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Abstract
Design and optimization, as well as real time control, of flexure mechanisms require effi-
cient but accurate models. The flexures can be modelled using beam elements and the frame
parts can be modelled using superelements. Such a superelement efficiently models arbi-
trarily shaped bodies by few coordinates, using models obtained by model order reduction.
The interfaces between the frame parts and the flexures often experience considerable de-
formation which affects the stiffness. To define the interface deformation in a reduced order
model, this paper derives a multipoint constraint formulation, which relates the nodes on
the deformable interface surface of a finite element model to a few coordinates. The multi-
point constraints are imposed using a combination of the Lagrange multiplier method and
master–slave elimination for efficient model order reduction. The resulting reduced order
models are used in the generalized-strain multi-node superelement (GMS) that was defined
in (Dwarshuis et al. in Multibody Syst. Dyn. 56(4):367–399, 2022). The interface defor-
mations can be coupled to the cross-sectional deformation of higher order beam elements
(i.e. beam elements of which the deformation of the cross-sections is explicitly taken into
account).

This paper applies this technique to model flexure joints, where the flexures are modelled
with beam elements, and the frame components and critical connections using the GMS.
This approach gives generally over 94% accurate stiffness, compared to nonlinear finite
element models. The errors were often more than 50% lower than errors of models which
only contain beam elements.
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1 Introduction

Design and optimization, as well as real-time high bandwidth control, of flexure mechanisms
require efficient but accurate models. The often long and slender flexures can be modelled
using beam models. Sophisticated beam elements [2, 3] for the modelling of flexures have
been derived and implemented in the generalized strain formulation [4]. The frame parts in
flexure mechanisms, which often have a complex shape, can be modelled efficiently using
superelements. A superelement linearly describes deformation of arbitrarily shaped parts
with only a few coordinates. In [1] a superelement has been formulated in the generalized
strain formulation, referred to as the generalized-strain multi-node superelement (GMS). It
has been applied to model the frame parts of flexure mechanisms, showing efficient mod-
elling with relatively good accuracy. However, the interfaces of the GMS were defined to be
rigid, whereas in reality the interfaces between frame parts and the flexures often experience
considerable deformation. For better accuracy, the deformation of the interfaces of the frame
parts that are modelled using the superelement should be taken into account.

The stiffness and inertia properties of superelements are generally obtained using model
order reduction methods. These methods reduce the number of degrees of freedom in the
finite element model of a component by describing the deformation using a limited num-
ber of deformation modes. Overviews of the different methods can be found in [5–7]. The
surfaces of the component to which other components are connected are called interface
surfaces. The deformation of an interface surface in the finite element model is described
by the displacements of all the nodes on the surface. Most conventional model order reduc-
tion techniques (e.g. the techniques proposed by Hurty [8] and Craig and Bampton [9]) take
all these displacements into account in the reduced model. However, this results in large
reduced order models if there are a lot of nodes on the interface surface.

Interface reduction methods can be used to reduce these models further. They describe
the deformations of the interface surfaces using a limited number of modes. Overviews of
the different methods can be found in [10, 11]. One method is to perform interface reduction
on the assembled reduced model [12]. One disadvantage is that this assembled model may
have many degrees of freedom, such that this reduction can take a lot of computation time.
Moreover, as the reduction is applied after assembly, modifying one of the components
requires recomputing the reduction. One solution is to apply interface reduction on subsets
of the full assembled reduced model [13]. Another solution is to reduce the interfaces of
the individual components before assembly [14], which involves two challenges. First, it
requires reduced order models of the components with a sufficiently accurate description of
the deformation around the interfaces, as, for example, discussed in [15, 16]. Second, the
compatibility between the interfaces of two connected components should be enforced, as,
for example, discussed in [17]. Sometimes the compatibility cannot be simply enforced, for
example, in a dissipative interface [18, 19].

Considering an interface to be completely rigid allows describing the displacement of the
interface by the displacement and rotation of a single master node [20], which is often called
condensation node. The existence of the condensation node in this approach makes the re-
sulting reduced order models suitable for use in multibody analysis (see, e.g. [21]), because
the positions of the condensation nodes of two connected components can be coupled in a
geometrically nonlinear analysis. This approach was also applied in the GMS [1].

The ‘prior basis function method’ [10, 22] extends this method by adding a linear com-
bination of deformation fields to the rigid interfaces in order to describe interface surface
deformation. This approach is used in the current paper. These deformation fields are here-
inafter called interface deformation fields. The generalized coordinates that describe the
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amount of this deformation, together with the six coordinates of the condensation node, are
called the condensation coordinates.

The compatibility between two components can be imposed by choosing the same inter-
face deformation fields for both components and relating the corresponding condensation
coordinates. This approach has been applied on a two-node superelement [23]. However,
apart from in this paper, interface deformation in geometrically nonlinear multibody simu-
lations has rarely been investigated in literature to the best of the author’s knowledge.

The relation between the nodes on the interface surface and the condensation coordinates
is called a multipoint constraint. References [21, 24–29] show formulations for a multipoint
constraint without interface deformation fields. Two types are considered: the ‘rigid mul-
tipoint constraint’ and the ‘interpolation multipoint constraint’. Both types are extended in
this paper in order to apply them for deformable interfaces. The results of the interpolation
multipoint constraint are compared with the results of existing literature. The rigid multi-
point constraint will be referred to as ‘exact multipoint constraint’ because the term ‘rigid’
is confusing in this context.

• Exact multipoint constraint (EMPC). The interface surface displaces and deforms exactly
as prescribed by the displacements of the condensation node and interface deformation
fields.

• Interpolation multipoint constraint (IMPC). The interface surface is completely free to
deform. The condensation coordinates follow the average motion of the surface.

The multipoint constraints can be imposed using the penalty function method, the La-
grange multiplier method (also referred to as the ‘dual formulation’) and master–slave elim-
ination (also referred to as the ‘primal formulation’) [24, 25].

• A disadvantage of the penalty function method is that it requires the selection of a suitable
penalty factor. This selection is nontrivial, compromising between accuracy and compu-
tational stability [25, 30].

• A disadvantage of the Lagrange multiplier method is that it increases the number of un-
knowns, whereas master–slave elimination decreases the number of unknowns, both in
proportion to the number of constraint equations. This is not a big issue for the IMPC
as the number of constraint equations of this constraint is much lower than the number
of degrees of freedom in the finite element model. However, for the EMPC, the number
of constraint equations can be much higher as it scales with the number of nodes on the
interface surface.

• A disadvantage of master–slave elimination is that it requires a suitable selection of a set
of dependent coordinates to avoid singularity in the equations. For the EMPC, all nodes
on the interface surface are dependent. However, the selection is nontrivial in case of the
IMPC. For the IMPC the selection can be based on physical insights [24, 28], but this is
shown only for multipoint constraints without interface deformation fields. The selection
can also be avoided by computing the null-space of the constraint relations [21]. However,
this may require a lot of computation time and has a negative effect on the sparsity of the
constrained finite element matrices.

To a large extend, all these disadvantages can be avoided by using master–slave elimina-
tion to impose the EMPCs and the Lagrange multiplier method to impose the IMPCs, which
will be detailed in this paper.

In higher-order beam theories, the deformation of the cross-section of the beam is taken
into account [31–34]. This deformation can be interpreted as interface deformation. The
cross-sectional deformation is especially important in thin-walled beams with an open pro-
file [35–38]. The resulting beam elements have extra degrees of freedom at both nodes that
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define the amount of cross-sectional deformation. This deformation can be coupled to the
deformation of the interface surface of a superelement if the deformation fields are equal.
This method was applied in the linear structural analysis of frames [39, 40] and for concept
modelling of vehicles [41, 42].

This paper shows how interface deformation can be defined in the geometrically nonlin-
ear superelement (GMS) of [1]. To obtain a reduced order model for the GMS, a multipoint
constraint for deformable interfaces is derived and imposed efficiently using a combina-
tion of Lagrange multipliers and master–slave elimination. The interface deformation of the
GMS can be defined consistently with that of the cross-sectional deformation of connected
higher order beam elements. This is applied in order to analyse flexure joints using a com-
bination of GMSs and beam elements.

These models are more efficient to evaluate than using nonlinear finite element models,
because the models contain far less elements. Although the superelements may be derived
from complex finite element models, which implies that the model order reduction may take
considerable computation time, this time will be significantly less than the time to evaluate
a finite element model of the full flexure joint for the following reasons:

• The model order reduction of the frame parts only requires linear finite element calcu-
lations, where the finite element model of the full flexure joint with large deformation
requires nonlinear calculations.

• Only part of the flexure joint has to be modelled using finite element models.
• In a dynamic simulation, a full finite element model should be evaluated at each time step,

where the model order reduction has to be applied only once.

The cost of this increase in efficiency is that the models will be slightly less accurate.
However, the models can be significantly more accurate than the models which consider the
frame parts to be completely rigid, as validated in this paper.

Section 2 shows how a reduced order finite element model with deformation of interfaces
can be obtained using multipoint constraints. Section 3 summarizes the GMS formulation
and explains how the reduced order model can be used in this superelement. Section 4
briefly introduces higher order beam theory, to show how the cross-sectional deformation is
related to interface deformation of the superelement. The formulation is validated with five
examples in Sect. 5.

2 Reduced finite element model

This section defines how the Craig–Bampton reduced order model including interface de-
formation is obtained. Section 2.1 defines the multipoint constraints and Sect. 2.2 derives
the constraint equilibrium equation from which the reduced order model is obtained.

2.1 Multipoint constraints

Figure 1 shows a finite-element model (henceforth FE-model), with three interfaces. The
nodes of the model will be referred to as FE-nodes. The frame i is the global reference
frame of the FE-model. The interface surfaces are coloured dark grey and to each interface a
condensation node is attached, visualized by a frame. The vector r i,k

g defines the undeformed
position of an FE-node g (lower index) with respect to condensation node k (second upper
index), defined in the orientation of frame i (first upper index). The vector ui,i

k defines the
global displacement of node k, and ψ i,i

k defines its rotation, which are assumed to be small.
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Fig. 1 Reducing a finite element model of an I-profile connection. Frame i is the global reference frame of
the finite element model, the other frames are condensation nodes; g is an FE-node on the interface surface
that is related to condensation node k. For visualization, the mesh is coarser than the mesh used to obtain the
results in Sect. 5.1

For a rigid interface the displacement of each FE-node, g, on the interface surface can
be predicted linearly based on the displacement of the condensation node. This predicted
displacement û

i,i
g can be expressed as

û
i,i
g = ui,i

k − r̃ i,k
g ψ i,i

k , r i,k
g = r i,i

g − r i,i
k . (2.1)

The tilde defines the skew-symmetric matrix which is related to the cross-product, such
that for two arbitrary 3 × 1 vectors a and b, the following relations hold:

ã ≡
⎡
⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ , ãb = a × b. (2.2)

Deformation of the interface surface can be added to this predicted displacement using
interface deformation fields ω

(
rk,k

g

)
. These fields are a user-defined function of the position

on the interface surface. The fields are multiplied by coordinates, collected in the vector αk .
The resulting predicted displacement can be written as

û
i,i
g = ui,i

k − r̃ i,k
g ψ i,i

k + Ri
kω

(
rk,k

g

)
αk = Ag

{
pi,i

k

αk

}
, (2.3)
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Fig. 2 Overview of the multipoint constraints, for an example of a one-dimensional interface with seven
nodes. The predicted displacements are obtained based on the displacement of the condensation node and the
deformation fields. These predicted displacements are used to obtain an EMPC or IMPC

where Ri
k is the rotation matrix that defines the rotation of node k with respect to the global

frame, and

Ag ≡ [
1 −r̃ i,k

g Ri
kω

(
rk,k

g

) ]
, pi,i

k ≡
{

ui,i
k

ψ i,i
k

}
. (2.4)

This is summarized in Fig. 2. The effect of the displacement of the condensation node and
the deformation fields is combined to obtain the predicted displacements. These predicted
displacements can be used to define two types of multipoint constraints. The first type, the
exact multipoint constraint (EMPC), implies that the displacements on the interface surface
should equal the predicted displacement, resulting in three constraint equations for each
FE-node on the interface surface:

ui,i
g = Ag

{
pi,i

k

αk

}
, : g ∈ Face. (2.5)

The second type of multipoint constraint is the interpolation multipoint constraint
(IMPC). It is defined as follows: the interface surface is free to deform and the condensation
coordinates are defined such that the squared error between the expected displacements and
the real displacements of all FE-nodes on the interface surface is minimized. The squared
error is defined in a cost function as

V
(
pi,i

k ,αk

)
= 1

2

Face∑
g

wg

(
ui,i

g − û
i,i
g

)T (
ui

g − û
i,i
g

)
, (2.6)

where wg is a weighting factor for the FE-node, which should be chosen proportional to the
part of the interface surface that the node represents. The constraints that minimize this cost
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Fig. 3 Two interface surfaces
with rigid rotation β

function are obtained by substituting Eq. (2.3) and then enforcing the derivative to be zero:

⎛
⎜⎜⎝

∂V

∂

{
pi,i

k

αk

}

⎞
⎟⎟⎠

T

=
(

Face∑
g

wgA
T
g Ag

){
pi,i

k

αk

}
−

Face∑
g

wgA
T
g ui,i

g = 0. (2.7)

The IMPC will typically underestimate the stiffness and is the most logical choice if the
interface is connected to a component which is more flexible around the interface. On the
other hand, the EMPC will typically overestimate the stiffness and is the most logical choice
if the interface is connected to a component which is much stiffer around its interface. This
difference between the two types of multipoint constraints was also noted in [24].

Equations for the IMPC without interface deformation fields are also given in [29, 43].
These results are derived by assuming a relation between the forces on the FE-nodes on the
interface surface and the forces and moments on the condensation node. The result is a quite
long expression which is slightly different from Eq. (2.7). Another simplified relation for
the IMPC is given in [24–28]. In these papers, the condensation node is placed in the centre
of the interface surface and the translational displacement and rotation of the condensation
node is written as

ui,i
k ≈

∑Face
g wgu

i,i
g∑Face

g wg

, ψ i,i
k ≈

∑Face
g wg

(
r̃ i,k

g ui,i
g

)

∑Face
g wg

∣∣∣r i,k
g

∣∣∣
2 . (2.8)

It can be shown that the translational displacement of the condensation node for both
these methods corresponds to the constraint in Eq. (2.7), but the resulting rotation is differ-
ent. To evaluate this difference, Fig. 3 shows two interface surfaces, both with four FE-nodes
that have equal weighting. Condensation node k is placed in the centre of the interface sur-
faces. The four FE-nodes are displaced in the x-direction, according to a rigid rotation β

around the z-axis. The resulting rotations of condensation node k are given in Table 1. The
IMPC of Eq. (2.7) as used in this paper gives the expected rotation β around the z-axis for
both shapes, whereas the equations used in the other papers give results that depend on the
width b.

2.2 Model reduction

This subsection derives the constraint equilibrium equation of the FE-model with the mul-
tipoint constraints. Then the Craig–Bampton method [9] is applied to obtain the reduced
order model.
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Table 1 Rotations of condensation node k for the displaced interfaces of Fig. 3

Case Current
Eq. (2.7)

Refs. [29, 43] Refs. [24–28]
Eq. (2.8)

Rectangle ψ
i,i
k

=

⎧⎪⎨
⎪⎩

0

0

β

⎫⎪⎬
⎪⎭

ψ
i,i
k

=

⎧⎪⎨
⎪⎩

0

0

β

⎫⎪⎬
⎪⎭

ψ
i,i
k

=

⎧⎪⎨
⎪⎩

0

0

β/(b2 + 1)

⎫⎪⎬
⎪⎭

Parallelogram ψ
i,i
k

=

⎧⎪⎨
⎪⎩

0

0

β

⎫⎪⎬
⎪⎭

ψ
i,i
k

=

⎧⎪⎨
⎪⎩

0

−β/b

β

⎫⎪⎬
⎪⎭

ψ
i,i
k

=

⎧⎪⎨
⎪⎩

0

−bβ/(b2 + 2)

2β/(b2 + 2)

⎫⎪⎬
⎪⎭

2.2.1 Unconstrained static equation

The equations of an unconstrained FE-model can be written as
[
M i

FEM

]
üi,i

FEM + [
K i

FEM

]
ui,i

FEM = F i
FEM, (2.9)

where
[
M i

FEM

]
and

[
K i

FEM

]
are the mass and stiffness matrix of the FE-model; ui,i

FEM, üi
FEM

and F i
FEM are the displacements, accelerations and forces of the FE-nodes respectively, all

expressed in the orientation of the global frame i of the FE-model. Besides the displace-
ments of the FE-nodes, there are also condensation coordinates. The displacements of these
coordinates will become the boundary displacements in the reduced method and are defined
in a vector pi,i

bnd as

pi,i
bnd ≡

{
pi,i

IF
pα

}
, pi,i

IF ≡

⎧⎪⎨
⎪⎩

pi,i
IF1
...

pi,i
IFN

⎫⎪⎬
⎪⎭

, pα ≡

⎧⎪⎨
⎪⎩

αIF1
...

αIFN

⎫⎪⎬
⎪⎭

. (2.10)

The unconstrained static equation in terms of all displacements can be written as
[

0 0
0

[
K i

FEM

]
]{

pi,i
bnd

ui,i
FEM

}
=
{

F i
bnd

F i
FEM

}
=
{

F i
bnd
0

}
, (2.11)

where F i
bnd are the loads on the boundary coordinates. The forces applied to the FE-nodes,

F i
FEM, are zero in the derivation of the Craig–Bampton reduced model.

2.2.2 Constrained static equation

The model can contain EMPCs and IMPCs. The equations for all IMPCs in the model, as
defined in Eq. (2.7), are combined to

[
�A �B

]{ pi,i
bnd

ui,i
FEM

}
= 0. (2.12)

These constraints are applied to Eq. (2.11) using the Lagrange multiplier method,
⎡
⎣

0 0 �T
A

0
[
K i

FEM

]
�T

B

�A �B 0

⎤
⎦
⎧⎨
⎩

pi,i
bnd

ui,i
FEM
λ

⎫⎬
⎭=

⎧⎨
⎩

F i
bnd
0
0

⎫⎬
⎭ , (2.13)

where λ are the Lagrange multipliers.
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The EMPCs will be solved using master–slave elimination. The equations of all EMPCs
are combined to

ui,i
FEM = BApi,i

bnd + BBui,i
f , (2.14)

where the terms in BA come from the constraint equations as defined in Eq. (2.5). The
vector ui,i

f contains the displacements of the FE-nodes that are not on the interface surface

of an EMPC, so BB is just a Boolean matrix that relates these displacements in ui,i
FEM to ui,i

f .
Equation (2.14) can be used to write a relation in terms of all displacements and Lagrange
multipliers,

⎧⎨
⎩

pi,i
bnd

ui,i
FEM
λ

⎫⎬
⎭= [

Y i
]
⎧⎨
⎩

pi,i
bnd

ui,i
f

λ

⎫⎬
⎭ ,

[
Y i
]≡

⎡
⎣

1 0 0
BA BB 0
0 0 1

⎤
⎦ . (2.15)

Applying this coordinate transformation to Eq. (2.13) gives

[
Y i
]T
⎡
⎣

0 0 �T
A

0
[
K i

FEM

]
�T

B

�A �B 0

⎤
⎦[

Y i
]
⎧⎨
⎩

pi,i
bnd

ui,i
f

λ

⎫⎬
⎭= [

Y i
]T
⎧⎨
⎩

F i
bnd
0
0

⎫⎬
⎭ . (2.16)

Computing the matrix-products results in the constrained static equation

⎡
⎣

BT
A

[
K i

FEM

]
BA BT

A

[
K i

FEM

]
BB �T

A + BT
A�T

B

BT
B

[
K i

FEM

]
BA BT

B

[
K i

FEM

]
BB BT

B�T
B

�A + �BBA �BBB 0

⎤
⎦
⎧⎨
⎩

pi,i
bnd

ui,i
f

λ

⎫⎬
⎭=

⎧⎨
⎩

F i
bnd
0
0

⎫⎬
⎭ . (2.17)

2.2.3 Craig–Bampton reduction

A Craig–Bampton reduced model contains boundary modes and internal modes. The bound-
ary modes are related to the stiffness of the boundary-displacements pi,i

bnd and can be ob-
tained by Guyan reduction. The internal displacements can be expressed in terms of the
boundary displacements using the last two rows of Eq. (2.17):

{
ui,i

f

λ

}
= �i

f λp
i,i
bnd,

�i
f λ ≡ −

[
BT

B

[
K i

FEM

]
BB BT

B�T
B

�BBB 0

]−1 [
BT

B

[
K i

FEM

]
BA

�A + �BBA

]
.

(2.18)

This result can be substituted into Eq. (2.14) by which the boundary modes
[
�i

bnd

]
are

obtained that relate the boundary displacements to the displacements of the FE-nodes,

ui,i
FEM = BApi,i

bnd + [
BB 0

]{ui
f

λ

}
= [

�i
bnd

]
pi,i

bnd,

[
�i

bnd

]≡ BA + [
BB 0

]
�i

f λ.

(2.19)

The internal Craig–Bampton modes are the natural modes of the component where the
boundary coordinates are fixed. These are obtained by solving the constrained eigenvalue
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problem of the inner part of the stiffness and mass matrix, namely

[
BT

B

[
K i

FEM

]
BB BT

B�T
B

�BBB 0

]{
φi

λ

}
= ω2

[
BT

B

[
M i

FEM

]
BB 0

0 0

]{
φi

λ

}
. (2.20)

Only the internal modes in the desired frequency range have to be selected. The inter-
nal modes

[
�i

int

]
for all FE-displacements are obtained using Eq. (2.14) by noting that the

displacements pi
bnd are zero for the internal modes,

ui,i
FEM = BBui,i

f = [
�i

int

]
ηint,

[
�i

int

]≡ BBφi,desired, (2.21)

where φi,desired are the modes φi in the desired frequency range and ηint is the vector with
the generalized coordinates of the internal modes.

All the Craig–Bampton modes (Eqs. (2.19) and (2.21)) are combined into

ui,i
FEM = [

�i
All

]
pi,i

All, (2.22)

in which

[
�i

All

]= [ [
�i

bnd

] [
�i

int

] ]
, pi,i

All =
{

pi,i
bnd

ηint

}
. (2.23)

Using these modes, the reduced stiffness and mass matrices in the orientation of the
global frame of the FE-model can be written as

[
K i

All

]= [
�i

All

]T [
K i

FEM

] [
�i

All

]
,

[
M i

All

]= [
�i

All

]T [
M i

FEM

] [
�i

All

]
. (2.24)

3 Implementation in the superelement formulation

This section summarizes the coordinates by which the configuration of the GMS [1] is de-
fined and shows how the reduced model of the previous section can be used for this su-
perelement.

Figure 4 shows a GMS with four interface nodes. It is defined with respect to global
frame O . Note that this frame is different from the global frame in the FE-model that was
used to obtain the reduced order model. The global position of a node k is defined by vector
rO,O

k (indices are defined in a similar way to the undeformed positions r i,k
g of the FE-model

in Sect. 2.1). The rotation matrix RO
k defines the orientation of node k (lower index) with

respect to global frame O (upper index). It depends on three independent parameters. The
exact parameterization is not relevant to this overview and is therefore not detailed. The
six independent parameters that define the global position and orientation of node k are
stored in vector qO,O

k . The configuration of the GMS is fully defined by the absolute nodal
coordinates of all interface nodes, {qO,O

IF 1 , . . . , qO,O
IF N }, in combination with the generalized

coordinates of the internal deformations, q int.
The undeformed position and orientation of the GMS is defined by its element frame j .

The coordinates of the element frame are dependent coordinates, i.e. they do not appear in
the equation of motion. The user can define six relations that define the position and orien-
tation of the frame as functions of the absolute nodal coordinates and internal coordinates,

qO,O
j = qO,O

j

(
qO,O

IF1 , . . . ,qO,O
IFN ,q int

)
. (3.1)
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Fig. 4 Coordinates in a GMS
with global frame O , element
frame j and four frames that
indicate the interface nodes

The simplest option is to define the frame in one of the interface nodes, but other options
are also possible as detailed in [1].

After the position of the element frame is obtained, the local coordinates of each interface
node can be obtained from its global coordinates as

q
j,j

k = q
j,j

k

(
qO,O

k ,qO,O
j

)
. (3.2)

The elastic displacement of an interface node can then be obtained by subtracting the
undeformed position from the local coordinates. The elastic displacement of the internal
deformation modes equals the generalized coordinates,

p
j,j

k = p
j,j

k

(
q

j,j

k

)
. (3.3)

These displacements define the deformation of a GMS and should be related to the dis-
placements of the reduced model, pi,i

All, which are defined in Sect. 2.1. The displacements
of the interface nodes, p

j,j

k , are the displacements of the condensation nodes in the reduced
model. The displacements of the internal deformation modes in the reduced model, ηint, are
part of the internal deformation modes in the GMS. The displacements related to interface
deformation fields, pα , do not explicitly appear in the displacements of the GMS.

However, the values of the warping coordinates do not depend on the position of the
element frame, therefore they can be treated as internal displacements. The vector with all
displacements can be written as

p
j,j

All ≡
{

p
j,j

IF
q int

}
, p

j,j

IF =

⎧⎪⎨
⎪⎩

p
j,j

IF1
...

p
j,j

IFN

⎫⎪⎬
⎪⎭

, q int =
{

pα

ηint

}
. (3.4)

These are the same displacements as in the reduced model in Eq. (2.23). However, they
are defined in the orientation of a different frame. The displacements are related by a rotation
matrix,

pi,i
All =

[
R

i

j

]
p

j,j

All ,
[
R

i

j

]
≡

⎡
⎢⎢⎢⎣

Ri
j

. . .

Ri
j

1

⎤
⎥⎥⎥⎦ , (3.5)
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in which [Ri

j ] consist of 2NIF times the 3 × 3 rotation matrix Ri
j and an identity matrix

corresponding to the length of vector q int. The reduced stiffness and mass matrix can be
expressed in the orientation of the element frame by applying this rotation to the matrices of
Eq. (2.24),

[
K

j

All

]
=
[
R

j

i

] [
K i

All

] [
R

i

j

]
,

[
M

j

All

]
=
[
R

j

i

] [
M i

All

] [
R

i

j

]
. (3.6)

These matrices, in combination with the local positions of the condensation nodes in un-
deformed configuration are the required input to define a GMS. The displacements, p

j

All, are
a result of the multibody simulation. These displacements can be applied to the constrained
FE-model to obtain strain and stress results.

To ensure that the interface surfaces of two connected bodies in the multibody simulation
match, the condensation nodes of their reduced order models should be defined in the same
position with respect to the surface. Furthermore, the interface deformation fields of both
reduced order models should be defined equivalent to ensure that the interface deformations
of both components match.

4 Summary of higher-order beam elements

In conventional beam theory, the cross-section is assumed to be undeformed. Therefore, the
global position of each point on the cross-section can be obtained by the coordinates of its
elastic line. The position, rO,O

g of a node g at the cross-section at side p can be written as
(see Fig. 5)

rO,O
g = rO,O

p + RO
p rp,p

g . (4.1)

In the higher-order beam elements, deformation of the cross-section is typically added
using multiple deformation fields which are functions of the position in the cross-section
ω
(
r

p,p
g

)
, multiplied by axial coordinates α (s). The values of these coordinates at node p

are denoted by αp . These coordinates are extra degrees of freedom at this node, which can
be coupled to a connected beam element. The position at the cross-section on interface p

can be defined by adding this deformation to Eq. (4.1),

rO,O
g = rO,O

p + RO
p rp,p

g + RO
p ω

(
rp,p

g

)
αp. (4.2)

This formulation of the positions is similar to the expected displacement on the interface
surface of a superelement, as defined in Eq. (2.3). These elements can be connected by
coupling the node of the beam element to the interface node of the GMS. In order to enforce
the compatibility of the interface surface deformation, the same interface deformation fields
ω
(
r

p,p
g

)
should be chosen for both interfaces.

In this paper we will only use one deformation field for the beam-elements, namely the
axial warping caused by torsion. The corresponding warping fields for a thin rectangular
cross-section and an I-profile are given in Fig. 6.

5 Validation

The GMS is validated using the multibody software SPACAR [44, 45] with traditional beam
elements [2] and beam elements in which warping due to torsion is included [38], referred
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Fig. 5 Higher-order beam
element, to show how the global
position of a node g on an
interface can be expressed in
terms of the beams coordinates

Fig. 6 Warping fields of a thin
rectangular cross-section and an
I-shaped cross-section; the latter
is an approximation based on
thin-walled beam theory

to as warping beam elements. In this section the GMS does not allow interface deforma-
tion when it is connected to a traditional beam element The GMS connected to a warping
beam element contains interface deformation according to the connected element. The fi-
nite element models to obtain the stiffness properties of the GMSs are assembled using the
PDE-toolbox in MATLAB.

First, the connection of two I-profiles gives an example of thin-walled beams where the
modelling of cross-sectional deformation is essential to obtain accurate stiffness results. Sec-
ondly, the GMS is used to study the clamping of a flexure. Next, examples of a folded flexure
and a cartwheel joint show how the GMS can be used to accurately model the connection
between multiple flexures.

Finally, the GMS is used in a beam-problem in order to perform a convergence analysis.

5.1 Connection of I-profiles

Torsional warping is especially important in thin-walled beams with an open profile [35].
Figure 7 shows a horizontal I-profile that is connected to a vertical I-profile. Using only beam
elements, the warping of the horizontal profile at this connection can only be considered ei-
ther completely constrained or completely free. The use of a GMS allows a more precise
analysis. The profiles are made of steel (Young’s modulus 200 GPa, Poisson ratio 0.3) and a
torsional moment of 1 000 Nm is applied to the horizontal profile. The vertical profile is ex-
actly constrained: the global x- and y-displacement of both ends are constrained, and at the



498 K. Dwarshuis et al.

Fig. 7 Connection of two
I-profiles modelled by a GMS
and 10 beam elements. The
colours in the GMS show the von
Mises stress. Dimensions are
given in mm. Displacements are
magnified by a factor of 10.
(Color figure online)

upper node the axial displacement and torsional rotation are constrained. The construction
is modelled in six different ways, listed in Table 2. All the used beam elements have a length
of 50 mm. Using more beam elements does not significantly contribute to the accuracy. All
finite element meshes are all generated using ANSYS with quadratic tetrahedrons with a
size of 5 mm. The 15 flexible modes of the GMS are defined using the free-free-option de-
scribed in Sect. 3.4.2 of [1], and the interface constraints are imposed using IMPCs. A finite
element model of the whole structure is used as a reference.

Table 2 shows the resulting rotation angle at the position of the applied moment and the
maximum stress, based on which the following observations are made:

• Modelling the structure with a single GMS (case ‘b’) gives almost the same results as
the linear finite element model (case ‘a’), because the GMS is based on the same finite
element model.

• The stiffness cannot be computed accurately by modelling the horizontal I-profile using
only beam elements, where the warping at the connection is either completely constrained
or completely released (case ‘e’ and ‘f’ respectively).

• Using the GMS in combination with warping beam elements (case ‘d’) gives more than
96% accuracy in stress and stiffness, which is over three times more accurate than the
result obtained with the GMS with traditional beam elements (case ‘c’). This indicates that
connecting the torsional warping of beam elements to the deformation of the interfaces of
the GMS can increase the accuracy significantly.

• The stiffness of the GMS with 10 warping beams (case ‘d’) is slightly too high. This
is caused by the fact that the part of the horizontal I-profile modelled with the GMS is
relatively small compared to the size of the cross-section. Some deformation is present
close to this connection that is not modelled with the warping beam element.

5.2 The clamping of a flexure

To investigate the warping behaviour of the interface between the GMS and a warping beam
element the clamping of a flexure is modelled, see Fig. 8. The flexure is made of steel
(Young’s modulus 200 GPa, Poisson ratio 0.3), has a length of 12 mm, a width of 10 mm
and a thickness of 0.5 mm. A torsional moment of 0.25 Nm is applied at the unclamped side.
The first 10 mm of the unclamped side of the flexure is modelled with five beam elements.
The clamped side is modelled in six different ways, see Fig. 8:
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Table 2 Results of I-profile
connection, including error with
respect to the finite element
model

Simulation Rotation
angle (deg)

Maximum
stress (MPa)

a. Linear finite element model (ANSYS) 2.62 325

b. Full structure modelled by a single
GMS

2.62 (0.0%) 320 (1.4%)

c. GMS and 10 traditional beams 2.90 (11%) 231 (29%)

d. GMS and 10 warping beams 2.54 (3.2%) 322 (0.8%)

e. Only horizontal beam modelled using
8 traditional beam elements

3.08 (18%)

f. Only horizontal beam modelled using
8 warping beam elements with
constrained warping at the left-hand side

1.07 (59%)

Fig. 8 von Mises stress in the clamping of a flexure subjected to a torsional moment, modelled in nine
different ways. (Color figure online)

a. The sixth beam element of which the torsional warping at the clamping is not constrained;
b. The sixth beam element of which the torsional warping at the clamping is constrained;
c. The clamped element is a GMS of which the warping at the clamping is constrained;
d. The clamping and 0.2 mm of the flexure are modelled by a GMS to which a sixth beam

element is connected;
e. A block and 2 mm of the flexure are modelled by a single GMS;
f. A block and 2 mm of the flexure are modelled by a single GMS where a fillet with a

radius of 1 mm is added;

Three nonlinear finite element models are used as reference:

g. A model without a block;
h. A model with a block;
i. A model with a block and a fillet with a radius of 1 mm.
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Fig. 9 Rotation and maximum von Mises stress of the clamped flexure

The GMSs and finite element models are modelled by quadratic tetrahedrons with a
mesh-size of 0.125 mm for the part of the flexure and 0.5 mm for the part of the block. The
left side of the GMS is always imposed with an EMPC, the side that is connected to a beam
element is imposed using an EMPC or an IMPC. Figure 9 shows the resulting rotation and
maximum stress based on which the following observations can be made:

• Constraining the torsional warping has a significant influence on the torsional stiffness,
as the rotation in case ‘a’ is about 20% higher than the other cases.

• There is only a small difference of about 2% between the rotation of the cases without
a block (case ‘b’, ‘c’ and ‘g’) and the cases with the block (case ‘d’, ‘e’ and ‘h’). This
indicates that the warping at such an interface can be considered to be fully constrained.
The fillet (case ‘f’ and ‘i’) does add about 8% stiffness.

• Comparing case ‘b’ with ‘c’ and case ‘d’ with ‘e’ indicates that modelling part of the
flexure with a GMS gives about the same stiffness as the beam element.

• Comparing the rotation of case ‘c’ with ‘g’, case ‘e’ with ‘g’ and case ‘f’ with ‘i’ shows
that the rotation of the finite element model is consistently about 0.1 degrees higher than
the rotation obtained using the GMS and beams. This is mainly because the finite element
model is slightly more compliant at the side where the moment is applied. After com-
pensating for this, the resulting stiffness obtained using the superelement with warping
beams is more than 97% accurate.

• The distribution of the stress around the clamp is very similar in all cases, except for case
‘a’. The stress distribution of the finite element models at the side where the moment is
applied does not correspond to the stress of the beam-elements, because the multipoint
constraint used in the finite element model causes some deformation which does not cor-
respond to the beam model.

• The stress in the sharp corners of the block without fillet (case ‘d’, ‘e’ and ‘h’) becomes
theoretically infinite high, therefore the maximum stress obtained by the GMS differs
significantly from the stress of the finite element model. For the other two shapes, the
maximum stress of the GMS is closer to that of the finite element model: the errors with
an EMPC are lower than 3%, the errors with an IMPC are lower than 13%.
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Fig. 10 Folded flexure. For
visualization, the mesh is coarser
than the mesh used to obtain the
results, and the sides show only
three warping beam elements
where 20 warping beam elements
per side were used to obtain the
results

5.3 Folded flexure

A folded flexure (see Fig. 10) has a high stiffness in the vertical translational direction and is
compliant in the other five directions. Contrary to what its name suggests, a folded flexure is
not necessarily manufactured by folding a flat strip. The folded flexure in Fig. 10 is made of
steel (Young’s modulus 200 GPa, Poisson ratio 0.3), the fold is modelled using a GMS and
both sides by warping beam elements. The GMS is modelled with quadratic tetrahedrons
with a mesh-size of 0.18 mm, resulting in models that consist of about 23 000–162 000
elements. The interface constraints are imposed with EMPCs. The fold is modelled with a
radius or a thickening, as shown in Fig. 11. The radius is also approximated using six very
short beam elements. The thickening could not be modelled using beam elements. A finite
element model of the full folded flexure is used as a reference.

Figure 11 shows the compliance in two directions. The compliance in the support direc-
tion of the flexure (the z-direction) increases significantly with the radius. This increase in
compliance can be obtained with about 80% accuracy by the GMS, and also using six warp-
ing beams to approximate the fold. An applied moment around the x-axis causes torsion of
the clamped side of the folded flexure. This is because the torsion of the two sides of the
folded flexure interact through the warping around the fold. This effect is affected by the size
of the thickening, mainly because the thickening increases the resistance against warping.
The effect is modelled with 95% accuracy using the GMS.

5.4 Cartwheel joint

Figure 12 shows a cartwheel joint. The flexure is made of steel (Young’s modulus 200 GPa,
Poisson ratio 0.3). The warping of each of the four flexures interact with each other at the
connection. This part is modelled using a GMS, built from quadratic tetrahedrons with a
mesh-size of 0.18 mm, resulting in a model with about 56 000 elements. The interface
constraints of the GMS are imposed with EMPCs. The result with only beam elements is
obtained by assuming completely constrained warping of the four flexures in the connection.
A finite element model of the full flexure is used as a reference.

Figure 13 shows the rotational compliance around the global z-axis as a function of
the rotation. After some rotation, this compliance depends on the torsional stiffness of the
flexures and therefore also depends on the modelling of the warping around the connection.
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Fig. 11 Compliance of folded
flexure

Fig. 12 Cartwheel flexure. For
visualization, the mesh is coarser
than the mesh used to obtain the
results

After a 20-degree rotation around the y-direction, the resulting error for the GMS is about
50% smaller than the error obtained by only using warping beam elements.

5.5 Beam with a tip-load

Figure 14 shows a beam-structure that is modelled using multiple GSMs. The beam has
length of 200 mm, a width of 10 mm and a height of 5 mm. It is made of steel (Young’s
modulus 200 GPa, Poisson ratio 0.3). The beam is fixed at the base. At the tip a force is
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Fig. 13 Rotational compliance
around the z-axis of the cartwheel

Fig. 14 Beam modelled using
multiple GMSs. Figure also
shows the cross-section with
local coordinate-system. For
visualization, the mesh is coarser
than the mesh used to obtain the
results

applied of 1 000 N in the z-direciton and 500 N in the y-direction. The GMSs are modelled
by quadratic tetrahedrons with a mesh-size of 1.5 mm. Each GMS has two interfaces which
are either modelled without interface deformation fields or with deformation fields up to the
second order in the local coordinates of the face, as shown in Table 3. The deformation of
the cross section at the both ends of the beam is fixed. The element frames of the GMSs are
attached to the interface node that is closest to the base.

Figure 15 shows the resulting vertical position of the tip, from which three observations
can be drawn:

• If no deformation fields are used, using EMPCs results in an error which increases with
the number of elements. This is because all interfaces between the GMSs are completely
rigid in this case. Including deformation fields gives much better results.

• If no deformation fields are used, using IMPCs gives only a small error for a large number
of GMSs. The beam is only slightly too compliant, mainly because the deformation at
both ends of the beam cannot be constrained in this case.

• If interface deformation fields are included and a sufficient number of beams is used, the
GMS gives comparable results to normal beam elements.

Figure 16 shows how the error in the tip-position converges as function of the number
GMSs that is used to model the beam. This is because the amount of deformation per GMS
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Table 3 The 12 interface
deformation fields that are used
in the beam-problem,

ω = {
ωx ωy ωz

}T

No. ωx ωy ωz

1 0 y 0

2 0 0 z

3 0 z y

4 y2 − t2/12 0 0

5 0 y2 − t2/12 0

6 0 0 y2 − t2/12

7 yz 0 0

8 0 yz 0

9 0 0 yz

10 z2 − w2/12 0 0

11 0 z2 − w2/12 0

12 0 0 z2 − w2/12

Fig. 15 Vertical position of the
tip of the beam as function of the
number of GMS. Note that the
x-axis has a logarithmic scale

decreases for increasing number of GMSs. It also shows the error for the case where the
GMSs are made from models with a mesh-size of 4.5 mm instead of 1.5 mm. This introduces
an extra error of about 0.01 m.

The second plot shows the time to obtain the reduced order model for one GMS. This
time is almost inversely proportional to the number of GMSs as the number of elements per
GMS is also inversely proportional to the number of GMSs, which is about 25 000 elements
if one GMS is used and about 2 500 elements if 10 GMSs are used.

The computation time of the multibody simulation increases proportional to the number
or GMSs. Including deformation fields significantly increases the computation time as this
results in extra degrees of freedom. The current example shows a much higher computa-
tion time for the model order reduction than for the multibody-simulation. However, note
that this can be different in other cases as these computation times are for example highly
dependent on the number of elements per GMS and the number of bodies in the multibody-
system, respectively.
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Fig. 16 Results of the
beam-problem where the
constraints are imposed using
IMPCs, as a function of the
number of GMSs. The first plot
shows the error-convergence of
the tip-position (16 GMSs are
used to obtain a reference). The
second plot shows the required
computation time to obtain the
reduced order models that are
used by the GMS. The grey line
in this plot shows the time to
assemble the full stiffness matrix
[K i

FEM]. The other two lines
show the time to compute the
reduced stiffness matrix, [K i

All].
The third plot shows the required
computation time of the
nonlinear multibody simulation
of the beam-model that consist of
multiple GMSs

Fig. 17 Remaining error after
each iteration step during the
solution of the beam-problem
that is modelled with 10 GMSs.
The total force is applied in four
steps

Figure 17 shows good convergence of the Newton–Raphson iteration to solve the non-
linear static problem.

6 Conclusions

Superelements compute the small deformation of arbitrarily shaped components efficiently,
using the results of model order reduction techniques. A multipoint constraint has been
derived that can be used to obtain a reduced order model with deformable interfaces. The
formulation gives more consistent results than other multipoint constraint formulations for
rigid interfaces in literature. The multipoint constraint is imposed using a combination of
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the Lagrange multiplier method and master–slave elimination to allow for efficient model
order reduction.

The resulting reduced order models with deformable interfaces are used in the GMS, a
superelement in the generalized strain formulation. The interface deformation can be defined
consistent to the deformation of the cross-section of higher-order beam elements. In this
way, structures with slender parts can be modelled efficiently and accurately using beam
elements in combination with GMSs.

This paper combined the GMS with beam elements in which the axial warping due to
torsion is included. The GMS gives accurate results if the deformation in the GMS is small
and sufficient interface deformation fields are used. The stiffness of a frame consisting of
two I-profiles was modelled 96% accurately, and the maximum stress over 98% accurately.
The GMS was also applied to model the critical parts of a single clamped flexure, a folded
flexure and a cartwheel joint. In these models the errors in the stiffness were below 6%,
typically at least twice as accurate as the stiffness modelled using only beam elements.
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