
Multibody System Dynamics
https://doi.org/10.1007/s11044-023-09932-6

R E S E A R C H

A consensus-based alternating direction method of
multipliers approach to parallelize large-scale
minimum-lap-time problems

L. Bartali1 · E. Grabovic1 · M. Gabiccini1

Received: 20 April 2023 / Accepted: 1 September 2023
© The Author(s) 2023

Abstract
Minimum-lap-time planning (MLTP) problems, which entail finding optimal trajectories for
race cars on racetracks, have received significant attention in the recent literature. They
are commonly addressed as optimal control problems (OCPs) and are numerically dis-
cretized using direct collocation methods. Subsequently, they are solved as nonlinear pro-
grams (NLPs). The conventional approach to solving MLTP problems is serial, whereby the
resulting NLP is solved all at once. However, for problems characterized by a large number
of variables, distributed optimization algorithms, such as the alternating direction method
of multipliers (ADMM), may represent a viable option, especially when multicore CPU
architectures are available.

This study presents a consensus-based ADMM approach tailored to solving MLTP prob-
lems through a distributed optimization algorithm. The algorithm partitions the problem
into smaller subproblems based on different sectors of a track, distributing them among
multiple processors. ADMM is then used to ensure consensus among the distributed com-
putational processes. In particular, here the term “consensus” denotes the requirement for
each subproblem to achieve mutual agreement across the junction areas. The paper also out-
lines specific strategies leveraging domain knowledge to improve the convergence of the
distributed algorithm. The ADMM approach is validated against the serial approach, and
numerical results are presented for both single-lap and multilap scenarios. In both cases,
the ADMM approach proves superior for problem dimensions of 70k+ variables compared
to serial methods. In planning scenarios with complex vehicle models on long track hori-
zons, i.e., for problems with 1M+ variables, the efficiency gain of the ADMM approach is
substantial, and it becomes the only viable option to maintain computational times within
acceptable limits.

Keywords Minimum-lap-time simulation · Large-scale problems · Parallel optimal
trajectory planning · Consensus-based ADMM

� M. Gabiccini
marco.gabiccini@unipi.it

1 Dipartimento di Ingegneria Civile e Industriale, Università di Pisa Largo Lucio Lazzarino 1, 56122
Pisa, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-023-09932-6&domain=pdf
mailto:marco.gabiccini@unipi.it

L. Bartali et al.

1 Introduction

Despite being a classical subject, minimum-lap-time planning (MLTP) still stirs a very lively
research activity. This is indeed well documented in the recent extensive survey paper [1].
Here, besides approaches based on quasi-steady-state (QSS) and transient vehicle models,
also fundamentals on nonlinear optimal control problems (OCPs), road modeling, and vehi-
cle positioning are well summarized.

In the recent literature the approaches that tackle MLTP as the solution of an OCP seem
the most widely adopted. Among these, direct methods [2–4], based on multiple shooting
or collocation, are usually preferred over indirect ones, which typically involve the utiliza-
tion of Pontryagin’s maximum principle, as in [5, 6]. Within the OCP context, the variations
proposed mainly consist in the model simplifications tolerated. These can be broadly clas-
sified as follows: a priori description of the vehicle’s trajectory [7–9] (as opposed to leaving
the trajectory free [3, 10]), quasi-steady-state (QSS) models [8, 10, 11] (as opposed to dy-
namic models [6, 12]), and simplified tyre and aerodynamics models [3, 13] (as opposed
to adoption of elaborate tire models [14] and aerodynamic maps [15]). A further compu-
tational classification criterion is the particular OCP suite adopted, like MUSCOD-II [16],
GPOPS-II [17], ICLOCS2 [18], or CasADi [19] and the specific backend solver, which han-
dles the resulting NLP. This choice is typically restricted among SNOPT [20], IPOPT [21],
or WORHP [22].

The common characteristic to all of the above approaches is that the resulting NLP is
solved as a single problem. This inevitably imposes an upper bound to the combined effect
of growing vehicle model complexity and increasing the track length, mainly due to the con-
ceivably high-memory footprint and the large number of variables in the resulting NLP. In
the present paper, such standard approaches are designated as serial methods. Even if some
computational steps in the solution of the NLP can take advantage of multicore CPU archi-
tectures, no specific MLTP problem reformulation is devised from the outset to profitably
spread the computational load across different processors according to a divide-and-conquer
strategy.

For problems characterized by the number of variables growing at an unprecedented
scale, distributed optimization algorithms seem the only viable solution [23]. In particular,
the alternating direction method of multipliers (ADMM) has proved to tackle efficiently,
and in a distributed manner, global consensus optimization problems in different research
contexts, such as control of microgrid electricity networks and smart grids [24, 25], esti-
mation problem by a network of agents [26], and optimal asset utilization in power market
operation [27], to mention only a few.

In the consensus-based ADMM method, the original cost function f (x) is split addi-
tively as

∑
fi(xi), where fi(xi) pertain to a specific agent (or worker) who retains a local

representation xi of the global variable x. Specifically, in a distributed computing environ-
ment, the agents represent the CPU-cores performing the optimization in parallel. and the
term “consensus” denotes the requirement for each worker to achieve an agreement with
its neighbors. One of the nodes, called the master, is responsible for updating the so-called
consensus variable z. Each worker seeks to minimize its local objective (based on its data
subset) but is forced by a mechanism to reach a consensus with the other workers. After
completing the local optimization, each worker sends its updated local copy xi to the mas-
ter. The master, in turn, updates the consensus variable z so that the xi reach a consensus
and then distributes the updated value back to the workers. The process is then repeated until
convergence.

Even if convergence proofs of the ADMM algorithm are not available except under very
special conditions [28], in practice, ADMM has proved successful in countless scenarios,

A consensus-based ADMM approach

and clever adjustments have been proposed in the literature to increase its robustness and to
speed up its convergence [29–33]. Many studies also investigated the influence on the con-
vergence speed and robustness of relevant parameters such as the topology of the connec-
tions between workers [34] and the effect of synchronous/asynchronous flow of information
among workers [35].

In the context of trajectory optimization, which is the broad area of our work, there are
previous contributions. However, they pertain to different domains like human-Mars entry
trajectory for a landing mission [36], multiagent/multirobot trajectory synthesis [37, 38],
obstacle avoidance for kinematic vehicles models [39], legged locomotion [40], and multi-
contact model predictive control for robotic manipulation [41]. However, it is worth noting
that, to the best of our knowledge, no prior contribution can be counted among distributed
approaches for solving MLTPs with reliable dynamic models from a vehicle engineer’s per-
spective.

In the present paper, in contrast to prior work on MLTP, we focus on the specific struc-
ture of MLTPs and exploit it via ADMM [23]. In more detail, the optimal trajectory planning
problem on a long track is broken into several segments, each pertaining to a given sector
of the track. Each segment becomes a subproblem with a reduced number of variables and
is discretized using the direct collocation method. The subproblems are solved classically,
but in parallel and on distinct CPU cores. This ensures reduced memory footprint for each
subproblem and increased robustness thanks to the reduced dimensionality. The solutions
are iteratively forced to adhere to a single trajectory via properly devised consensus con-
straints, which progressively enforce continuity of state and input variables across segments
via an augmented Lagrangian mechanism. This scheme offloads the overall problem com-
plexity by distributing it among segments (and CPU cores) and enables synthesizing optimal
trajectories on very long tracks with dense discretizations. It is worth noting that the pro-
posed formulation is amenable to any existing (serial) trajectory optimizer for solving each
subproblem.

Finally, it is worth remarking that MLTPs are of great importance in the automotive field.
The capability to effectively address the minimum-lap-time challenge equips the automo-
tive industry with the means to systematically assess different vehicle configurations and
determine the most efficient option while providing guidelines for drivers. Furthermore, in
the motorsport context, MLTP can be used as a powerful tool for investigating the impact
of specific vehicle parameters on the driving behavior of the pilot, as evidenced in [3]. Here
we want to establish the groundwork for extending these benefits to encompass large-scale
problem domains.

2 Vehicle model

In this section, we introduce the dynamic vehicle model that serves as a benchmark to assess
the potential of the ADMM methodology in solving MLTP problems. The proposed model
is described in detail in [42], whereas here, to ensure clarity, we provide only the main
highlights.

While the vehicle model used here has been previously applied in solving an MLTP on
the Nordschleife circuit, as documented in [42], our current work introduces an innovative
algorithm tailored for parallelizing the solution of extensive MLTPs, particularly in multilap
scenarios. In contrast to [42], where the primary focus was on describing the vehicle model,
the central objective of this paper is to present an original parallel approach. This approach is

L. Bartali et al.

highlighted as crucial for enhancing computational efficiency when dealing with large-scale
MLTPs.

Although our vehicle model is relatively accurate, its complexity falls in-between a clas-
sic double-track and a fully fledged multibody system. By utilizing mathematical tools
mostly used in robotics, which are based on Lie-group and Lie-algebra methods [43, 44], and
recursive algorithms [45] to express the dynamics, the equations are systematically struc-
tured in the form of a serial kinematic chain. In particular, the recursive algorithm described
in [42] is employed, which is based upon the articulated body algorithm in [45]. Although
our model does not possess a huge number of degrees of freedom, the ABA offers us a sys-
tematic approach while enjoying an algorithmic complexity of O(n), which scales linearly
with the number of degrees of freedom. This leads to a significant reduction in the vol-
ume of the algebra during the assembly of the dynamic equations. In contrast, the classical
Lagrange equation-based approach, with its complexity of O(n3), is not considered in this
analysis due to its inferior performances.

2.1 Track parameterization

The first ingredient of the proposed model is the track parameterization, which is schemat-
ically illustrated in Fig. 1b. The track centerline c(q1) = [

xc(q1) yc(q1) zc(q1)
]T ∈ R

3

with q1 ∈ [0,1] is described by a NURBS curve as a function of the parameter q1, which
not necessarily coincides with the curvilinear abscissa. The local frame {B1}, which fol-
lows the curve, is obtained using a special orthonormal parameterization, which also takes
into account the track banking and slope. Specifically, once the tangent vector t is com-
puted, its projected counterpart t�k0

on the (xy)-plane �k0 of the ground-fixed frame {B0}
is employed to derive the intermediate normal vector v = k0 × t�k0

. The final normal and
binormal vectors are obtained by rotating k0 and v by the banking angle ν around t . This
formulation, in contrast to the classical Frenet–Serret formulas, in addition to account for
banking, also avoids undesirable direction changes of n.

In the context of our model, the pose transformation from {B0} to {B1} represents the
effect of a special nonelementary joint, contained in the overall kinematic chain that repre-
sents the vehicle. This joint accounts for the sliding motion of the vehicle along the track
centerline and has an associate twist (generalized velocity) induced by the curvilinear path
constraint.

2.2 Vehicle parameterization

The model has six degrees of freedom (DoFs), associated with variables q , and is composed
of two main parts: a kart-like part, which includes the unsprung masses and the wheels, and
a chassis body, which represents the sprung masses. The schematics are shown in Fig. 1a.
The first three virtual joints of the kinematic chain, configured as two prismatic joints fol-
lowed by a revolute joint, constrain the position and orientation of the kart along the track
surface. The remaining three joints, consisting of a prismatic joint followed by two revolute
joints, connect the kart to the sprung chassis. These last joints also capture the first-order
information of the overall suspension geometry as they contain springs and dampers equiv-
alent to bounce k, pitching kθ , and rolling kϕ stiffness coefficients (and their corresponding
damping coefficients c, cθ , and cϕ).

Overall, we define seven reference frames denoted as {Bi} (i = 0, . . . ,6), attached to the
corresponding ith link. The frames {B0} and {B1} are the already mentioned ground-fixed
frame and the track reference frame.

A consensus-based ADMM approach

Fig. 1 Schematics of the vehicle model embedded into the track (Color figure online)

The relative 1-DoF motions (with the exception of the first one) are kinematically de-
scribed by the unitary twists Xi ∈ R

6 (i = 2, . . . ,6). These are associated with standard
joints (either prismatic or revolute), which are used in the local product-of-exponentials
(POE) formula [44] to define each relative homogeneous transformation matrix gi−1,i (q) ∈
SE(3) (i = 2, . . . ,6), between the links of the chain. Specifically, the last five joints repre-
sent (i) the lateral displacement q2 of the vehicle relative to the track centerline, (ii) the yaw
angle q3 between the tangent vector of the track centerline and the kart frame {B3}, (iii) the
vertical displacement q4 of the chassis relative to the ground, (iv) the pitch angle q5 of the
chassis, and (v) the roll angle q6 of the chassis.

L. Bartali et al.

Among all the body velocities in the chain, the distal twist of {B3}, denoted by V 3
3 =

[v3
3x

v3
3y

v3
3z

ω3
3x

ω3
3y

ω3
3z

]T ,1 is of special importance when computing tire slips and aerody-

namic forces. Furthermore, v3
3x

and v3
3y

represent the classical longitudinal and lateral ve-

locities, usually analyzed in telemetry inspections. The calculation of V 3
3 is achieved during

a recursive forward propagation of body poses and twists along the chain, which is needed
in the subsequent derivation of the dynamic equations.

2.3 Dynamic equations

The dynamic equations are obtained adapting Featherstone’s articulated body algorithm
(ABA) [45], which provides an efficient factorization of the direct dynamics of a kinematic
chain. Including also the reconstruction equations, the algorithm gives

ẋ =
[

q̇

q̇v

]

=
[

qv

ABAdyn(q,qv, fxa, fxb, δ,w),

]

= F(x). (1)

Here the state is defined as x = [qT qT
v]T , and qv and q̇v represent the joint velocities and ac-

celerations, respectively. By fxa and fxb we denote the total accelerating and braking forces
exchanged between the tires and the road, respectively. The steer angle δ is an additional
input to the system. To solve the algebraic loops that arise during the calculation of the load
transfers, we introduce additional algebraic variables w ∈R

7, whose terms are detailed later.
The interactions between the tire and track, globally represented by the resultant wrench

W 3
3 ∈ R

6 (generalized force acting on {B3}), can be split into two contributions, the in-
plane (plane locally tangent to the road) W 3

3E
= [f 3

3x
f 3

3y
0 0 0 m3

3z
]T and out-of-plane

W 3
3J

= [0 0 f 3
3z

m3
3x

m3
3y

0]T components. Since the vehicle is parameterized as a serial kine-
matic chain, the out-of-plane components arise, in the ABA framework, from the structural
constraints exerted by the third (virtual) joint on {B3}, whereas the in-plane components act
as external “driving” forces. It is worth remarking that W 3

3 = W 3
3E

+ W 3
3J

has its in-plane
components evaluated as the resultants of the forces exchanged between the road and each
tire, encoded in fijx , fijy , and fijz for the ij th wheel.2

Assuming that a rear-wheel drive vehicle is equipped with an open differential, the lon-
gitudinal tire forces can be expressed as

f11x = f12x = 1

2
fxbkb, (2)

f21x = f22x = 1

2
fxb(1 − kb) + 1

2
fxa, (3)

where, kb is the braking ratio.
The lateral forces fijy (fijz) are derived from the Pacejka’s magic formula [46] as func-

tions of the vertical forces fijz on each wheel.

2.4 Additional algebraic equations

The out-of-plane components present the issue of giving rise to an algebraic loop: the tire
vertical forces fijz depend on the overall system variables q and their derivatives qv and q̇v ,

1Here subscript refers to the number of the link (body), whereas the superscript denotes the reference frame
in which its components are expressed.
2i = 1,2 denotes the front/rear axle, whereas j = 1,2 refers to the left/right wheel.

A consensus-based ADMM approach

which, in turn, depend on the in-plane forces. In the present implementation, we employ the
following algebraic variables w to conveniently cut open this loop:

w =
[
f11z f12z f21z f22z f 3

3x
f 3

3y
m3

3z

]T

, (4)

where f 3
3x

and f 3
3y

are the in-plane resultant forces (longitudinal and lateral), and m3
3z

is the
corresponding resultant moment along k3 (yaw moment), which are the nonzero components
of W 3

3E
.

Therefore seven additional algebraic equations are required. The first four equations are
associated with the vertical loads and are expressed as follows:

fijz = fzi0 + fzia
+ �fz + (−1)j�fzi

, (5)

where the notation used is borrowed from [47]. They are, in order, the static load, the aero-
dynamic force, and the two longitudinal and lateral load transfers. These terms are linked
to the kinematic quantities and structural reaction loads of the third joint, as well as the in-
plane forces, and can be easily obtained during the unfolding of the ABA algorithm. The
remaining three equations expressing the resultant of the in-plane components are

f 3
3x

= (f11x + f12x) cos δ − (f11y + f12y) sin δ + f21x + f22x , (6)

f 3
3y

= (f11y + f12y) cos δ + (f11x + f12x) sin δ + f21y + f22y , (7)

m3
3z

= [
(f11y + f12y) cos δ + (f11x + f12x) sin δ

]
a1 − (f21y + f22y)a2. (8)

The quantities a1 and a2 in (8) represent the longitudinal distances of G6 from the front and
rear axles, respectively.

Additional constraints are also imposed during the MTLP construction to account for
power limits, adherence, complementarity constraints between the accelerating and braking
forces, and path constraints required to remain within the track bounds, as detailed in Sect. 4.
More details of the model employed are described in [42].

3 ADMM approach to the solution of MLTPs

The scope of our work is to solve an MLTP problem on a given track with a specific vehicle
model. The formulation of a discretized optimal control problem takes the form of a general
nonlinear programming problem (NLP) and is described by the following equations:

minimize
x

f (x), (9a)

s.t. g(x) = 0, (9b)

h(x) ≤ 0, (9c)

where x ∈ R
N are the optimization variables, f (x) ∈ R is the cost function, g(x) ∈ R

Ng is
the set of equality constraints, and h(x) ∈ R

Nh is the set of inequality constraints.
Among the many techniques available to discretize and solve OCPs (see, e.g., [48]), in

this study, we use the direct collocation method (more details will be provided in Sect. 4.2).
Clearly, the problem dimension can increase dramatically when the MLT planning horizon
grows large as in the case of long race tracks. The maximum size of the MLTP that can be

L. Bartali et al.

solved is limited by both the complexity of the dynamic model and the performance of the
hardware used. Within such limits, the problem can be solved as a single, separate one. In
this case, we refer to such an approach as a serial approach and to its corresponding solution
as a serial solution.

When we cross these limits or go well beyond, a parallel approach becomes mandatory.
In this case, we refer to such an approach as a parallel approach and to its corresponding
solution as a parallel solution. In the latter perspective, an asset of multicore processors can
provide not only an effective computational improvement, but may represent the only way
to handle huge problems, as demonstrated in many applications; see, e.g., [24–27]. Among
the most successful approaches to tackle large-scale optimization problems in parallel, we
count the alternating direction method of multipliers (ADMM). This is the preferred choice
in the present paper due its relative ease of implementation and intrinsic robustness. The
main steps of the ADMM and the original adaptations specific to our OCP are described
hereafter.

3.1 Partition of the variables in the parallel approach

The original problem is divided into Np subproblems. The discretized states, controls, and
algebraic variables are organized so that, internally to the ith sector, the sequence of states
si = {si,0 si,1 · · · si,ni

} consists in ni + 1 discretized samples of s ∈ R
ns , the sequence of

controls ui = {ui,0 ui,1 · · · ui,ni−1} represents ni discretized samples of u ∈ R
nu , and the

sequence of algebraic variables wi = {wi,0 wi,1 · · · wi,ni−1} stands for ni samples of w ∈
R

nw . Therefore si ∈ R
Nsi , ui ∈ R

Nui , and wi ∈ R
Nwi , where Nsi = (ni + 1)ns , Nui

= ninu,
and Nwi

= ninw . For convenience, we cast the internal augmented sequence in the ith sector
as xi = {si ui wi} ∈R

Ni , where Ni = (ni + 1)ns + ni(nu + nw).
To account for the states, controls, and algebraic variables at the boundaries between

neighboring sectors, it is convenient to define the head (h) and tail (t) sequences. With
reference to the ith sector, assuming that o is the length of the sequence of states in
the overlapping area, we define the head quantities si,h = {si,−o si,−o+1 · · · si,0}, ui,h =
{ui,−o ui,−o+1 · · · ui,−1}, and wi,h = {wi,−o wi,−o+1 · · · wi,−1}. Similarly, we define the
tail quantities si,t = {si,ni

si,ni+1 · · · si,ni+o}, ui,t = {ui,ni
ui,ni+1 · · · ui,ni+o−1}, and wi,t =

{wi,ni
wi,ni+1 · · · wi,ni+o−1}. It comes handy to cast the augmented head and tail sequences

in the ith sector as xi,h = {si,h ui,h wi,h} and xi,t = {si,t ui,t wi,t }, respectively.
With reference to Fig. 2, considering as an example the situation at the boundary between

sector i and i + 1, it is worth observing that xi,t and xi+1,h are local representations of the
augmented states for the ith and (i + 1)th sectors in the transition area. Then, to gradually
enforce coherence in a consensus fashion, the consensus augmented states zi are introduced,
whose role is to negotiate possibly conflicting requirements of adjacent sectors. In particular,
with reference to the transition between sector i and i + 1, coherence is registered if the
following conditions are met: xi,t = xi+1,h = zi .

We also introduce the extended head (H) and extended tail (T) sequences. Assuming
that e is the length of the sequence of states in the extended areas, we define the ex-
tended head quantities si,H = {si,−e si,−e+1 · · · si,−1}, ui,H = {ui,−e ui,−e+1 · · · ui,−1},
and wi,H = {wi,−e wi,−e+1 · · · wi,−1}. Similarly, we define the extended tail quanti-
ties si,T = {si,ni+1 si,ni+2 · · · si,ni+e}, ui,T = {ui,ni

ui,ni+1 · · · ui,ni+e−1}, and wi,T =
{wi,ni

wi,ni+2 · · · wi,ni+e−1}. For brevity, both extended augmented head and tail sequences
in the ith sector are casted as xi,H = {si,H ui,H wi,H } and xi,T = {si,T ui,T wi,T }, respec-
tively. It is worth noting that incorporating segments of variables that extend into neighbor-
ing sectors can aid in promoting agreement among independent solutions that arise from
adjacent sectors right from the initial ADMM iteration, as detailed in Sect. 4.3.2.

A consensus-based ADMM approach

Fig. 2 Conceptual scheme for the allocation of variables among the adjacent sectors (subproblems running
in parallel) in the ADMM setting. The upper panel shows a start condition. In the lower panel a typical
situation obtained upon convergence is depicted. Here adjacent states and corresponding consensus variables
have reached an agreement (Color figure online)

It is convenient also to introduce x̂i = {xi,H xi xi,T } and x̌i = {zi−1 xi}. It is worth
noting that while building x̌i , the duplication of si,0, contained in both zi−1, xi , is avoided by
counting it only once during the concatenation. Hereafter, for concision, both the augmented
sequences xi and the extended augmented sequences x̂i will be equivalently referred to as
variables (xi) and extended variables (x̂i), respectively.

3.2 A naive parallel approach

Having partitioned the variables x as described above, the solution of original problem
(9a)–(9c) can be recovered by properly piecing together the solutions for all sectors. In
principle, for the ith sector, the solution x̂

∗
i can be computed independently from the others

as follows:

x̂
∗
i = argmin

x̂i

fi(x̂i), (10a)

s.t. xi,h − zi−1 = 0, (10b)

xi,t − zi = 0, (10c)

g(x̂i) = 0, (10d)

h(x̂i) ≤ 0, (10e)

where (10b) and (10c) are, as explained above, the equality constraints necessary to reestab-
lish coherence in the transition between sectors i − 1 and i and between sectors i and

L. Bartali et al.

i + 1. Hereafter, for concision, these constraints will be simply referred to as consensus
constraints. Note, however, that the optimal values of consensus variables zi and zi−1 are
not known in advance.3 Therefore a mechanism to make them progress toward the unknown
optimal transition points should be devised.

3.3 A consensus-based ADMM parallel approach

With reference to [23], to solve in parallel problems of the form (10a)–(10e), one clever
mechanism is provided by the alternating direction method of multipliers algorithm. It is
worth remarking that the method presented hereafter is our original adaptation of the classi-
cal algorithm found in [23].

At a generic kth iteration of the ADMM algorithm, the following augmented Lagrangian
is introduced for the ith sector:

Li(x̂i;zk
i−1,z

k
i ;yk

i,t ,y
k
i−1,h) = fi(x̂i) + φ(xi,t ,xi,h,z

k
i−1,z

k
i ;yk

i,t ,y
k
i−1,h), (11)

where we defined the auxiliary function φ(·) as follows:

φ(·) = ykT
i,t (xi,t − zk

i) + ρk
i,t

2
‖xi,t − zk

i ‖2
2 + ykT

i−1,h(xi,h − zk
i−1) + ρk

i,h

2
‖xi,h − zk

i−1‖2
2.

(12)

The vectors yk
i,t , yk

i−1,h are the dual variables (multipliers), and ρk
i,t , ρ

k
i,h > 0 are penalty

parameters. This new cost is composed by the partial cost fi(x̂i), and the term φ(·) that
penalizes the mismatch at the boundaries of sector i, i.e., between xi,t and zk

i and between
xi,h and zk

i−1, via an augmented Lagrangian strategy.
One ADMM iteration is composed by three fundamental steps. As the first step, the

following problem is solved:

x̂
k+1
i = argmin

x̂i

Li(x̂i;zk
i−1,z

k
i ;yk

i,t ,y
k
i−1,h), (13a)

s.t. g(x̂i) = 0, (13b)

h(x̂i) ≤ 0. (13c)

Let us denote by �Gk
i (zi) = �Lk

i (zi) + �Lk
i+1(zi) the sum of those cost functions where the

ith consensus variable zi comes into play. The notation � implies that the evaluation of
the function Gk

i (zi) takes place using quantities at the kth ADMM iteration except for the
argument x̂

k
i , which is replaced with its best update x̂

k+1
i , computed from (13a)–(13c). Then,

as the second step of the ADMM procedure, the best a posteriori update for the consensus
zk+1

i is computed as follows:

zk+1
i = argmin

zi

�Gk
i (zi). (14)

An analytical solution for (14) can be derived, which defines the following simple update
rule:

zk+1
i =

(
ρk

i,tx
k+1
i,t + ρk

i+1,hx
k+1
i+1,h

) + (
yk

i,t + yk
i,h

)

ρk
i,t + ρk

i+1,h

. (15)

3Moreover, known and constant values for zi and zi−1 are required when dealing with problem (10a)–(10e).
This ensures that all sub-problems can be solved independently and in parallel.

A consensus-based ADMM approach

Fig. 3 Block-diagram representation of our ADMM approach tailored to the solution of MLTPs. From left to
right the three ADMM steps described in Eqs. (13a)–(13c), (14), and (16a)–(16b) are illustrated. From top to
bottom it is possible to see how the consensus variables and multipliers are shared between adjacent sectors
and how they interact with each other in the unfolding computations (Color figure online)

As the third and last step of the ADMM procedure, the update of the dual variables is
performed following an integral law as follows:

yk+1
i,h = yk

i,h + ρk
i+1,h(x

k+1
i+1,h − zk+1

i), (16a)

yk+1
i,t = yk

i,t + ρk
i,t (x

k+1
i,t − zk+1

i). (16b)

Hence it is worth underlining that the ADMM algorithm consists of the steps described
in Eqs. (13a)–(13c), (15), and (16a)–(16b). The algorithm proceeds until certain conver-
gence criteria are met. In particular, in Sect. 3.4 a stopping criterion for ADMM algorithm
is explained. A general idea of the flow of information involved in the update steps in
Eq. (16a)–(16b) can be elicited from Fig. 3.

L. Bartali et al.

3.4 Proposed stopping criterion

Necessary and sufficient optimality conditions for the ADMM problem are presented by
Boyd et al. [23], along with a reasonable termination criterion to determine ADMM conver-
gence. Their criterion has been widely used and tested in the literature; see, e.g., [27, 31], or
[39].

Here, inspired by their approach, we propose an adaptation, which is more practical in
the context of MLTP solutions.

The convergence of ADMM is characterized in terms of the residuals

rk
i,h = xk

i,h − zk
i−1, rk

i,t = xk
i,t − zk

i , dk
i = zk+1

i − zk
i , (17)

where rk
i,h and rk

i,t are the head and tail primal residual, respectively, and dk
i is the dual

residual. It is worth pointing out a peculiarity of the first step of the proposed formulation.
In the original formulation proposed by Boyd et al. [23], the constraints (13b) and (13c) are
restricted to be only linear equality constraints. They are treated with a penalty approach,
incorporating them into the cost function. Then each of them comes to play a role when
computing the primal residual. However, in our present study, we take a distinct approach.
In fact, since constraints (13b) and (13c) are nonlinear and lack a direct dependence on the
consensus variables, these are fulfilled at each iteration of the ADMM algorithm by separate
interior-point solver (IPOPT) instances that solve problems (13a)–(13c) (in parallel). As a
consequence, the primal residuals are computed only as the error between the states xk

i,h

and xk
i,t , which always comply with constraints (13b) and (13c) and their corresponding

consensus variables zk
i−1 and zk

i .
As discussed in [23], a reasonable termination criterion is that the primal and dual resid-

uals must be small. Considering that in our problem states, controls, and algebraic parame-
ters have precise physical meanings for the vehicle engineer, it makes more sense to declare
ADMM convergence when the following inequalities hold for each sector:

|rk
i,h| ≤ εr , |rk

i,t | ≤ εr , |dk
i | ≤ εd , (18)

where εr and εd are the vectors of tolerance values (possibly with different components),
and | · | returns a vector with the absolute values of each component of the original entry; εr

is defined as the primal residual tolerance, and εd as the dual residual tolerance. This allows
a finer grain treatment of the convergence for all state, control, and algebraic variables.

4 Optimal control problem formulation

In this section, we outline the key aspects of the minimum lap-time problem formulation,
including (i) the components of the cost function, (ii) the structure of the inequality, equality,
and terminal constraints, and (iii) the initial guess and variable scaling. These considerations
are essential for achieving a practical and efficient solution.

4.1 States, controls, and algebraic variables

With reference to the model illustrated in Sect. 2, the states, controls, and algebraic param-
eters of the dynamic model are related to the vectors of variables introduced in Sect. 3 as
follows:

s = [q1, q2, q3, q4, q5, q6, q̇1, q̇2, q̇3, q̇4, q̇5, q̇6] ∈ R
12, (19)

A consensus-based ADMM approach

u = [fxa, fxb, δ] ∈ R
3, (20)

w = [f11z , f12z , f21z , f22z , f
3
3x

, f 3
3y

,m3
3z

] ∈R
7. (21)

It is important to highlight that our MLTP is formulated in the spatial domain using the
track coordinate q1 (defined in Sect. 2) as the independent variable, as thoroughly described
in our previous work [49]. Therefore the vehicle position q2 and orientation q3 (along with
the motions q4, q5, and q6 of bounce, pitch, and roll) with respect to the track reference frame
should depend on the track coordinate q1, highlighted in Fig. 1. To reconcile the differential
equations obtained through the ABA algorithm, which naturally depend on time t as the
independent variable, we need to translate the equations as functions of the independent
track coordinate. The spatial formulation of dynamics can be easily recovered by computing
s,q1 = ds/dq1 as follows:

s,q1(q1) = ṡ/q̇1 = F(s(q1),u(q1),w(q1))/q̇1, (22)

where F(·) is the dynamic vector field defined in Eq. (1), in which the reconstruction equa-
tions q̇ = qv are pieced together with the accelerations q̇v obtained through the articulated
body algorithm. The explicit dependence on the variable q1 instead of time t is remarked.

4.2 OCP discretization via direct collocation

The generic OCP written for the ith sector is discretized following a direct collocation
strategy, as described in [3]. Its peculiarity is that the original OCP is transformed into a
large (but sparse) nonlinear program (NLP).

We now focus on the structure of the ith subproblem (corresponding to the ith sector of
the track). First, an equally spaced grid of track coordinates (ni mesh intervals) is sampled
such that, within sector i, q1j

= jhq (j = 0, . . . , ni) with hq = (q1ni
− q10)/ni , and q10 and

q1ni
are the starting and final values, respectively. However, according to the definitions in

Sect. 3.1, the discretized augmented states x̂i include extended head and tails instances,
which serve the purpose of easing convergence offering to the ith problem a landscape
beyond its boundaries. Therefore we have x̂i = {x̂i,j |j = −e, . . . , ni + e}, where x̂i (q1j

) =
x̂i,j is the discretized set of the optimization variables associated with the j th node. In
agreement with the dimension of controls, states, and algebraic vectors stemming from the
dynamic model in Sect. 2, each x̂i,j ∈R

22.
The first step in (13a)–(13c) of the ADMM, at its kth iteration, can now be reshaped as

x̂
k+1
i = argmin

x̂i

⎡

⎣φ(xi,t ,xi,h,z
k
i−1,z

k
i ;yk

i,t ,y
k
i−1,h) +

ni−1+e∑

j=−e

fi,j (x̂i,j , x̂i,j+1, v̂i,j)

⎤

⎦ (23a)

s.t. . . .

g(x̂i,j , x̂i,j+1, v̂i,j) = 0, (23b)

h(x̂i,j , x̂i,j+1, v̂i,j) ≤ 0. (23c)

. . .

It is worth noting that, as usual, a set of d collocation points q1j,m
(m = 1, . . . , d) can be

chosen in each interval [q1j
;q1j+1], allowing for a d th-degree polynomial representation of

L. Bartali et al.

the state trajectory within each j th interval. Therefore the collocation states have dimension
v̂i,j ∈R

22(d+1).
The equality constraints g(·) include the dynamic equations (22) and the path algebraic

equations (here omitted for brevity) involving variables w and u. It is worth noting that this
set of constraints contains also the complementary constraint fxafxb = 0, which prevents
the traction and braking forces from acting simultaneously.

The inequalities h(·) ≤ 0 (23c) involve all path constraints limiting states, controls, and
algebraic parameters. Power limits, adherence constraints, and bounds on the lateral dis-
placement q2, necessary to remain within track bounds, are all included in this form. Finally,
the cost function is approximated in each interval by a quadrature formula. The typical stage
cost fi,j (·) for the ith sector takes the form

fi,j = (hq/q̇1i,j
)2 + Kδ(δi,j+1 − δi,j)

2, (24)

where the first term penalizes lap time, and the second terms prevents abrupt variations of
the steering angle weighted by the coefficient Kδ . It is worth noting that comparing (11)
with (23a)–(23c), fi(·) is simply

∑
fi,j (j = −e, . . . , ni − 1 + e).

4.3 Choice of the ADMM parameters

We shift now our attention to the calibration of the ADMM parameters, whose choice plays
an important role on the convergence performance. The parameters are (i) the number of
subproblems Np in which the original MLTP problem is divided, (ii) the number of dis-
cretization intervals ni in each sector, (iii) the length of the overlapping areas measured by
the number of samples o (see Sect. 3), (iv) the lengths of the extended head and the extended
tail measured by the number of samples e, (v) the penalty parameters ρi,t and ρi,h for the
head and tail of sector i, and (vi) the tolerance vectors εr and εd .

4.3.1 Number of subproblems Np

It is useful to highlight that in the MLTP framework, when the optimization of a single lap
of a given track is considered, the number of subproblems Np corresponds to the number of
sectors Ns in which the track is divided, i.e., Np = Ns . Instead, when considering multiple
laps Nlap, the subproblems are Np = NsNlap. The sectors may or may not be of the same
length, depending on the user settings. For of simplicity, in this paper, we divide the track
into sectors of equal length.

A small value of Np is the obvious choice when performing the computations on a laptop
with a low CPU core count. This results in high-dimensional NLP subproblems (13a)–(13c),
which can be slow to solve. On the other hand, a small value of Np generally requires few
ADMM iterations to converge since consensus among a small number of interfaces (i.e.,
few sectors) is more likely to be achieved (see conditions in (18)). On the contrary, a high
value of Np is the obvious choice on a cluster with many CPU cores since this allows us to
drastically cut the size of the NLP subproblems (13a)–(13c), thus promoting their fast con-
vergence. However, the introduction of many consensus variables may require many ADMM
iterations for convergence (18). Therefore, as it is clear from the results discussed in Sect. 5,
the optimal trade-off is to be decided on a case-by-case basis. When the dimensionality of
a problem makes it difficult to solve as a whole, splitting it into smaller parts becomes the
only viable solution.

A consensus-based ADMM approach

4.3.2 Discretization intervals ni , length of overlapping areas o, and length of
extended head/tail e

The proposed algorithm has three setup parameters, ni , o, and e. In our approach, a uniform
value of ni is set for all subproblems. To determine the appropriate value of ni for a given
track, a convergence analysis of the optimal time is performed through a serial solution.

The value of o, which indicates the number of points in the mesh grid to be considered
for coherence between sectors, is set to 1 to ensure fast convergence while maintaining
continuity. The positions of overlapping areas along the track depends on Np and ni . In
practice, they should be located at key points for better convergence properties, for example,
in the straights. Future work should investigate the optimal location for the overlapping
areas to ensure sector coherence where vehicle dynamics are smoother, as this can improve
ADMM convergence. It is worth noting that we did not implement any specific strategy
for the location of overlapping areas to test the robustness of our framework. This aspect
remains open for future investigation.

Our work also makes an original contribution through the incorporation of extended
heads and tails of length e in the algorithm. This parameter does not appear in classical
ADMM algorithms [23], but its presence in our work is motivated by a speed up in the
convergence process. By incorporating segments of variables that extend into neighboring
sectors can aid in promoting agreement among independent solutions that arise from adja-
cent sectors right from the first ADMM iteration. The key observation is that, considering
neighboring solutions of sectors i and i + 1, if the extended tail xi,T and head xi+1,H extend
sufficiently beyond the overlapping areas xi,t and xi+1,h, then at the solution they will be
near to the (unique) global optimum and hence already close to each other. Therefore the
two consecutive subproblems i and i + 1 will quickly reach consensus at their interface.
However, a good compromise between the length o of the overlapping areas and the sub-
problem extremities e is necessary for fast convergence. Choosing a small value of e may
not ensure this distance, whereas an excessive value may increase the problem dimension
and computational time unnecessarily.

4.3.3 Update rules for the adaptive penalty parameters ρi,t and ρi,h

Nonconstant penalty parameters and adaptive laws to update them are already available in
the literature [23, 31, 33]. In the present work, due to the particular structure of the connec-
tion graph between subproblems, two distinct values ρi,t and ρi,h have been introduced in
(12) with the goal of improving convergence in practice. Their update strategy is reminiscent
of that proposed in [23], and for the ith subproblem, we pose

ρk+1
i,j =

⎧
⎪⎨

⎪⎩

τρk
i,j if ‖rk

i,j‖2 > μ‖dk
i ‖2,

ρk
i,j /τ if ‖dk

i ‖2 > μ‖rk
i,j‖2,

ρk
i,j otherwise,

(25)

where μ > 1 and τ > 1 are parameters, and j = {t, h} corresponds to the tail or head penalty,
respectively. Here we set μ = 10 and τ = 2. This approach guarantees that the primal and
dual norms are kept within a factor of μ of one another while they converge to zero.

Finally, the tolerance vectors εr and εd have been assigned for each optimization variable
based on sensible engineering accuracy.

L. Bartali et al.

4.4 Warm start & scaling

The success of the ADMM algorithm is closely tied to the convergence of each subproblem
during the kth iteration, as missing even one of these convergences can cause the algorithm
to fail. Therefore it is crucial to properly “warm start” the ADMM. In this work, this is
achieved through a homotopy approach [50]. The key idea of this method is to set up a se-
quence of optimal control problems that are easier to solve, gradually transforming them into
the original problem until the original NLP is solved. In this process the previous solution
provides a “warm start” to initialize the subsequent problem. Note that while the homotopy
technique increases robustness, it also increases the computational time required to obtain
the optimal solution. In this work, we perform three homotopy iterations before starting the
ADMM. It is worth noting that the homotopy technique has not been employed to warm start
the serial solution, as our numerical tests revealed that this was not necessary. Including it
anyway would have added unnecessary ballast to the serial solution and lead to an unfair
comparison with the parallel (ADMM) solution.

As said, before starting the actual ADMM iterations, three homotopy steps are performed
where the Lagrangian function Lk

i (·) of the ith subproblem in Eq. (11) is substituted with

f̃i(x̂i) = λfi(x̂i) + (1 − λ)Ji(x̂i), (26)

where Ji(x̂i) = (v3
3x

− v̄3
3x

)2 +q2
2 . According to the model notation (see Sect. 2), minimizing

cost function Ji(·) would lead to a solution where the vehicle has to maintain a constant
speed, v̄3

3x
while progressing along the track centerline. The scalar parameter λ ∈ [0,1] is

such that when λ = 0, Eq. (26) defines the artificial problem whose solution is easy to obtain,
whereas λ = 1 is associated with the original cost function. It is worth remarking that while
performing these iterations, the term φ(·) defined in (12) related to the consensus constraints
in (11) is removed, whereas φ(·) is reintroduced coherently from the first ADMM iteration
onward.

Another variation with respect to problem (13a)–(13c) is that also the complementary
constraint is relaxed through a tolerance εab ≥ 0 such that −εab ≤ fxafxb ≤ εab . Therefore
our three homotopy iterations start with λ = 0 and εab > 0 and end with λ = 1 and εab = 0.

In line with the strategy adopted for the serial problem, during the first homotopy it-
eration, the provided initial guess assumes a constant speed of the vehicle along the track
centerline. The guess for the remaining optimization variables (controls and algebraic vari-
ables) are estimated via inverse dynamics. The final solutions, obtained after this preliminary
process, are used to initialize the first ADMM iteration. In this way, a very robust warm start
is provided.

To conclude, it is worth mentioning that also scaling is crucial for avoiding numerical
issues and improving the convergence rate in NLPs as they contain states, controls, and
algebraic variables with different ranges. Therefore a normalization is performed on all dis-
cretization points using the corresponding expected maximum values, resulting in the scaled
variables falling within the range [−1,1].

5 Results

The proposed consensus-based ADMM algorithm is validated and put on a test on the Nur-
burgring race track, which is one of the longest and most famous circuits in the motor-
sport context. In particular, the MLTP is solved for the Nordschleife version of Nurburgring,
whose length is � 21 km.

A consensus-based ADMM approach

The optimal solution of the MLTP is obtained and discussed for a formula SAE vehicle.
The choice was driven by the availability, for this setup, of accurate model parameters. For
more detail on vehicle parameters, omitted here for brevity, we refer the interested reader to
our previous work [42].

The ADMM algorithm is first validated against the serial solution on one lap of Nord-
schleife. In the serial solution the problem is solved as a single problem and is considered
here as the ground-truth solution since its reliability has already been shown in [42].

Then, to evaluate the performance of the ADMM approach in solving high-dimensional
optimization problems, a series of multilap problems are formulated and solved. The aim
of these problems is to investigate whether the ADMM approach offers a more efficient
solution when faced with a significant increase in problem dimensionality compared to the
traditional serial approach.

Finally, a single lap is solved multiple times with different ADMM settings to investigate
its performances when the number of subproblems Np is increased but the size of the overall
problem is not excessively large.

The validation process is performed on a laptop with 2.30 GHz (boosted at 4.5 GHz)
Intel(R) Core(TM) i7-10875H CPU and 32 GB RAM representative of a standard portable
personal computer. Instead, the multilap problems are solved, and the lap splitting is ana-
lyzed on a cluster workstation equipped with four sockets containing an Intel(R) Xeon(R)
Platinum 8260L CPU @ 2.40 GHz (boosted at 3.4 GHz) each, and 3.70 TB RAM made
available by the Sistema Informatico Dipartimentale (SID) of the Università di Pisa. The
latter has overall 96 CPU cores and was chosen as the ideal platform for exploiting dis-
tributed computations. Hereafter, for concision, we refer to the above hardware settings as
laptop and cluster, respectively.

The optimal control problems are coded in a scripting environment using the MATLAB
interface to the open-source CasADi framework [51], which provides building blocks to
efficiently formulate and solve large-scale optimization problems. To solve each NLP in
(13a)–(13c), the IPOPT [21] solver is used.

5.1 Validation of the ADMM approach

5.1.1 Mesh size calibration

The validation process begins with a convergence analysis necessary to accurately deter-
mine the appropriate mesh size in the discretization of the track. This is accomplished by
solving the MLTP on Nordschleife as a single problem while gradually increasing the num-
ber of mesh intervals. According to the ADMM notation, this involves setting Np = 1 and
increasing the number of discretization points n1. The results of this analysis, which was
conducted on the laptop configuration, are presented in Table 1.

During the analysis, various key performance indicators (KPIs) are monitored as n1 is
increased. These include (i) the optimal time topt, required for the vehicle to complete one
lap, (ii) the computational time Ts, required by IPOPT to solve the problem, (iii) the number
Iter of IPOPT iterations to convergence, (iv) the average amount of seconds per iteration
s/Iter, which gives an insight on the speed of the solution process, and (v) the total number
of NLP variables, which is given by Nvar = n1(ns(d + 1) + nu + nz) + ns and is helpful in
tracking the problem dimension.

Table 1 shows how the optimal time topt, along with other KPIs, varies as a function
of the size of the mesh. The best compromise between the speed of the solution process,
measured by s/Iter, and its quality, measured by topt, is given by setting n1 = 1500. This

L. Bartali et al.

Table 1 Convergence analysis with respect to the overall number n1 of discretization intervals on a single
lap of the Nordschleife circuit, solved as a single (serial) problem. Hardware configuration: laptop. Whereas
the optimal time topt does not change significantly while increasing n1, the computational time Ts and the
number of iterations vary substantially. The mesh n1 = 1500 is the best compromise between the speed of
the solution process, measured by s/Iter, and its quality, measured by topt. This value is therefore chosen to
perform the subsequent comparisons between the serial and ADMM solutions

n1 topt(s) Ts(s) Iter s/Iter Nvar

1000 518.1 287.7 71 4.05 46012

1500 517.7 516.1 85 6.07 69012

2000 517.7 671.6 84 8.0 92012

2500 517.7 584.4 57 10.3 115012

3000 517.6 542.6 45 12.1 138012

3500 517.6 719.2 51 14.1 161012

4000 517.6 852.3 52 16.4 184012

will be fixed in all the tests performed hereafter for the validation and testing of ADMM on
the Nordschleife track. This choice does not trade accuracy for efficiency, like n1 = 1000,
for which an error in topt of 0.5 s (518.1 vs 517.6 s) may not be acceptable. On the other end,
it would require to select n1 = 3000, thereby almost doubling the number of variables Nvar

(from 69012 to 138012) and almost doubling s/Iter (from 6.07 to 12.1), to improve by only
0.1 s (0.02%) the value of topt. With the chosen value n1 = 1500, the mesh size corresponds
to one discretization point every 14 meters along the track.

5.1.2 ADMM parameters employed

Turning our attention to the setup of the ADMM parameters, the optimal settings for the
Nordschleife track have been determined through numerical tests by the authors. These
settings consist of Np = 4, the number of sector elements ni coherent with the selected
mesh for the track, and e = 40 points, so that both xi,H and xi,T span approximately
560 meters beyond the consensus interface. The distance pertaining to each ith subprob-
lem and corresponding to the variable x̂i is computed by dividing the track length by Np

and adding the extended head and tail lengths. These internal sectors corresponding to x̂i

(i = 2, . . . ,Np − 1) have an optimized distance of approximately 6300 meters. Instead, the
first (i = 1) and last (i = Np) subproblems, which have only either an extended tail or an
extended head, respectively, present an optimized distance of approximately 5750 meters.

5.1.3 Discussion of the validation process

Using the above-discussed setup parameters, the ADMM results are presented in a concise
format in Table 2. This table encompasses the KPIs that pertain specifically to the parallel
approach. These comprise (i) the optimal time topt, required for the vehicle to complete one
lap, (ii) the computational time TADMM, required to execute the ADMM iterations, (iii) the
homotopy time Th, i.e., the time spent in performing the three homotopy iterations necessary
to warm start the problem, (iv) the total computational time Tp of the parallel approach, with
Tp = Th + TADMM, (v) the number of iterations of the ADMM algorithm, denoted as Iter (or
k), (vi) the average amount of seconds per ADMM iteration s/Iter, computed as TADMM/k,
and (vii) the total number of NLP variables Nvar, given by

∑Np

i=1 Nvar,i . Here the number of

A consensus-based ADMM approach

Table 2 Numerical results obtained through the ADMM algorithm for an overall number of discretization
intervals n1 = 1500. Hardware configuration: laptop. The overall computational time Tp for the parallel
approach encompasses the homotopy time Th and the ADMM time TADMM, i.e., Tp = Th + TADMM. Al-
though the ADMM algorithm is very efficient, requiring only three iterations k = 3, the overhead of a warm
start process via homotopy causes the parallel approach to be slower than the serial approach

Np topt(s) TADMM(s) Th(s) Tp(s) Iter (k) s/Iter Nvar

4 517.7 357.8 224 581.8 3 119.3 80088

variables of the ith subproblem is computed as Nvar,i = (ni +nee)(ns(d +1)+nu +nz)+ns ,
where ne = 2 (i = 2, . . . ,Np − 1), and ne = 1 (for i = 1 and i = Np , i.e., the first and last
subproblems), which have only either an extended tail or an extended head, respectively.

Upon comparing Table 2 with the second row of Table 1, two key observations are in
order. The first one is that for the same overall track discretization points, the optimal laptime
value topt provided by the ADMM algorithm and the serial solution are exactly the same, i.e.,
topt = 517.7 s. This indeed validates the ADMM algorithm against the classical solution. The
second observation is that the parallel approach requires a computational time Tp = 581.8 s
(see the 5th column of Table 2), larger than Ts = 516.1 s required by the serial solution.

The latter result can be attributed mainly to three different factors: (i) In the first place,
the homotopy approach, used to warm start the ADMM algorithm, but absent in the serial
solution, increases the total computational time Tp since Tp = TADMM + Th; however, this
is inevitable at this stage to ensure that a fair comparison is performed between two equally
robust approaches to the solution; (ii) The laptop configuration employed in the validation
process may not be very efficient in managing parallel computations due to its hardware
architecture, thereby favoring the serial computation at the expense of the solution of the
ADMM; note in support of this particular reason that when the cluster configuration is
employed, the situation is reversed (see results in Table 3 and the corresponding discussion
in Sect. 5.2); (iii) The NLP dimension considered for the validation (Nvar = 69012 for the
serial case; see Table 1) is not large enough to cause the serial approach either to max out
the computational resources of the laptop configuration or to fail completely.

As said, there is no way out for the additional computational burden due to point (i), since
the homotopy approach is required to increase ADMM robustness. However, to demonstrate
the computational advantages of the parallel approach when run on an appropriate hard-
ware configuration, issues raised in points (ii) and (iii) will be explored in greater detail in
Sects. 5.2 and 5.3. In particular, in Sect. 5.2, the NLP dimension is increased by optimizing
on multilap horizon, whereas the parallel and serial optimizations are both performed using
the cluster configuration.

To demonstrate the consistency of the solutions provided by the serial and parallel so-
lutions in the validation case, in addition to obtaining the same optimal lap time topt, a
compelling comparison is reported in Figs. 4 and 5. Specifically, Fig. 4 depicts the optimal
longitudinal speed profiles of the vehicle for the serial and ADMM solutions. Here the red
curve represents the serial solution, whereas the marker-style thick lines (in the background)
refer to the ADMM solution. The different colors refer to the distributed solutions computed
in parallel for the Np = 4 sectors. It is worth noting that the solutions correctly match at the
interfaces where both the primal and dual residual vectors rk

i,h, rk
i,t , and dk

i satisfy conditions
(18).

In Fig. 4, also a scaled version of the profile of the longitudinal speed error evx between
serial and ADMM solutions is visible. The small ripples at the interfaces, with max value in
the order of 5 mm/s, foster the statement of a perfect agreement, from a practical standpoint,

L. Bartali et al.

Fig. 4 [Upper panel] Comparison of optimal speed profiles computed as the serial solution (thin red line) and
parallel (ADMM) solution (marker-style thick lines). Hardware configuration: laptop. Different colors refer
to different sectors computed in parallel in the ADMM setting. The additional vertical dashed lines mark
the interfaces between adjacent sectors. [Lower panel] The error profile evx , computed as the difference of
the serial and ADMM solutions (thin orange line), even considering the small ripples at the interfaces (with
negligible max value in the order of 5 mm/s), demonstrates a perfect agreement between the two solutions
everywhere (Color figure online)

Fig. 5 Optimal trajectory comparison of serial solution (red) and parallel solution (blue). The trajectories
are perfectly overlapped, underling the equivalence of the two solutions (Color figure online)

between the two solutions everywhere. It is worth noting, in passing, that the range in which
the speed error exponentially vanished may hold significant implications. These intervals

A consensus-based ADMM approach

Table 3 Results for MLTPs on multilap scenarios for both serial and ADMM approaches. Hardware con-
figuration: cluster. The hardware architecture allows the ADMM algorithm to be more efficient with respect
to the serial approach already on Nlap = 1 lap. As the number of laps Nlap increases and, as a result, the
problem size Nvar grows, the ADMM algorithm outperforms the serial one and represents the sole feasible
option to maintain computational times within acceptable bounds

Nlap Serial ADMM

topt (s) Ts (s) Iter Nvar topt (s) Tp (s) Np Iter (k) Nvar

1 517.7 633.8 85 69012 517.7 567.1 4 3 80088

2 1034 1620 111 138012 1034 612.3 8 3 163856

3 1550 2232 94 207012 1550 624.3 12 3 247624

4 2067 2710 95 276012 2067 656.9 16 3 331392

8 4132 5308 92 552012 4132 738.2 32 3 666464

16 8262 47640 397 1104012 8262 926 64 3 1336608

may represent a form of extinction lengths, which indicate how deeply perturbations at the
sector’s boundary affect the solution inward the sector. Note that neither the error entity nor
the length remains constant across different interfaces, as the local curvature, inclination,
and banking of the track at the boundaries may have a notable influence. Consequently,
additional research is required in the future to fully elucidate the true significance of this
phenomenon.

Additionally, Fig. 5 provides a qualitative comparison of the optimal trajectories for a
particular track sector of the Nurburgring circuit, underscoring again the equivalence of the
two solutions.

As a result, the suggested findings serve to verify the efficacy of the ADMM algorithm
in providing an identical solution to that of a traditional serial approach.

5.2 Comparison of ADMM and serial solutions in multilap scenarios

In this section, we set out to quantitatively verify whether the ADMM-based approach de-
livers on the promises of increased efficiency when faced with solving problems of very
large dimensions. To this sake, starting from the usual horizon of one lap (Nlap = 1), a series
of multilap problems (Nlap = 2,3,4,8,16) are formulated and solved either in a serial or
parallel fashion via the ADMM approach.

With reference to Sect. 4.3, in the ADMM framework, each lap is divided into Ns = 4
sectors, the number of sector elements ni is coherent with the selected mesh for the
track, and e = 40 points, so that both xi,H and xi,T span approximately 560 meters.
With reference to Table 3, the number of ADMM subproblems is Np = NsNlap, so that
Np = 4,8,12,16,32,64.

Table 3 shows the results of the tests run on the cluster configuration for both serial and
ADMM approaches. The first row corresponds to a single-lap MLTP (Nlap = 1), whereas
rows 2–6 correspond to multilap MLTP problems (Nlap = 2,3,4,8,16). The optimal solu-
tions obtained from both methods are consistent, as seen from the corresponding (minimum-
time) topt columns. Even for a single-lap problem, when multicore CPU architectures are
employed, the ADMM approach beats the serial one already for Nlap = 1 with Tp = 567.1 s
vs Ts = 633.8 s.

Furthermore, it is apparent that as the number of laps increases, the ADMM outperforms
the serial approach significantly. Comparing the Ts and Tp columns, Ts increases almost

L. Bartali et al.

Table 4 The table shows the results for the lap-splitting analysis. Here the planning horizon is fixed to Nlap =
1 lap, and the number of subproblems Np is increased. Hardware configuration: cluster. A high value of Np

leads to a rise in the number of iterations k to convergence while the computational time required for each
ADMM iteration, encoded in s/Iter, decreases

Np topt (s) TADMM (s) Th (s) Tp (s) Iter (k) s/Iter Nvar

2 517.7 1618 317 1935 4 404.5 71048

4 517.7 2158 197 2355 13 166 75120

8 517.7 2218 437 2655 17 130.5 83126

16 517.7 1968 178 2146 28 70.3 99736

32 517.7 2684 109 2793 53 50.6 132312

linearly with Nlap until Nlap = 8, peaking for Nlap = 16 (i.e., Nvar = 1104012 variables),
when a huge Ts � 13 h and 14 min is registered. In contrast, Tp remains almost constant
with increasing Nlap until Nlap = 8, with a slight increase for Nlap = 16, where Tp � 15
min, which still denotes a remarkable performance. This problem contains Nvar = 1336608
variables. The increase of Tp as Nlap increases, which is not theoretically expected due to
the availability of a large number of CPU cores, is mostly due to inter-CPU communication
overheads and is unavoidable. However, the key takeaway is that for large-scale problems
(over 1 million variables), which could also be the result of planning on shorter horizons but
with larger dynamic models, the proposed distributed approach is the only viable solution
to keep computational times within acceptable limits.

5.3 Testing ADMM performances for Nlap = 1 with varying Np

In this section, we set out to evaluate the performance of ADMM by increasing the number
of subproblems while the optimization horizon is kept constant. For this purpose, we select a
fixed optimization horizon of one lap (Nlap = 1) and solve the associated MLTP by dividing
the track into Np = 2,4,8,16,32 sectors. By doing so we can analyze the effect of increas-
ing the number of subproblems on ADMM performance without changing the optimization
horizon on a small-scale problem.

For these test cases, the number of sector elements ni is coherent with the selected
mesh for the track, i.e., one discretization point every 14 meters (similarly to the choice
in Sect. 5.1.1). The length of the extended tail and head is the same for each test case,
and it is set according to the length of the shortest subproblem. For example, considering
that for Np = 32, the distance pertaining to the ith subproblem (corresponding to variable
x̌i) is approximately 647 meters, we set e = 22. Hence both xi,H and xi,T span approxi-
mately 305 meters. With these settings, the length of the internal sectors corresponding to
x̂i (i = 2, . . . ,Np − 1) have an optimization distance of approximately 11000 meters when
Np = 2 and of 1260 meters when Np = 32. It is worth remarking that the optimization
distance for the other cases (i.e., Np = 4,8,16) assumes intermediate values in that range.

Table 4 presents the results of the lap-splitting analysis in a condensed format. From the
table four key aspects of the parallel approach are apparent. The first one is highlighted in
the 2nd row, where Np = 4. A comparison of this row with the ADMM outcome in the 1st
row of Table 3 reveals the impact of the parameter e. Reducing the length of the extended
tail and head by half causes a four-fold increase in both the computational time Tp and the
number of iterations k. This finding suggests that the chosen value of e may not provide
a sufficient distance beyond the overlapping area to ensure a quick consensus convergence
(refer to Sect. 4.3.2).

A consensus-based ADMM approach

Fig. 6 An highlight on ADMM convergence process for optimal trajectory when Np = 4 (Color figure on-
line)

In Fig. 6 a pictorial representation of the convergence process with Np = 4 is shown.
For clarity, the extended tail and head have been trimmed in the plots. With reference to
Figs. 6a, 6b, 6c, and 6d, we can observe that the most significant changes in trajectory
occur during the initial four iterations. From a careful observation we can note that the
extended head traj2,H is displaced from the right of traj1 (at k = 1, Fig. 6a) to its left (at
k = 4, Fig. 6d). Then the variations in the shape of the trajectories are reduced gradually,
as evident from the sequence of Figs. 6e–6i for k = 8, . . . ,13. During this phase, ADMM
addresses the strict constraints on the primal and dual residuals, leading the consensus to its
optimal configuration.

A second key observation can be elicited from the 6th column of Table 4. Increasing the
number of subproblems leads to an increase in the number of ADMM iterations required for
convergence. This is because a larger value of Np leads to an increased number of consensus
interfaces, which may require more iterations to reach an agreement. This phenomenon can
be attributed to two factors. Firstly, increasing the number of consensus interfaces raises the

L. Bartali et al.

likelihood of them being located in areas with nonsmooth vehicle dynamics, such as the
center of a turn. Secondly, as Np increases, the consensus variables associated with the head
and tail interfaces become closer. Subsequent changes to the consensus variables during
ADMM iterations can significantly impact the optimal solution xi .

The third pretty intuitive aspect is confirmed from the 7th column of Table 4: when paral-
lelization is increased (Np increases), the computational time per iteration s/Iter decreases.
As discussed in Sect. 4.3.1, high values of Np can drastically cut the size of the NLP sub-
problems.

However, a fourth observation is in order: in terms of overall computational time Tp , it
is not always clear which is the most influential factor between the increased numbers of
ADMM iterations (Iter) required to reach consensus and the reduction in the computational
time per iteration (s/Iter) as Np increases. In fact, from the 3rd column in Table 4, in this
particular test case, the ADMM computational time Tp does not show a clear trend as Np

increases. This is observed when comparing the results for Np = 16, for which Tp = 2146
s, with those for Np = 8 and 32, where Tp = 2655 s and Tp = 2793 s are registered, respec-
tively. As a general rule, however, we can state that when the problem dimension is small, as
in the case of Table 4, using ADMM is not necessarily a wise choice, as the serial approach
may be more efficient in providing satisfactory results. Based on our numerical test cases,
the ADMM approach should be devoted either to large- and huge-scale problems or to more
complex models. Specifically, when we mention a more complex model, we are referring
to advanced multibody vehicle models. These models include features like individual wheel
handling, suspension system dynamics, aerodynamic maps, and comprehensive Pacejka or
thermo-mechanical tire models. Additionally, this complexity may extend to cover hybrid
or electric powertrain systems, including considerations for battery dynamics. In those cases
the presented distributed optimization becomes more of a necessity.

6 Conclusions

In this paper, we presented a parallel approach to address minimum-lap-time problems char-
acterized by a number of variables growing at an unprecedented scale. Starting from the
classical serial formulation, in which the resulting NLP is solved as a single problem, we
presented a consensus-based alternating direction method of multipliers (ADMM) approach
to solve MLTPs. It seems the first time that MLTPs involving accurate dynamic models,
from a vehicle engineer’s perspective, are solved in a distributed fashion.

The aim of our work is to demonstrate the convenience and, in some cases, the necessity
of using the parallel approach. To this sake, various tests are presented involving a race-car
on the Nurburgring track taking into account both slope and banking.

First and foremost, the ADMM approach is shown to successfully converge in locat-
ing optimal consensus interfaces and adhering to user-defined tolerances. As a matter of
fact, a comparison between the parallel and serial optimization, employed as the reference
solution, yields identical outcomes. However, although the parallel and serial approaches
achieve the same optimal trajectories, they show a significant difference in their computa-
tional performances.

Based on the validation procedure (Sect. 5.1) and analysis of the multilap scenarios
(Sect. 5.2), two interwoven conditions favor the convenience of the ADMM over the se-
rial approach. The first one, evident from the multilap analysis (see Table 3), is the problem
dimension. For large-scale problems (over 1 million variables), which could also occur when

A consensus-based ADMM approach

dealing with shorter horizons but with larger dynamic models, the proposed distributed ap-
proach outperforms the serial one and allows us to keep computational time within accept-
able limits. The second one is the availability of multicore CPU architectures, in which the
distributed algorithm can be efficiently deployed.

The analysis involving the lap-splitting scenario (Sect. 5.3) brings about the importance
of two parameters that must be carefully addressed when employing the ADMM approach.
These are the number of subproblems Np and the extended horizon beyond the consensus
interface e. A high degree of parallelization, associated with a large value of Np , should
be devoted to both large- and huge- scale problems. Indeed, increasing the number of sub-
problems in other situations may lead to a higher number of ADMM iterations and larger
computational times with respect to a standard serial approach. A special attention should
be reserved also to the preview length associated with e. Reducing the length of the extended
tail or head may drastically increase the parallel algorithm computational time, as clearly
shown when comparing the single-lap results with Np = 4 obtained in Sect. 5.2 with those
in Sect. 5.3.

To sum up, the key finding of this study is that the ADMM is particularly beneficial for
MLTP problems when planning for long horizons or using complex models. In such cases
the ADMM approach with multicore CPU architectures can drastically reduce the computa-
tional time. When pushing the limits to very large- and huge-scale problems, resorting to a
distributed approach like ADMM becomes mandatory. However, a final caveat is in order:
when utilizing the proposed parallel approach, careful attention must be paid to its setup
parameters. Further insights in this direction are left for future work.

Author contributions All authors contributed equally to the manuscript.

Funding Open access funding provided by Università di Pisa within the CRUI-CARE Agreement.

Declarations

Disclosure statement No potential conflict of interest was reported by the authors.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Massaro, M., Limebeer, D.J.N.: Minimum-lap-time optimisation and simulation. Veh. Syst. Dyn. 59(7),
1069–1113 (2021)

2. Massaro, M., Lovato, S., Veneri, M.: An optimal control approach to the computation of g-g diagrams.
Veh. Syst. Dyn., 1–15 (2023)

3. Gabiccini, M., Bartali, L., Guiggiani, M.: Analysis of driving styles of a GP2 car via minimum lap-time
direct trajectory optimization. Multibody Syst. Dyn. 53(1), 85–113 (2021)

4. Christ, F., Wischnewski, A., Heilmeier, A., Lohmann, B.: Time-optimal trajectory planning for a race car
considering variable tyre-road friction coefficients. Veh. Syst. Dyn., 1–25 (2019)

http://creativecommons.org/licenses/by/4.0/

L. Bartali et al.

5. Dal Bianco, N., Bertolazzi, E., Biral, F., Massaro, M.: Comparison of direct and indirect methods for
minimum lap time optimal control problems. Veh. Syst. Dyn. 57(5), 665–696 (2019)

6. Dal Bianco, N., Lot, R., Gadola, M.: Minimum time optimal control simulation of a GP2 race car. Proc.
Inst. Mech. Eng., Part D, J. Automob. Eng. 232(9), 1180–1195 (2018)

7. Lovato, S., Massaro, M.: Three-dimensional fixed-trajectory approaches to the minimum-lap time of
road vehicles. Veh. Syst. Dyn. 60(11), 3650–3667 (2021)

8. Brayshaw, D.L., Harrison, M.F.: A quasi steady state approach to race car lap simulation in order to
understand the effects of racing line and centre of gravity location. Proc. Inst. Mech. Eng., Part D, J.
Automob. Eng. 219(6), 725–739 (2005)

9. Brayshaw, D.L., Harrison, M.F.: Use of numerical optimization to determine the effect of the roll stiff-
ness distribution on race car performance. Proc. Inst. Mech. Eng., Part D, J. Automob. Eng. 219(10),
1141–1151 (2005)

10. Lovato, S., Massaro, M.: A three-dimensional free-trajectory quasi-steady-state optimal-control method
for minimum-lap-time of race vehicles. Veh. Syst. Dyn. 60(5), 1512–1530 (2021)

11. Veneri, M., Massaro, M.: A free-trajectory quasi-steady-state optimal-control method for minimum lap-
time of race vehicles. Veh. Syst. Dyn. 58(6), 933–954 (2020)

12. Lot, R., Dal Bianco, N.: The significance of high-order dynamics in lap time simulations. In: The Dy-
namics of Vehicles on Roads and Tracks – Proceedings of the 24th Symposium of the International
Association for Vehicle System Dynamics, IAVSD 2015, pp. 553–562 (2016)

13. Biniewicz, J., Pyrz, M.: A quasi-steady-state minimum lap time simulation of race motorcycles using
experimental data. Veh. Syst. Dyn., 1–23 (2023)

14. Kelly, D.P., Sharp, R.S.: Time-optimal control of the race car: influence of a thermodynamic tyre model.
Veh. Syst. Dyn. 50(4), 641–662 (2012)

15. Perantoni, G., Limebeer, D.J.N.: Optimal control for a formula one car with variable parameters. Veh.
Syst. Dyn. 52(5), 653–678 (2014)

16. Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced
SQP strategy for large-scale dynamic process optimization. Comput. Chem. Eng. 27(2), 167–174 (2003)

17. Patterson, M.A., Rao, A.V.: GPOPS - II: a MATLAB software for solving multiple-phase optimal con-
trol problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear program-
ming. ACM Trans. Math. Softw. 41(1), 1–37 (2014)

18. Nie, Y., Faqir, O., Kerrigan, E.C.: ICLOCS2: try this optimal control problem solver before you try the
rest. In: 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, Sheffield (2018)

19. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for
nonlinear optimization and optimal control. Math. Program. Comput. 11(1) (2019)

20. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimiza-
tion. SIAM J. Optim. 12(4), 979–1006 (2002)

21. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

22. Kuhlmann, R., Büskens, C.: A primal–dual augmented Lagrangian penalty-interior-point filter line
search algorithm. Math. Methods Oper. Res. (2017)

23. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

24. Braun, P., Grune, L., Kellett, C.M., Weller, S.R., Worthmann, K.: A distributed optimization algorithm
for the predictive control of smart grids. IEEE Trans. Autom. Control 61(12), 3898–3911 (2016)

25. Braun, P., Faulwasser, T., Grüne, L., Kellett, C.M., Weller, S.R., Worthmann, K.: Hierarchical distributed
ADMM for predictive control with applications in power networks. IFAC J. Syst. Control 3, 10–22
(2018)

26. Ling, Q., Ribeiro, A.: Decentralized dynamic optimization through the alternating direction method of
multipliers. IEEE Trans. Signal Process. 62(5), 1185–1197 (2014)

27. Wang, Y., Wu, L., Li, J.: A fully distributed asynchronous approach for multi-area coordinated network-
constrained unit commitment. Optim. Eng. 19(2), 419–452 (2018)

28. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. J.
Sci. Comput. 78(1), 29–63 (2018)

29. Chang, X., Liu, S., Zhao, P., Li, X.: Convergent prediction–correction-based ADMM for multi-block
separable convex programming. J. Comput. Appl. Math. 335, 270–288 (2018)

30. Buccini, A., Dell’Acqua, P., Donatelli, M.: A general framework for ADMM acceleration. Numer. Al-
gorithms 85(3), 829–848 (2019)

31. Ghadimi, E., Teixeira, A., Shames, I., Johansson, M.: Optimal parameter selection for the alternat-
ing direction method of multipliers (ADMM): quadratic problems. IEEE Trans. Autom. Control 60(3),
644–658 (2015)

A consensus-based ADMM approach

32. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods.
SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)

33. Song, C., Yoon, S., Pavlovic, V.: Fast ADMM algorithm for distributed optimization with adaptive
penalty. In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 753–759 (2016)

34. Franca, G., Bento, J.: Distributed optimization, averaging via ADMM, and network topology. Proc. IEEE
108(11), 1939–1952 (2020)

35. Zhang, R., Kwok, J.T.: Asynchronous distributed ADMM for consensus optimization. In: 31st Interna-
tional Conference on Machine Learning, ICML 2014, vol. 5, pp. 3689–3697 (2014)

36. Pei, C., Wan, C., Dai, R., Rea, J.R.: A hybrid ADMM for six-degree-of-freedom entry trajectory opti-
mization based on dual quaternions. IEEE Trans. Aerosp. Electron. Syst., 1–16 (2022)

37. Rastgar, F., Masnavi, H., Shrestha, J., Kruusamae, K., Aabloo, A., Singh, A.K.: GPU accelerated convex
approximations for fast multi-agent trajectory optimization. IEEE Robot. Autom. Lett. 6(2), 3303–3310
(2021)

38. Ni, R., Pan, Z., Gao, X.: Robust multi-robot trajectory optimization using alternating direction method
of multiplier. IEEE Robot. Autom. Lett. 7(3), 5950–5957 (2022)

39. Wang, C., Bingham, J., Tomizuka, M.: Trajectory splitting: a distributed formulation for collision avoid-
ing trajectory optimization. In: IEEE/RSJ Intelligent Robots and Systems (IROS), pp. 8113–8120 (2021)

40. Zhou, Z., Zhao, Y.: Accelerated ADMM based trajectory optimization for legged locomotion with cou-
pled rigid body dynamics. In: American Control Conference, pp. 5082–5089 (2020)

41. Aydinoglu, A., Posa, M.: Real-time multi-contact model predictive control via ADMM. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), Philadelphia, pp. 3414–3421 (2022)

42. Bartali, L., Gabiccini, M., Grabovic, E., Guiggiani, M.: A Lie group-based race car model for systematic
trajectory optimization on 3d tracks (2023). https://arxiv.org/abs/2302.09879. https://doi.org/10.48550/
ARXIV.2302.09879

43. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press,
Boca Raton (1994)

44. Mueller, A., Maisser, P.: A Lie-group formulation of kinematics and dynamics of constrained MBS and
its application to analytical mechanics. Multibody Syst. Dyn. 9(4), 311–352 (2003)

45. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Heidelberg (2007)
46. Pacejka, H.: Tyre and Vehicle Dynamics. Tyre and Vehicle Dynamics. Butterworth-Heinemann, Oxford

(2002)
47. Guiggiani, M.: The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars.

Springer, Berlin (2018)
48. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Ad-

vances in Design and Control. SIAM, Philadelphia (2010)
49. Lot, R., Biral, F.: A curvilinear abscissa approach for the lap time optimization of racing vehicles. IFAC

Proc. Vol. 47(3), 7559–7565 (2014)
50. Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York (2006)
51. Andersson, J.: A general-purpose software framework for dynamic optimization. PhD thesis, Arenberg

Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT-SCD) and Optimization in
Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://arxiv.org/abs/2302.09879
https://doi.org/10.48550/ARXIV.2302.09879
https://doi.org/10.48550/ARXIV.2302.09879

	A consensus-based alternating direction method of multipliers approach to parallelize large-scale minimum-lap-time problems
	Abstract
	Introduction
	Vehicle model
	Track parameterization
	Vehicle parameterization
	Dynamic equations
	Additional algebraic equations

	ADMM approach to the solution of MLTPs
	Partition of the variables in the parallel approach
	A naive parallel approach
	A consensus-based ADMM parallel approach
	Proposed stopping criterion

	Optimal control problem formulation
	States, controls, and algebraic variables
	OCP discretization via direct collocation
	Choice of the ADMM parameters
	Number of subproblems Np
	Discretization intervals ni, length of overlapping areas o, and length of extended head/tail e
	Update rules for the adaptive penalty parameters ρi,t and ρi,h

	Warm start & scaling

	Results
	Validation of the ADMM approach
	Mesh size calibration
	ADMM parameters employed
	Discussion of the validation process

	Comparison of ADMM and serial solutions in multilap scenarios
	Testing ADMM performances for Nlap=1 with varying Np

	Conclusions
	References

