multibody system dynamics,
advanced LLM show potentialities in creating even advanced rigid-body multibody systems
with joints. In general, we observe an unsurpassed speed, e.g., a chain-like multibody system
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can be created by the LLM in less than a minute. Within software designed for structured
data representation in tabular formats, the integration of AI-driven functionalities becomes
evident, offering automated recommendations for data visualization strategies, and intelli-
gent formula suggestions derived from the inherent dataset characteristics. Consequently,
multibody models generated from natural language could be positioned as a supplementary
tool augmenting GUI modeling, rather than a complete replacement.

While the simulation models generated by LLM are not always error free, they can pro-
vide significant relief in practice by providing a quick initial approach to implementation so
that users do not need to master the complex description language. While not shown here,
also parts of models could be created by the LLM.

Due to the way Exudyn data is available, many LLM could learn solely from code exam-
ples. This means it could learn blindly, not having any description of kinematics by images.
This may, in particular, explain the limitations of geometric and kinematic understanding
that became evident during the tests performed. The latter limitation is about to be reme-
died, as ChatGPT-4V (vision) became available in September 2023, which also supports
graphical input. This could enable us to create multibody models from (hand) sketches.

As a main result, we could demonstrate the large differences in quality of the investigated
LLM, showing a strong relation of quality and size of the LLM. This allows us to conclude
that future LLM, not only increasing in size, but also with longer training time, advanced
model structures such as chain-of-thoughts [27], improved hyperparameters, larger training
datasets, and detailed training on Exudyn or similar libraries, could perform much better
than available models today. Therefore, we conclude that future LLM could create highly
complex rigid or flexible multibody systems from natural language.

Appendix A

The Appendix includes exemplary outputs for the LLM, while the full outputs are provided
in the supplementary material. In the case of code output, the complete output of the LLM is
contained in the “.py” files, where the textual descriptions before or after the code are added
as comments and clearly marked as such. Outputs are usually shortened, clearly visible by
the line numbers as well as “...” used to indicate previous or subsequent code. Empty lines
have been removed for brevity of code snippets.

A.1 Example 1: Create a mass–spring-damper in Python/SciPy

A.1.1 Example 1: GPT-4 trial 1

The following code snippet shows the Example 1 output generated by GPT-4, which is fully
correct:
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The correct plotting with MatplotLib has been omitted from the output.

A.1.2 Example 1: GPT-4 trial 2

The following code snippet shows the Example 1 output generated by GPT-4 in the second
trial, also fully correct:

Note that there are slight variations, even of comments, but also conceptual differences in
using odeint instead of solve_ivp in trial 1.

A.1.3 Example 1: Bard trial 1

The following code snippet shows a modeling error in line 15, where f is not divided by
mass m, and syntax errors in lines 14 and 15, which are not compatible with odeint (x, v
need to be represented by a list and the return value of function must be a list):
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A.1.4 Example 1: LLaMA-2 trial 1

The following code snippet shows a modeling error in line 19, where d * v should have a
negative sign; furthermore units in lines 15 and 16 must have a preceding comment and the
syntax in line 19 is wrong as it misses a line break between v and v_dot:

A.2 Example 2: Do you know Exudyn?

The following table summarizes results for the keyword question “Do you know Exudyn?”.
The table contains only the first (and main) paragraph of the output, while the complete
output is in the supplementary material.

LLM output (shortened)

GPT-3.5 Yes, I’m familiar with Exudyn. Exudyn is a software tool designed for multibody dynamics
simulation and analysis. It’s commonly used for simulating and analyzing mechanical
systems, including rigid and flexible bodies, joints, constraints, and forces. Exudyn is
particularly useful for studying the dynamics of complex mechanical systems such as
machinery, vehicles, robots, and other mechanical structures.

GPT-4 Yes, as of my last update in September 2021, Exudyn is a software package primarily focused
on multibody system dynamics. It is designed for the simulation of rigid and flexible bodies,
connectors, loads, and other elements in a multibody environment.

Bard Yes, I am familiar with Exudyn. It is an open-source, C++-based Python library for the
efficient simulation of flexible multibody dynamics systems. It is designed to easily set up
complex multibody models, consisting of rigid and flexible bodies, and to simulate their
dynamic behavior. Exudyn supports a variety of numerical methods for solving the equations
of motion, including explicit and implicit integration schemes, and modal analysis. It also
includes a number of features for post-processing simulation results, such as visualization and
data analysis.

LLaMA-2 Yes, I’m familiar with Exudyn. It’s a software tool used for simulation and analysis of powder
dynamics, particle systems, and granular materials. Exudyn is designed to simulate the
behavior of granular materials, such as powders, sands, and gravels, in various industrial and
scientific applications.

A.3 Examples 4, 4.1, 5, and 5.1: Mass-point examples in Exudyn with context

The following table lists prompts for examples with mass points, spring-dampers, and dis-
tance constraints, see Fig. 3:
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Prompt

Example 4 Consider a mass–spring-damper system with the following properties: mass m = 8 kg,
stiffness k = 5000 N/m, and damping d = 50 Ns/m. The force acting on the mass is f =
100 N and applied to the mass in the direction in which the spring expands at the
beginning of the simulation. The spring has a length of 5 cm and is relaxed in the initial
position. Gravity is neglected and the mass should be placed in the x-direction at the
relaxed position of the spring relative to the ground. Create a simulation model using
Exudyn to simulate the dynamics of the mass–spring-damper system. Use the
previously defined mbs.Create functions. Please write the code with no comments and
in one block.

Example 4.1 Consider a 5-mass–spring-damper system with the following properties: mass m = 8
kg, stiffness k = 2000 N/m, and damping d = 25 Ns/m. The force acting on the last
mass is f = 100 N and applied to the mass in the direction in which the spring expands
at the beginning of the simulation. The springs have a length of 5 cm and are relaxed in
the initial position. Gravity is neglected and the first mass should be placed in the
x-direction at the relaxed position of the spring relative to the ground and the first
spring is connected to the ground. Create a simulation model using Exudyn to simulate
the dynamics of the 5-mass–spring-damper system. Use the previously defined
mbs.Create functions. Please write the code with no comments and in one block.

Example 5 Consider a double pendulum using two mass points and distance constraints in Exudyn,
using the previous update info with mbs.Create functions. The mass points shall have 1
kg and the length of the first link is 2 m and the second link 1 m. The initial
configuration is an L-shape, where the first link points along the x-axis and the second
link points up. Gravity acts in a negative y-direction. Draw the nodes not as points,
mass points have a size of 0.1 m. Please write the code with no comments and in one
block.

Example 5.1 Can you add now 10 mass points in a row?

A.4 Examples 6 and 6.1: Prompts for rigid bodies with joints

The following table shows the prompts for examples with rigid bodies and joints:

Prompt

Example 6 Using the previous information and the already existing information on Python code Exudyn,
create a 3-link system of rigid bodies initially aligned along the X-axis with mass 10 kg,
length 2 m and W = H = 0.1 m. The rigid bodies are exposed to gravity which acts in
Y-direction and the first link is attached to ground with a revolute joint at the left end. Put all
output into a single Python script.

Example 6.1 Can you add additionally at the last body a prismatic joint to ground and at the left side of the
first body a torque of 100 Nm?

A.4.1 Example 6: Bard trial 2

While Bard’s trial 1 for Example 6 is working fully correct (but graphics is missing), trial 2
contains two modeling errors (missing ground joint and wrong position for revolute joint),
shown in the following code snippet:
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Note that also the comment for the revolute joint is misleading (no ground).

A.4.2 Example 6.1: GPT-4 trial 1

The following code shows the full output for Example 6.1 trial 1 generated by GPT-4, which
is fully correct:
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This final example also shows the elegant solution to store body numbers and use them in
loops for creating bodies as well as for creating joints.
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