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Abstract
Reinforcement learning (RL) is one of the emerging fields of artificial intelligence (AI) in-
tended for designing agents that take actions in the physical environment. RL has many vital
applications, including robotics and autonomous vehicles. The key characteristic of RL is
its ability to learn from experience without requiring direct programming or supervision. To
learn, an agent interacts with an environment by acting and observing the resulting states and
rewards. In most practical applications, an environment is implemented as a virtual system
due to cost, time, and safety concerns. Simultaneously, multibody system dynamics (MSD)
is a framework for efficiently and systematically developing virtual systems of arbitrary
complexity. MSD is commonly used to create virtual models of robots, vehicles, machin-
ery, and humans. The features of RL and MSD make them perfect companions in building
sophisticated, automated, and autonomous mechatronic systems. The research demonstrates
the use of RL in controlling multibody systems. While AI methods are used to solve some
of the most challenging tasks in engineering, their proper understanding and implementa-
tion are demanding. Therefore, we introduce and detail three commonly used RL algorithms
to control the inverted N-pendulum on the cart. Single-, double-, and triple-pendulum con-
figurations are investigated, showing the capability of RL methods to handle increasingly
complex dynamical systems. We show 2D state space zones where the agent succeeds or
fails the stabilization. Despite passing randomized tests during training, blind spots may oc-
cur where the agent’s policy fails. Results confirm that RL is a versatile, although complex,
control engineering approach.

Keywords Reinforcement learning · Reliability analysis · Inverse pendulum · Machine
learning · Dynamical systems

1 Introduction

Multibody system dynamics (MSD) is a research field concerned with the modeling, sim-
ulation, application, and analysis of systems comprised of interconnected rigid and flexible
bodies, which undergo large translational and rotational displacements. Systems in the field
of MSD range from mechanisms as pendulums to machines, robots, and vehicles [1].

Although MSD provides an effective means of systematically simulating complex sys-
tems, it requires appropriate control algorithms to act as desired. Reinforcement learning
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(RL) offers an innovative approach to control multibody models. RL is a type of machine
learning where an agent learns to make decisions by interacting with an environment to
maximize a cumulative reward signal [2]. It has been successfully applied to various con-
trol applications and has the potential to learn complex behaviors in a data-driven manner
without the need for explicit programming, making it a powerful tool for developing intel-
ligent systems. The use of deep neural networks as function approximators in RL changes
its notion to deep reinforcement learning (DRL)—it tackles the problem of efficiency while
working with large state spaces [3]. RL and its subfield DRL have recently gained popularity
and proven capable of solving complex control tasks, which MSD offers in a huge variety.

A paper by Hashemi et al. [4] provides an overview of how machine learning might be
applicable to multibody system dynamics. Specifically talking about RL, the authors show
that its use has recently been suggested for a wide variety of tasks: starting from improving
feedback control systems and robotic applications and ending with assistance in simulat-
ing human movements. The work by Benatti et al. [5] shows how DRL and MSD could be
combined in a single Python-based framework called Gym Chrono. Gym Chrono is based
on PyChrono and features MSD simulation with constraints, contact interaction, and de-
formable bodies through finite element analysis. The authors demonstrate the effectiveness
of this approach through several case studies, including the control of a hexapod and a hall-
way cone track, as well as autonomous driving in off-road conditions. The paper highlights
the potential of using MSD and RL to develop advanced control algorithms for various
complex systems.

From a robotics perspective, the paper by Sun et al. [6] proposes a fully autonomous RL
approach for mobile manipulation tasks in a real-world setting. The authors use a combina-
tion of a physics-based simulator and a real robot to train an RL agent to perform tasks such
as object grasping and manipulation. The study demonstrates the ability of the RL agent to
generalize to different object shapes and sizes and to adapt to changing environmental con-
ditions. Another interesting application of RL is the automatic controller weights adjustment
since the adjustment is usually done manually and is often time-consuming [7]. This work
presents an implementation of RL for tuning the impedance control of a robotic prosthe-
sis to provide personalized gait assistance. The authors use an MSD model to simulate the
behavior of the prosthesis and the human leg during walking. RL is employed to optimize
the impedance control parameters of the prosthesis in real-time based on the user’s walking
behavior. The study highlights the potential of RL in controlling complex systems such as
robotic prostheses and suggests that it can lead to more personalized and effective gait assis-
tance. Song et al. [8] prepared an article that provides an overview of neuromechanical sim-
ulations and DRL in human locomotion. Neuromechanical simulations have proven helpful
in evaluating control models, while DRL shows promise in developing control models for
complex movements. While DRL has successfully produced coordinated body motions in
physics-based simulations, there are still challenges in producing more complex motions
that involve long-term planning and learning physiologically plausible models.

It is worth noting the use of RL for general control applications. A paper by Busoniu et
al. [9] provides a comprehensive overview of RL in control systems. One key conclusion of
the paper is that RL can effectively control complex systems, including those described by
MSD models. However, the success of RL in control systems depends on several factors,
such as the choice of the algorithm, the quality of the system model, and the stability of the
resulting control policy. Additionally, using deep neural networks can further improve learn-
ing performance, but it also introduces new challenges related to stability and convergence.
In the end, it can be stated that using RL in controlling multibody systems provides a promis-
ing avenue for solving complex control problems where traditional control techniques may
be ineffective or difficult to implement.
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The objective of this research paper is to demonstrate the use of RL in the control of
a complex multibody system. To this end, the RL is applied to the problem of controlling
N-link inverted pendulums on a cart. Control of an inverted pendulum on a cart is a classical
control task extensively studied in the literature [10, 11]. However, controlling multiple
inverted pendulums presents a more challenging task since every link of a pendulum is
unstable by itself. Adding more links dramatically increases the difficulty of the stabilization
task and leads to increased computation complexity. This work examines three systems of
inverted pendulums on a cart: a single link, double link, and triple link system.

To solve considered control problems, three RL algorithms are employed: Advantage
Actor-Critic (A2C) [12], Proximal Policy Optimization (PPO) [13], and Deep Q-Network
(DQN) [3]. Those algorithms are selected due to their maturity, robustness, and possibility
of handling discrete control tasks since our control input for a system under study consists
of pushing the cart to the left or to the right. Many other algorithms are used for continuous
control, where the control action space is infinite, such as Soft Actor-Critic (SAC) [14] or
Twin Delayed Deep Deterministic policy gradient (TD3) [15]. A2C and PPO are actor-critic
methods that use a neural network to predict both the policy and the state-value function. In
contrast, DQN uses a neural network to approximate the Q-value function, representing the
action quality in a given state. These algorithms performed well in various RL applications
and are widely used in RL research [16–18]. The reliability of the selected RL algorithms is
analyzed in handling increasingly complex multibody systems. Performance evaluation of
these algorithms is based on their ability to stabilize the pendulum in an upright position—
the rate of convergence and the robustness of the control policy under varying environmental
conditions, such as the magnitude of applied control force and the presence of friction.
The results of this study can provide valuable insights into the applicability of different RL
algorithms for controlling multibody systems and pave the way for future research in this
area.

2 Multibody system dynamics

In control and state observer applications, it is advantageous to express the equations of mo-
tion based on the multibody system dynamics using a minimal set of coordinates. In practice,
this can be accomplished in several ways, such as coordinate partitioning when using global
coordinates [1, 19]. Alternatively, methods based on the use of relative joint coordinates can
be employed [20]. An often-used approach based on the relative coordinates is the family
of semi-recursive multibody formulations. In semi-recursive multibody formulations, the
equations of motion for an open-loop system [21] with Nb bodies can be written as

RT
d TTM̄TRdz̈ = RT

d TT
(
Q̄ − M̄TṘdż

) ⇒ M̄� z̈ = Q̄�, (1)

where z, ż, and z̈ are the relative joint coordinates, velocities, and accelerations, respec-
tively [22], Rd is a block diagonal matrix that describes joints. The Rd can be expressed in
a block diagonal form when making use of an intermediate body frame whose origin coin-
cides with the origin of the global frame. In this approach, T is the path matrix representing
the system topology. In Eq. (1), M̄ is the mass matrix and Q̄ is the external force vector.
Note that

M̄� = (
RT

d TTM̄TRd
)

(2)
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and

Q̄� = [
RT

d TT
(
Q̄ − M̄TṘdż

)]
. (3)

For a closed-loop system, a cut-joint technique needs to be used, and a set of Nm loop-
closure constraints, � = 0, can be incorporated into the open-loop dynamics. Using the
coordinate partitioning method [23], the relative joint velocities are mapped onto a set of
independent relative joint velocities leading to the minimal set of coordinates.

3 Reinforcement learning in multibody system dynamics

Multibody system dynamics is a field of engineering that deals with the simulation and
analysis of the motion and interaction of interconnected rigid or flexible bodies subjected to
various external and internal forces [1]. MSD has been used extensively in designing and an-
alyzing mechanical systems in various domains, such as automotive, aerospace, and robotics
engineering. In many cases, simple control approaches, such as PID controllers, have been
used to regulate the behavior of mechanical systems. However, these simple control ap-
proaches may not always be optimal, especially when dealing with complex and nonlinear
systems.

To address these challenges, researchers have started exploring advanced control tech-
niques that could be applied to MSD. One approach is to use optimal control, such as model
predictive control (MPC), to optimize a control policy based on a model of the system dy-
namics [24]. Another approach is to use adaptive control, such as sliding mode control
(SMC), to adapt the control policy based on the system response [25]. Despite the success
of these advanced control techniques, they still have limitations. Optimal control requires an
accurate model of the system dynamics, which can be difficult to obtain in practice. Adaptive
control relies on tuning control parameters, which can be time-consuming and challenging
to perform in real-time. To address those challenges, research on using RL is conducted [4].

3.1 Reinforcement learning and the classical control engineering

Classical control methods are preferable in linear dynamical systems due to well-established
methods and provable stability [26]. In the case of nonlinear systems, which usually applies
to multibody systems, classical control approaches are widely utilized; however, stability
proofs are involved. Often, linearization or other simplifications are made, such as neglect-
ing friction or compliance of the systems [26]. In the latter case, experimental validation,
as well as the experience of control engineers, is used to achieve the necessary robustness.
Closed-loop feedback control is applied to a (multibody) system to obtain a desired system
response. The controller compares the actual system output (feedback signal) with the de-
sired output and uses the difference as a means of control. This difference—the error—is
reduced by the controller, e.g., amplified and used for the system’s actuation to achieve the
desired output. In addition to basic error control, the closed-loop system should also ex-
hibit specified behavior such as effective disturbance attenuation and rapid responsiveness
to changes in operating conditions [27]. It is also important to point out that the implemen-
tation of classical control algorithms requires in-depth knowledge of the theory and practice
to create a proper controller.

With RL, controllers can be developed based on mainly training neural networks using
experiments with real or simulated environments. A fundamental concept is the role of an
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Table 1 Reinforcement learning
and control theory
correspondence. Note that the
agent can only act as a controller
after training, although from the
perspective of system
architecture, the agent generally
takes the controller’s place

Reinforcement learning Control theory

(trained) Agent Controller

Environment System / Plant

State System state

Action Control signal

Policy Control law

Fig. 1 Reinforcement learning
scheme. An Agent takes an
action in the environment and the
environment outputs the state and
reward to the Agent, which
updates itself based on these
parameters to select a better
action to take

agent, a specialized entity that perceives its environment through observations, compares
the state with the expected state, and accordingly executes actions to optimize its cumula-
tive reward. The realization is alleviated due to the broad availability of RL libraries, such as
Stable-Baselines3 [28] or TF-Agents [29]. RL methods circumvent the necessity of a model
for the system’s (nonlinear) dynamics. The controller parameters, which are the controller’s
neural network parameters, are determined through trial-and-error interactions with the en-
vironment, using the RL method’s optimizer to find optimal parameters to minimize the loss
and maximize the reward. However, inherent complexities and nonlinearities in neural net-
works, e.g., with Rectified Linear Units (ReLUs), may generate certain (undetected) zones
of a controller failure, similar to ‘blind spots’ [30]. This study consequently aims to illustrate
these blind spots through increasingly complex environments.

The RL terminology differs significantly from the common terms used in control engi-
neering. Therefore, relations are provided in the literature [2], see also Table 1. Other stan-
dard terms used in the RL, like the reward and value functions, are relevant to the controller
creation (learning) phase and thus cannot be directly related to classical control theory con-
cepts. In short, the reward sets the goal, and the agent’s objective is to maximize the total
reward it receives. Starting from a given state, the value is the total expected reward an agent
can obtain in the future [2]. Value functions are defined with respect to policies, which are
particular ways of acting.

It is important to notice that a state in RL is a complete specification of the environment
that includes all relevant information that is necessary to make decisions about what action
to take next, while observation is a subset of the state that is actually observed by the agent.
After an action has been taken, an agent receives feedback in the form of rewards or penalties
and achieves a new state [2]. The RL interaction scheme is shown in Fig. 1.

In the area of policy-based methods, the primary focus lies in directly learning the policy
function, a mapping from states to the most appropriate corresponding actions. The objec-
tive is to discover the optimal policy, which maximizes the expected return when adhered to
by the agent [31]. The training process in policy-based methods entails adjusting the policy
parameters based on observed rewards and chosen actions, aiming to enhance its perfor-
mance [32].
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Fig. 2 A2C scheme. An actor takes action in the environment. After that, the state and reward are returned
from the environment. Critic provides an actor with the state-value function estimate, and the actor updates
its weights and takes a, hopefully, better action. The critic also updates itself at the same time step as the actor

In the domain of value-based methods, instead of directly acquiring the policy, the agent
learns the value function, assigning a value to each state or state-action pair [31]. A value is
an expected return an agent can obtain from a given state or state-action pair under a par-
ticular policy [2]. Using the value function, the agent makes decisions by opting for actions
leading to states with higher expected values. Training in value-based methods involves it-
eratively estimating these values through methods such as temporal difference learning [15]
or Q-learning [33].

In the study, we use three deep RL methods for solving our control task: Advantage
Actor-Critic (combines policy-based and value-based approach), Proximal Policy Optimiza-
tion (policy-based method), and Deep Q-Network (value-based method).

3.2 Advantage Actor-Critic (A2C)

The A2C method is a policy optimization algorithm based on policy gradients [12]. The
scheme of the algorithm is shown in Fig. 2. The actor in A2C is the neural network to
determine the taken policy. It takes the current state of the environment as an input, and then
outputs a probability distribution over possible actions (policy). The critic, also typically
modeled using a neural network, takes a state as an input and produces the estimate of a state-
value function, representing the estimated future return from this state. The critic’s objective
is to minimize the discrepancy between its estimated values and the actual observed rewards.
This discrepancy is quantified using a loss function, which is typically the mean squared
error (MSE) between the estimated values and the discounted sum of obtained rewards.
With the MSE, the critic network then updates its weights via stochastic gradient descent.
On the other hand, the actor network utilizes the estimated state-value function provided
by the critic in calculating the advantage function. The advantage tells us about the extra
reward that could be obtained by the agent by taking a particular action: by incorporating the
advantage function into the learning process, the agent can improve its policy by favoring
actions with positive advantages and discouraging actions with negative advantages. This
leads to more informed and effective decision-making as the agent learns to choose actions
that are likely to lead to higher cumulative rewards. It also helps to reduce the variance of
the policy gradient estimate, making the learning process more stable and efficient. With the
computed advantage, the actor network updates its weights via gradient ascent and begins a
new step of the algorithm.

Successful application of the A2C algorithm has been demonstrated, for instance, in [34],
where the authors controlled an inverted pendulum on a cart based on image data.



Reliability evaluation of reinforcement learning methods. . .

3.3 Proximal Policy Optimization (PPO)

The PPO algorithm improves the stability of the agent’s training by limiting the extent of
policy updates. The policy is updated iteratively based on experiences collected from the
environment, using a surrogate objective function that encourages the policy to take actions
that lead to higher rewards while maintaining close proximity to the previous policy [13].
PPO addresses some of the challenges encountered in traditional policy gradient methods.
The likelihood of oscillations or divergence in the learning process is reduced, and the ex-
ploration of new policies and exploitation of current policies is balanced. An example of
a successful application of the PPO algorithm to control a complex multibody system is
presented in the work of Kurinov et al. [35]. This research involved deep reinforcement
learning, where an agent was trained to load and unload an excavator. The trained agent
achieves an accuracy in the range of 67–97% of the maximum weight the bucket could hold.
Although the reward function still fluctuated, the learning curves indicated that increasing
the number of training episodes would likely lead to further improvements in the excavator’s
performance.

3.4 Deep Q-Network (DQN)

DQN is an RL algorithm that employs a neural network to learn a Q-function, which pro-
vides an estimate of the expected sum of future rewards for a given state-action pair [3]. Its
operation is characterized by iteratively collecting experiences from the environment, stor-
ing them in a replay buffer, and subsequently utilizing this data to update the Q-function. To
encourage exploration and prevent the agent from settling into suboptimal policies, DQN
integrates a ε-greedy exploration strategy. This means that the agent chooses a random ac-
tion with probability ε and chooses the action with the highest Q-value with probability
1 − ε. Israilov et al. [36] applied the DQN algorithm to control the inverted pendulum on a
cart both in an experimental set-up and in simulation for swing-up and stabilization of the
pendulum in its unstable upward equilibrium without a dependency on initial conditions.

4 Reinforcement learning environment

In this section, the mechanical model, which resembles the control task or environment, is
described. We shortly show how it is implemented and what the actions and states, which
the agent uses to interface the simulation, are. Based on these quantities the rewards applied
in the training and the tests to evaluate the agent are described.

4.1 Mechanical model

For learning the stabilization of the inverted N-link pendulum on a cart, shown in Fig. 3,
a multibody simulation model is implemented using the multibody simulation library Exu-
dyn [37]. The values of the model’s physical and geometrical properties are based on [38]
and benchmark examples from OpenAI Gym [39],1 as shown in Fig. 3. Each link j is as-
sumed to be rigid, has a mass mj , length lj , and inertia �j . The inertia of the link j is
specified relatively to the joint j , assuming thin rods with constant mass distribution over
their length. The first body, undergoing only translational motion in the x-direction, is called

1https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py.

https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py
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Fig. 3 The inverted N-link pendulum is modeled using the minimal coordinates
q = s = [xcart, ϕ1, . . . , ϕN ]. Each link consists of length lj , mass mj , and the moment of inertia
�j . The cart is a rigid body with mass mcart. The values for the parameters are shown in the table

the cart. It has a mass of mcart and is controlled with a force Fcart, which corresponds to the
agent’s action. The action is discrete with the force

Fcart =
{

+fcart agent output 1

−fcart agent output 0 .
(4)

In control theory, this is also known as bang-bang control [40]. While in OpenAI Gym [39]
a continuous model is used for the inverted double pendulum on the cart,2 we still use a dis-
crete force for all models to be better able to compare the agents with each other. The links
1 to N are connected with rotational joints to their predecessor and form a so-called kine-
matic tree. The implementation of the model is done in a minimum coordinate formulation
in which the cart-pole model corresponds to a 2D kinematic chain with one prismatic joint
as the cart and N rotational joints for the links. The implementation follows Featherstone’s
algorithm for a kinematic tree, which is described in further detail in [41, 42], and the struc-
ture of the equations of motion as presented in Eq. (1). An implicit generalized-α solver [43]
with constant step size h = 0.02 s is used to solve the equations of motion in order to guar-
antee stability even for large step sizes. An explicit integrator could be used as well, with the
potential for even faster computation. However, the main computational expenses arise from
the training and evaluation of the network. Hence, a performance increase due to additional
simulation improvements would be minor. When using A2C in the training process of the
single pendulum agent, only 7% of the computation time is spent on time integration and
solving the equations of motion, while 39% is spent on the optimization algorithm and 37%
on obtaining the policy. For the more complicated triple pendulum, 9% of the computation
time is spent on time integration, 36% on optimization, and 33% on the policy respectively.
Note that the agent’s control frequency is chosen equal to the simulation step size. The min-

2https://www.gymlibrary.dev/environments/mujoco/inverted_double_pendulum/.

https://www.gymlibrary.dev/environments/mujoco/inverted_double_pendulum/
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imum coordinates of the N-link inverted pendulum correspond to the model’s position level
states

s = [s0, s1, . . . , sN]T = [xcart, ϕ1, . . . , ϕN]T , (5)

with the cart position xcart and the pendulum angles ϕj , with j ∈ {1, . . . , N}. The agent also
receives velocity-level states

ṡ = [ṡ0, ṡ1, . . . , ṡN]T = [ẋcart, ϕ̇1, . . . , ϕ̇N]T , (6)

with the cart velocity ẋcart and the angular velocity of the j th link ϕ̇j . The position and
velocity states form together the (full) state vector

x =
[

s
ṡ

]
. (7)

For the N-link pendulum, this leads to a total of 2N + 2 states. The agent’s interface consists
of the action Fcart and full state vector x. For general multibody systems, such as closed-
loop systems, Exudyn allows the use of redundant coordinates, which are not compatible
with the implemented RL methods. Therefore, the present dynamic model in the simulation
uses the minimum coordinate formulation, such that no conversion between the state vector
of the RL method and the simulation model coordinates is needed. The task terminates (and
fails) if the allowed observation space of |xcart| ≤ χx and |ϕj | ≤ χϕ ∀j ∈ {1, . . . , N} is left.
The values of the position and angle thresholds χcart and χϕ chosen for the experiments can
be found in Sect. 5. The observation space for the velocities is not restricted.

4.2 Reward design

In the scope of this work, various different reward metrics are considered. In the benchmark
example included in OpenAI Gym [39] the simple reward

r0 = 1 (8)

is used for each observation, while r0 = 0 when the model stops and the episode ends—
either because of a state exiting the allowed observation space and the environment termi-
nates, causing the task to fail, or the maximum number of steps for the episode to be reached.
It is similar to the reward from [38], where the reward is set to 0, while the pendulum is in-
side the desired observation space and set to −1 when the agent fails the task. Especially for
inverse pendulum systems with a number of links N > 1, the pendulum stabilizing with the
cart moving into the ±x direction with constant velocity may be easier to achieve for the
controller than to hold the unstable equilibrium position s0 = [0 , . . . ,0]. In real systems,
this drifting of the cart position can typically not be accepted as the space is limited. Thus
to avoid this undesired behavior, for the rewards r1 to r3, the factor wp weights the relative
positional error and the angle error to each other. The reward

r1 = 1 − wp

|xcart|
χcart

− (1 − wp)

∑N
j=1

∣∣ϕj

∣∣

Nχϕ

, (9)

combines the cart displacement xcart with the sum of angles, such that r1 = 1 is equal to
the unstable equilibrium of the pendulum at s0 = [0, . . . , 0]. Tests on the inverted double
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pendulum showed that using the sum of absolute values
∑N

j=1

∣∣ϕj

∣∣ leads to better results

than the absolute value of the sum
∣
∣∣
∑N

j=1 ϕj

∣
∣∣. Furthermore, the reward

r2 = 1 − wp

|px |
χcart

− (1 − wp)

∑N
j=1

∣
∣ϕj

∣
∣

Nχϕ

, (10)

uses the tip position px instead of the cart position, whereas the third reward uses the tip
position and the absolute value of the last link’s angle only

r3 = 1 − wp

|px |
χcart

− (1 − wp)
|ϕN|
χϕ

. (11)

The reward is calculated in each time step. In the following figures, the reward is shown
accumulated over each episode.

4.3 Model evaluation (tests)

To assess the quality of the agent, it is evaluated periodically once the mean reward is
greater than a reward threshold λr and the loss is under a threshold λl . For each evalua-
tion, a number of ntest tests are run in the environment for neval > nlearn steps, e.g., for the
single link model the number of time steps in the evaluation neval = 5000, which runs the
test for 100 s if h = 0.02 s. The applied parameters are shown in Tables 2 and 3. In each test,
the states are initialized with an initial perturbation, sampled for all states from a uniform
random distribution in the range of ±λinit. The environment is simulated for the time steps
t = [

t0, t1, . . . , tneval

]
, where ti = i h. The test error is evaluated for each time step i ≥ 3

4 neval,
so the agent has time to reach the desired unstable equilibrium state s0 after the initial per-
turbation. The test error

etest,i = ||si ||∞ (12)

is then calculated for the ith time step from the maximum norm of the position states si =[
si,0, . . . , si,N

]T
. The total error is the largest error that occurred in the last quarter of the

tested time steps,

etest = max(etest,i )∀ i ≥ 3

4
neval . (13)

During the training process the current policy is tested regularly. Each time ntest tests are
performed with varying initial conditions. The training of the agent is considered to be
finished when, for each of the tests, the maximum error etest is below the threshold value of
χtest and thereby successful. This could be used as a criterion for early stopping. As soon
as the agent succeeds in a minimum number of tests, the training result is tracked, and the
network parameters are saved upon improvement. To better assess the performance of the
methods, in each experiment, several agents are trained and evaluated. In the later figures,
the success of each method over the trained steps is shown by the best, worst, and mean
performance as displayed in Fig. 4(a). The min and max curves form the envelope. As the
agents are not evaluated in the exact same time steps, as seen in (b), linear interpolation and
resampling are used for plotting. In the first 50,000 steps, the model is not evaluated due
to its performance not being sufficiently developed yet. Consequently, the linear increase of
successes observed in the plot is attributed to the interpolation applied to the data.
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Fig. 4 The success of the agent in the inverted single pendulum environment over the training process is
shown as the number of successful tests (a) and the test sum of test errors (b). Five agents are trained, and
the worst/best and mean number of successful tests for the agents is shown in (a). After 140 · 103 steps, all
models succeed in all 50 tests (Color figure online)

5 Performance evaluation of RL methods

In the following section, we evaluate the performance of the standard RL methods A2C,
PPO, and DQN in the N-link environments previously described. The analysis starts with
a 1-link system, progressing subsequently to a 2-link and a 3-link system. In particular,
different rewards are explored, ultimately concluding with modifications of the environment
and the influence of the agent’s performance.

For all systems, we consider the task of balancing the inverted pendulums in the unstable
upward-facing equilibrium. Note that the swing up is considered as a separate task [44], as it
is in control theory. Stabilizing the inverted pendulum becomes successively more challeng-
ing by adding more links, as every link would be an unstable system by itself, even if the
other links were fixed. It is known that the single pendulum can be stabilized with the dis-
crete bang-bang type control as it is used not just as an example in many RL environments
but also in classical control [45]. For the stabilization of the double and triple pendulum in
the literature, more advanced control strategies such as H-∞ methods [46] are used.

In the following results, each experiment is repeated eight times. Different seeds are used
for initializing random values, e.g., the weights of the neural networks or the initialization
of the environment in each episode and test. Not all eight trainings are shown in each plot
to avoid cluttered figures. For all experiments, stable-baselines33 [28] is used in Version
1.7.0. Furthermore, PyTorch 2.0.0 and Exudyn Version 1.6.65 are used in the following ex-
periments. The methods A2C, PPO, and DQN are used as implemented in stable-baselines3
with standard parameters for the agent, except the ones shown in Table 2. The inverted pen-
dulum with one link is a classical benchmark example for RL methods and nonlinear control
[45] and is available in many environments such as MuJoCo [47] and OpenAI Gym [39],
which is since 2021 further developed under the name Gymnasium4. For all parameters of
the RL methods that are not shown here, the standard parameters implemented in stable-
baselines3, V1.7.0 are applied.

The different methods and rewards are compared for the single, double, and triple link
models (1, 2, and 3 links). For the following evaluations, if not stated differently, the param-
eters shown in Table 2 and Table 3 are used. The parameters from Table 2 are used inde-

3https://stable-baselines3.readthedocs.io/en/master/guide/algos.html.
4https://gymnasium.farama.org/.

https://stable-baselines3.readthedocs.io/en/master/guide/algos.html
https://gymnasium.farama.org/
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Table 2 The hyperparameters used for the RL methods in the shown investigations. The physical parameters
are provided in Fig. 3

Parameter Value Parameter Value

Reward function r3, Eq. (11) reward threshold λr = 0.9

Step size 20 ms loss threshold λl = 0.01

Evaluation length 5000 steps ⇒ 100 s PPO: n_steps nepisode,max

A2C: learning rate 7 · 10−4 learning rate PPO/DQN 5 · 10−4

Table 3 Environmental, reward, and training parameters for the environments with link numbers 1 to 3. If
xcart > χx or ϕi > χϕ , then the episode ends or the evaluation fails. To receive a reasonable model, approxi-
mately nlearn steps were necessary for our experiments

Name Parameter 1 link 2 link 3 link

Cart force fcart in N 12 40 60

Threshold cart position χx in m 1.2 3.6 5.4

Threshold link angle χϕ in rad π
20

π
10 3 π

20
For ϕ1 to ϕn

Max test error χtest 0.2 0.5 0.75

Reward position factor wp 0.5 0.5 0.5 to 1

Required training steps A2C/PPO nlearn 200 · 103 400 · 103 500 · 103

Max episode length nepisode,max 1280 1536 2048

Tests per evaluation ntest 50 50 100

pendently of the number of links. The physical properties of the considered environments
are different: with a higher number of links N, the total mass and inertia increase. Thus the
environment, reward, and training parameters are adjusted with the number of links accord-
ing to Table 3. Suitable parameters have been found by parameter variations. To control the
inverted triple pendulum, a higher force is needed because of the higher total inertia and
mass. In the shown plots we train for more steps than the required learning steps, compare
Table 3, to check the performance of all methods and to observe the training behavior.

5.1 Inverted single pendulum: 1 link

For the inverted pendulum on a cart, also called cartpole, all three RL methods lead to
successful agents with the standard settings from stable-baselines3 without adjustment of
hyperparameters.

In Fig. 5 the successes over the course of the training are shown for the different methods,
whereby the solid line resembles the mean number of successful tests, and the highlighted
area represents the envelope of the best and worst result as described in Sect. 5. The figure
also shows that the agent passes all tests already before the minimum of the loss is reached,
see Fig. 6. Although for A2C the tests are passed after 120 · 103 steps, the agent still learns
and the occurring errors in the evaluations, described in Sect. 5, decrease. In Fig. 6 the
training for the inverted single pendulum on the cart is shown for A2C, PPO, and DQN. The
parameter case, shown from 1 to 3, is the seed set for all randomized initialized values
as the weights of the network and the state of the pendulum for training. The A2C method
explores the fastest, and all test cases run successfully for the full episode lengths after
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Fig. 5 The number of successful tests over the training zoomed into the first 150 · 103 steps (a) and over the
longer training (b), which was needed for DQN to succeed. The solid line represents the interpolated mean
between all tests, whereas the dashed lines represent the envelope with the worst and best results. With A2C
the training succeeds the fastest and the model remains robust even when trained for longer (Color figure
online)

60 · 103 to 80 · 103 training steps, although there are drops in the reward afterward. If the
reward per episode is close to its length, it indicates that the controller is at least able to keep
the pendulum stable inside the thresholds χcart and χϕ . With a maximum episode length of
1280, this corresponds to 25.6 seconds in the simulation. The loss decreases rapidly until
250 · 103 steps, whereas DQN takes over 106 learning steps to successfully stabilize the
pendulum.

From an engineering perspective not only the randomized tests used for the evaluation are
of interest, but instead for real-world application of the agent an area where the stabilization
task is successful needs to be known. The question arises if this region of stability is simply
connected. To visualize the stability regions of the agent in the state-space all states are set
to 0 except the visualized states sk and sl . The state space is then discretized into a 2D grid
array with a discretization size of

dsk = sk,max − sk,min

nk

(14)

with the maximum value for the state sk,max, minimum sk,min, and the number of calculations
in dimension k

dsl = sl,max − sl,min

nl

. (15)

In each grid cell, the agent is evaluated n′ times with the starting state for the test randomized
in a range of ±dsk/2 and ±dsl/2 in the cell. With the states sk = ϕ1 and sl = ϕ̇, the heatmaps
shown in Fig. 7 are calculated. In the bright areas, the agent succeeds with the task. Figure 7
(a) shows the complete stable region of the inverted single pendulum. In the numerical ex-
periment the discretization is set to nk = nl = 1000 cells per direction, with n′ = 100 tests
per cell this leads to a total of 108 tests and a resolution of 2.4 · 10−3 rad × 8 · 10−3 rad s−1.
Figure 7 (b) shows in more detail the spiked shape of the outline of the stability zone. While
the exact values of the zone differ between agents trained with different seeds, all tests show
the same ragged structure at the ends and not a clear line which one would expect from
a classical deterministic control algorithm. As shown by Mori in [48], a smooth boundary
would be expected for a classical control algorithm. Besides the spikes at the outline of the
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Fig. 6 Reward per episode and loss for A2C (a, b), PPO (c, d), and DQN (e, f). The maximum episode length
is 1,264 steps, therefore with a maximum reward of 1 per step the reward per episode cannot surpass 1264.
In the case of DQN, the model starts learning the control task after 50 · 103 steps, thus the loss is 0 until then
(Color figure online)

stabilized zone isolated zones occur where the agent fails to stabilize the system. The region
of stability shown in Fig. 7 is significantly larger than the range of states used for training
and testing, shown as a rectangle.

To handle the large number of tests necessary to visualize the stability regions, the high-
performance computing cluster Leo5 is used. In the cluster, the computing power is sepa-
rated into nodes, having their own CPUs, GPUs, and memory. Besides its simulation ca-
pabilities, the used multibody simulation library Exudyn also offers features for parameter
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Fig. 7 The stability zones of the A2C agent trained in Fig. 6 (a), case 4. Within each grid cell, 100 tests are
done with randomized starting states. The number of fails is plotted scaled by log (fails + 1) in the heatmap for
better visibility of single failed tests. The environment’s initialization for the agent’s evaluation while training
was performed in a randomization range of xi (t = 0) ∈ [−λinit,+λinit] with λinit = 0.1. This training range
is shown on the left in red and is much smaller than the zone of stability (Color figure online)

variation and parallel processing, both on multi-core CPUs and on clusters using the mes-
sage passing interface (MPI). With MPI the agent can be tested using shared or distributed
memory, enabling parallelization of the calculations over multiple nodes of the cluster. With
an average CPU time of 50.6 ms per test for the single pendulum environment, 108 tests
can be computed in 11.7 hours on 120 parallel MPI tasks. As for the neural network, only
64 neurons are used for each of the 2 hidden layers, no speed-up was observed using the
GPU. The double link environment requires 89.7 ms per test resp. The triple link environ-
ment takes on average 194.9 ms per test. As the test terminates when leaving the observation
space χx or χϕ respectively, the computation times can vary greatly between individual tests.
Successful tests require a significantly longer computation time.

5.2 Inverted double pendulum: 2 link environment

The inverted double pendulum can be seen as an extension of the classical cartpole system
with higher-order nonlinearities and is more difficult [49]. In Fig. 8 the training of all three
methods is shown. After the initial fast learning for both A2C and PPO, the agents’ number
of successes becomes notably worse when training for a longer time, which was not the case
for the single pendulum shown in Fig. 6. After 25 · 104 to 50 · 104 steps, both A2C and PPO
run for the maximum number of steps nepisodes,max without early termination.

The agents’ successes, shown in Fig. 9, using PPO are on average more stable than A2C.
As PPO uses clipping to avoid too large updates for the policies, this slower but more stable
learning can be explained.

In Fig. 10, the stability zones are evaluated for A2C cases 1 and 2 as well as PPO case
1 from the training shown in Fig. 8. Figures (a), (c), and (d) have a resolution of nl = nk =
1000 grid cells in ϕ1 and ϕ2, leading to a resolution of 1.7 · 10−3 rad × 8 · 10−4 rad in ϕ1

and ϕ2 for each grid cell, with 100 tests per grid cell this leads to 100 · 106 tests calculated
per figure. The outline of the zone in which the controller is able to stabilize is similar for
all agents. As expected, changing the environment can also change the size of the stabilized
zone, e.g., increasing the control frequency could lead to better agent performance. In all
tests of the double pendulum, the shown spikes on the outline of the stabilized zone were
observed.
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Fig. 8 The results for all three methods applied to the double link model. Equivalent to the previous training
of the single pendulum, (a) and (b) show the results from A2C, (c) and (d) PPO, and (e) and (f) DQN (Color
figure online)

The distorted shape of the stability region for values sign(ϕ1) = −sign(ϕ2) can be ex-
plained as the opposing signs help to move the inverted pendulum closer to its equilib-
rium state and thereby increase the range of values where the system can be stabilized by
the agent. Figure 10 (b) shows a detail of an unstable zone. The size of this zone is only
2.5 · 10−3 rad × 2.5 · 10−3 rad and could be easily missed when testing the agent. It is sur-
rounded by regions of success, and changing the starting value for any variable by 0.01 leads
the agent to succeed in the test. The shape of the local failure region on the inside is similar
to the outer borders of the stability region.
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Fig. 9 The successful tests shown over learning for the double link model (Color figure online)

Fig. 10 The stability zones for the agents from Fig. 8. For the training, the states are sampled from the red
rectangle. In (a), the agent corresponds to A2C, case 1. Inside the stabilized zone, there are small zones where
the agent does not succeed in stabilizing the environment. The red line represents the smoothed outline of the
main stability zone and is added to Fig. 16. The small spot on the upper right marked in cyan is shown in (b).
(c) shows the A2C agent case 2, (d) PPO case 1 (Color figure online)

The high-frequency oscillations visible in Fig. 11 (b) are a result of the bang-bang con-
trol, which applies a discontinuous force of ±fcart to the cart. These results are characteristic
of the controller: when it manages to stabilize the inverted pendulum around the equilibrium
position, it will still not reach the equilibrium perfectly and the cart will continue to oscillate.
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Fig. 11 Results for the double pendulum tests from Fig. 10, A2C case 1. The controller fails in case (a)
by leaving the observation space ±χcart , χϕ . This happens although the initial perturbations are close to
the equilibrium, and the agent succeeds with marginally larger (or smaller) initial states shown in (b) (Color
figure online)

5.3 Inverted triple pendulum: 3 link environment

The inverted 3-link pendulum on a cart, in the following called the triple link model, is a
very challenging control problem because of its instability and nonlinearity. It is not just
used for testing control strategies but is also a good model for a humanoid robot standing on
one leg [46]. In Fig. 12, the training of the triple link pendulum is shown using the A2C and
PPO methods. With both methods, the agent can learn to balance the system in the unstable
equilibrium position although, in training, the system has problems keeping it upright for the
training periods. In our experiments, the agent performed better when training with larger
(λinit,train, red rectangle in Fig. 14) and testing with smaller states (λinit,test , green rectangle
in Fig. 14) than setting the training and testing values to be equal. In contrast to the previous
training results, the shown reward and loss are filtered in the postprocessing using a sliding
window mean filter with size 50 for better visibility. The triple pendulum only succeeded
with all tests when using the methods A2C or PPO, in the experiments using DQN did not
lead to any successes, not even after 15 · 106 steps. As DQN already performed significantly
worse for the inverted double pendulum, as shown in Fig. 9, this method was no longer
considered for the triple link environment. As shown in Fig. 13 (a), the mean performance
of the trained models is best after approximately 35 · 104 steps. The loss does not reach
a minimum, and the model changes, but it is not improving anymore. In the stabilization
process, the cart typically oscillates around the equilibrium position, as shown in Fig. 13
(b). The amplitude of this oscillation increases with the number of links. To reduce this
oscillation, the reward position factor wp of the reward is increased to wp = 0.7, helping to
keep the cart position centered.

In Fig. 14, the stable zones for the A2C agent of case 1 are shown. The difficulty of the
task is not only increased by the higher number of links but also by the definition of the
angles ϕj relative to their predecessor. Thus the angle ϕN measured against the vertical can
become up to Nχϕ , as it can be seen in Fig. 3. The red rectangle shows the training area, and
the green inner rectangle is the testing area. Increasing the control frequency enlarges the
stability region for the triple pendulum significantly. As the agent uses bang-bang control
and chooses the action in each state only by the measured states, we found that the control
frequency can also be changed for the testing without new training data.
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Fig. 12 The results for all three methods applied to the triple link model. (a) and (b) show the results from
A2C and (c) and (d) PPO. The DQN agent failed all tests after 15 · 106 steps. The shown reward and loss are
filtered using a sliding window mean filter with a size of 50 (Color figure online)

Fig. 13 (a) The successes plotted over time for A2C and PPO agents on the triple link model. (b) The results
of the stabilization for initial states s0, showing the characteristic oscillations of the cart position pcart . The
shown limit corresponds to χtest from Table 3 (Color figure online)

5.4 Evaluation of rewards

In Fig. 15, the different rewards described in Sect. 4.2 are shown. The reward r0, sometimes
used for the single inverted pendulum on the cart, offers a significantly worse performance
when the number of steps for evaluation is larger than the test’s maximum episode length
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Fig. 14 The stable zones for the triple link model. The red squares are the intervals used for training, and the
green for testing. The A2C agent of case 1 is tested using the initial states ϕ1 and ϕ2 in (a), and ϕ2 and ϕ3 in
(b). An error in ϕ3 cannot be compensated as well as in the other angles (Color figure online)

Fig. 15 The number of successful evaluations depends on the chosen reward function for the single link (a)
and the double link (b). Note that reward functions r2 and r3 are identical for the single link as

∑n
j=1 ϕi = ϕ1.

The baseline reward r0 can work for the single link model but worsens with increasing complexity. It can
be observed that the cart position drifts slowly outside of the observation space χcart. The rewards r2 and r3
work comparably well (Color figure online)

in training as drift in the cart position is not reflected in training. The reward r1 couples the
position of the cart with the sum of absolute angles. Rewards r2, which couples the tip’s
position px with the sum of absolute angles, and r3, calculated from px and the last angle
ϕN , work comparably well. For the single link model, the difference is notably smaller than
the double link, where r0 does not work.

5.5 Agents tested on environments with modified parameters

In this section, we examine the impact of changing properties of the environment, namely
link length, mass, and added friction, on the stability zones. The investigation is conducted
using the inverted double pendulum on a cart model from Sect. 5.2. The A2C agent (case
1), shown in Fig. 10 (a), serves as a basis of the study. In each subplot of Fig. 16, the
stability zone is calculated for the same agent within modified environments, and the contour
of the stability zone using the original environment is added. Friction is implemented by
assuming Coulomb friction based on a friction torque τ0, which acts against rotation and is
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Fig. 16 The stability zone for the double link system using the A2C agent, case 1. The red boundary corre-
sponds to that depicted in Fig. 10 (a). The environment parameters are modified as follows: (a) 1.1 l, (b) 1.2 l,
(c) 1.1m, (d) 1.2m, (e) frel = 0.01, and (f) frel = 0.02. In the areas shown in the figure, the proportion of
successes to the total number of tests is (a) 25.66%, (b) 26.97%, (c) 23.25%, (d) 23.13%, (e) 23.17%, and
(f) 8.31%. In the original stability zone, 23.33% of the tests are successful (Color figure online)

independent of the applied forces. In the implementation we use

τf,i(ωi) = φ(ωi) sign(τ0) = φ(ωi) sign(ωi) mg
l

2
frel , (16)

with the regularization

φ(ω) =
{ |ω|

ωreg
, |ω| < ωreg

1 else ,
(17)

to the ith joint. The regularization provides improved numerical stability [50] by smoothing
the discontinuity at ω = 0 and is chosen as ωreg = 5 · 10−3. We introduce the factor frel ∈
]0,1[, denoted as relative friction, as the single pendulum would be self-locking up to the
angle of ϕ1 = arcsin (frel). For the presented tests, the cart’s properties remain unchanged.
In Fig. 16 (a) and (b) the link’s length is increased by 10% and 20%, respectively, while
in Fig. 16 (c) and (d) the link’s mass is increased by 10% and 20%. In Fig. 16 (e) and
(f) the relative friction frel is set to 1% and 2%, respectively. The observations show that
increasing the length of the links increases the area inside of the contour, but also increases
the number of blind spots observed. Increasing the link’s mass has only a minimal effect on
both, contour and blind spots, when changed in this scale. Note that longer links with the
same mass also increase the inertia � quadratically as shown in Fig. 3.

A friction value of frel = 0.01, being large compared to values of roller bearings, only
slightly affects the shape of the stability zone of the agent but increases the number of blind
spots. However, with a larger friction value, frel = 0.02, the agent fails mostly, also inside the
original contour. To improve the performance of the agent in the new environment, e.g., with
friction, either such effects could be randomly added during training of the agent or transfer
learning [51] could be applied instead of training a new agent to reduce the computation
time.
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6 Conclusions

In this paper, we show the application of reinforcement learning (RL) methods in highly
nonlinear multibody systems. We revised the classic benchmark example of the inverted
single link pendulum on a cart, in the RL context often called cartpole, and extended it with
further links to the inverted double and triple link models and showed the performance of
the standard algorithms A2C, PPO, and DQN in solving these control environments. For
the single and double link models, all algorithms succeeded, while DQN performed consid-
erably worse and did not succeed in any tests for the triple link model, where it made no
progress toward successful stabilization. We looked into the performance of the algorithms
for the different environments, compared the training for different rewards, and explored in
which regions the trained agents are successful. In addition to the accompanied testing of
the agent while training, we performed extensive testing of the system after the training was
finished. We demonstrated the stability regions of the agents and showed that the zones of
success resp. failure of the agent are not closed or smooth surfaces in the parameter space
but are highly fractured and nonsmooth, opposing to a classic controller. We observed the
increasing importance of well-chosen rewards for more complex systems.

For the single and double link model, the stability zones can become significantly larger
than the range of states during training. For the triple link model with a comparably slow
control frequency of 50 Hz, the system can still be stabilized in a smaller region, although
a higher control frequency would help to control the system. We found that the agent may
still fail the control task with starting conditions close to the equilibrium, where it would be
expected to work well. While this failure depends on the RL method and training parameters,
in particular, small zones of failure are hard to detect by the randomized tests in the training
and will be considered in future research. We also exemplarily showed that a trained RL
agent can be applied to a new environment with considerably modified parameters, such as
inertia or friction, the latter one limited to small values only. A future research goal will be
finding a computationally more efficient way to compute the presented stability zones, as
calculating millions of tests for every agent may not be practically feasible in engineering
applications. Future research might include methods supporting continuous actions such as
Soft Actor critic and Twin Delayed DDPG.
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