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Abstract
A two-field version of the floating frame-of-reference approach is developed to describe
the dynamics of a flexible body in the case of motion in a uniformly rotating frame. Full
decoupling of the kinetic energy results from splitting of the motion into rigid-body modes
of the floating center of mass and a velocity field orthogonal to them. The motion equations
are developed from a canonical variational expression in which displacement and velocity
fields play independent roles. They turn out to keep the same global structure as in the
case of motion in an inertial frame. The discretization of all inertia terms is discussed in
depth. It is also shown that, in the case of discretization of the continuum with 3D solid
elements, all gyroscopic terms can be derived from a mass kernel and associated Si matrices.
Model reduction is proposed using the Herting–Martinez method in order to automatically
satisfy orthogonality of the velocity field to rigid-body modes. Two application examples of
high-speed rotating systems are developed at length to assess the efficiency of the proposed
methodology.

Keywords Rotating systems · Flexible body · Multibody dynamics · Finite element ·
Reduction · Rotor · Dynamic response · Steady response · Critical speed

1 Introduction

Rotor dynamics is an essential topic in mechanical engineering since it is of major im-
portance for the analysis and design of a large variety of systems such as steam turbines,
aircraft engines, wind turbines, helicopter rotors, crank and transmission shafts, gear boxes,
car wheels, aircraft landing gears, etc. An important literature covers the subject through
reference books, research articles and it has also its dedicated journal.1
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From a historical point of view, an early comprehensive description of the dynamic be-
havior of rotating machinery can be found in Den Hartog’s classical book on Mechanical
vibrations [1], as the result of his industrial experience at Westinghouse starting in 1926.
In the same period, Biezeno and Grammel devoted in their classical treaty on Technische
Dynamik [2] two chapters to disks in rotation on the one hand, and critical velocities on
the other hand. Worthwhile mentioning is also a short technical note by Fraeijs de Veubeke
published in 1943 [3] addressing the topic of gyroscopic effects on bending critical speeds
of shafts.

Following the pioneering theoretical work by Tondl [4] and Ziegler [5] during the 1960s,
there has been an abundant literature addressing the fundamental concepts of critical speed
and stability analysis of rotating machinery, e.g., [6–14].

The first applications of the finite-element method to rotor dynamics are probably the
ones described by Dubigeon and Michon [15] in 1975 and by Nelson and Mac Vaugh in
1976 [16]. Like many subsequent authors, they built a linearized model of a rotor-bearing
system based on the following hypotheses:

– both rotating and fixed parts of the structure have linear material and geometric behaviors;
– the rotating shaft is represented by linear beam finite elements (with shear deformation

and rotary inertia of cross sections possibly included);
– the stiffness and damping properties of bearings and seals are linear functions of displace-

ments and velocities;
– large disks are assumed to be rigid, their gyroscopic effect resulting from second-order

linearization of inertia forces.

The book published in 1998 by Lalanne and Ferraris soon became a reference regarding
finite-element modeling of rotating machinery [17].

In [18], a more general approach has been proposed that consisted of treating the struc-
tural components of a rotating system as a 3D continuum. Advantage was taken of the ax-
isymmetric geometry of the system to develop the model with axisymmetric finite elements
and apply to it model reduction [19]. A similar approach, using 3D finite elements, was de-
scribed in [20]. An extensive review of reduction methods applied to rotor dynamics can be
found in [21].

To our knowledge, treating a rotating machine as a nonlinear multibody system using a
floating frame-of-reference approach was proposed for the first time in 2004 by Sopanen
in his PhD thesis [22]. However, the model description was made in the inertial frame, and
therefore rotation resulted from the external excitation on the system. The same approach
has been followed in [23].

The fundamental specificity of the approach proposed hereafter consists in the fact that
the kinematics of the flexible body is described in a noninertial frame rotating with uniform
angular speed with respect to the inertial frame. Therefore, the two-field frame-of-reference
method proposed in [24, 25] is generalized to describe the motion of an elastic body in a
frame undergoing uniform rotation relatively to the inertial one. As will be shown in the
examples, the proposed methodology presents over a classical FFRF approach, based on
a single-field discretization and using the inertial frame as reference, at least three main
advantages:

– A difficulty generally encountered in the development of a FFRF model is the computa-
tion of elastic inertia forces of gyroscopic origin. Formulating the problem as a first-order
one, based on simultaneous discretization of motion and velocity fields, makes it easier
to develop without any approximation the inertia terms of gyroscopic origin in a flexible
body.
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– Introducing the rotation speed of the reference frame as an additional parameter makes it
possible to study the dynamic response of the system within a given speed range without
the need to start the simulation from zero speed.

– It also allows treating stationary responses at fixed rotation speed, such as the response to
mass unbalance, as static problems.

The paper is organized as follows.
Section 2 is devoted to the kinematic description of the flexible body in the rotating

frame. The development of its kinetic energy in a floating frame of reference is performed
in Sect. 3. It is shown that its full decoupling results from the definition of a compound
elastic velocity field that includes a convective term due to angular rotation and the assumed
orthogonal to rigid-body motion. In Sect. 4, a canonical expression of kinetic energy is
introduced that allows us to treat displacement and velocity fields independently, thus al-
lowing the generalization of the two-field floating frame-of-reference approach introduced
in [24, 25] to elastic motion in a reference frame rotating at uniform speed. Finite-element
discretization is discussed in Sect. 6. It is shown that in the case of discretization with 3D
solid elements, all gyroscopic inertia terms can be efficiently computed using the concept
of Si matrices introduced in Sect. 6.3.3. The latter are obtained from a 1D kernel extracted
from the isotropic 3D mass matrix. Superelement implementation following the Herting–
Martinez method [26, 27] is described in Sect. 7.

The first example, presented in Sect. 8, is a simple benchmark taken from Reference [28]
consisting of a simple rotor-disk system subjected to mass unbalance in a gravity field. The
second example, in Sect. 9, is a more complex system consisting of a twin-disk elastic rotor
on magnetic bearings subject to mass unbalance [23]. In both examples it is shown that being
able to simulate the rotor either at a specified speed or within a given speed range gives a
better insight into the system behavior. The ability provided by the formalism to describe as
a stationary problem the rotor behavior at constant speed allows for a fast characterization
of the system over its entire speed range to be also demonstrated. Finally, the effect of
disk flexibility is investigated through superelement modeling following the methodology
proposed in Sect. 7.

2 Kinematics of a flexible body undergoing uniform angular motion

In this section, we generalize the description of the general motion of a flexible body to the
case when the frame of reference in which the elastic body is moving is no longer inertial,
but a frame rotating at constant speed with respect to the inertial one.

2.1 Motion description

The general motion of a flexible body undergoing rotation with uniform angular velocity ωm

about a rotation axis k will be decomposed into three parts:

– the rotation motion at constant angular velocity relative to the inertial frame;
– the rigid motion of a reference frame r on the body relative to the rotating frame m;
– the elastic motion relative to the reference frame r .

As a result, the current inertial position x of a given point of an elastic body undergoing
overall rigid-body motion (Fig. 1) can be expressed in the form

xP = R(ωmt)(mxr + mRr (
rXP + reP ,)), (1)

with the notations provided in Table 1.
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Fig. 1 Kinematics of a flexible
body undergoing uniform
rotation

Table 1 Definitions involved in Equation (1) for describing the motion of an arbitrary point P on the elastic
body. Vector and matrix quantities are noted as follows: objects like yAx and yax are, respectively, a matrix
/ a vector belonging to frame x relative to frame y. The absence of a left superscript characterizes objects
defined relative to the inertial frame

ωm = kωm angular velocity vector of the driving motion

ψm = ωmt rotation vector of the driving motion

Rm = R(ωmt) = R(ψm) rotation matrix describing the uniform angular motion

in the inertial frame
mRr current rotation of the reference frame r

relative to the rotating frame Rm

mxr current position of the reference point r

in the rotating frame Rm

rXP material position (body coordinates) of point P

reP , = re(rXP , t) elastic displacement at point P

in the rotating reference frame mRr

2.2 Velocities

The inertial-frame expression of the velocity vector of point P is computed as

ẋP = Ṙm(mxr + mRr (
rXP + reP ,)) + Rm(mẋr + mṘr (

rXP + reP ,) + mRr
r ėP ). (2)

Multiplying (2) by (Rm
mRr )

T provides its material-frame expression as

rVP = mRT
r (mẋr + RT

mṘm
mxr )+

(mRT
r RT

mṘm
mRr + mRT

r
mṘr )(

rXP + reP ,) + r ėP

= mRT
r (mẋr + ω̃m

mxr ) + (mRT
r ω̃m

mRr + mRT
r

mṘr )(
rXP + reP ,) + r ėP ,

(3)
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where2

ω̃m = RT
mṘm (4)

is the skew-symmetric angular velocity matrix associated with the imposed driving motion.
In order to alleviate the notation we will define the skew-symmetric matrix “function”

r
˜Wr and the associated vector rWr

3 that expresses the relative angular velocity of the
material frame with respect to the driving one by

r
˜Wr = r

˜Wr (
mRr ) = mRT

r
mṘr ⇔ rWr = vect(r

˜Wr ). (5)

The material expression of translation velocity (3) is rewritten in the form

rVP = rVr +r
˜Ω r (

rXP + reP ,) + r ėP , (6)

with kinematic relationships between the velocities mV and r
˜Ω r on the one hand, and the

associated kinematic quantities mxr and mRr on the other hand:

– mV and rVr are the rotating-frame and material-frame expressions of the translation ve-
locity of the reference point r

mV = mẋr + ω̃m
mxr

rVr = mRT
r

mV
. (7)

– The skew-symmetric matrix appearing in the second term of Equation (3) provides the
material-frame expression of the angular-velocity matrix r

˜Ω r

r
˜Ωr = r

˜Wr + mRT
r ω̃m

mRr

= r
˜Wr + r ω̃m

(8)

and the associated vector

rΩ r = rWr + rωm , (9)

rωm being the driving velocity vector expressed in the material frame

rωm = mRT
r ωm , (10)

ωm being time dependent we compute the acceleration vector and matrix associated to
(10) as

r ω̇m = r
˜Wr

T rωm
r ˙̃ωm = r

˜Wr

T r ω̃m
r
˜Wr . (11)

2Throughout the paper, ã denotes the skew-symmetric matrix associated with a column vector a. Conversely,
the vector a is obtained from ã as a = vect(̃a).
3
˜W(R) is a function computing the corotational time derivative of a rotation matrix: ˜W(R) = RT Ṙ. This

definition plays a fundamental role in the development of the two-field approach since it allows introduction
of the kinematic compatibility in time relationship for angular motion in the form W(R) = vect(RT Ṙ) = Ω .
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Equation (6) can also be split in the form

rVP = rVP ,rig + rVP ,e, (12)

where

rVP ,rig = rVr +r
˜Ω r

rXP (13)

is the material-frame expression of the velocity due to rigid motion, and

rVP ,e = r ėP +r
˜Ω r

reP , (14)

is the additional velocity due to elastic deformation.
Finally, the velocity field due to rigid motion (13) may also be written in the form

rVrig = U(rXP )T

[

rVr
rΩ r

]

, (15)

the rigid-body modes being described in the material frame by the 6 × 3 matrix

U(rXP ) =
[

I
r
˜XP

]

. (16)

2.3 Virtual displacements and velocities

Let us now introduce the angular variation δr θ̃ r associated with rotation motion in the ref-
erence frame through

δmRr = mRr δ
r θ̃ r , (17)

in order to compute the variation of angular velocity

δrΩ r = δrWr + δrωm . (18)

On the one hand, from (10) we compute

δrωm = −δr θ̃ r
rωm = r ω̃mδrθ r . . (19)

On the other hand, we compute the time derivative of (17) and the variation of (5)

δr ˙̃θ r = mṘT
r δmRr + mRT

r δmṘr = −r
˜Wr δ

r θ̃ r + mRT
r δmṘr (20)

δr
˜Wr = δmRT

r
mṘr + mRT

r δmṘr = −δr θ̃ r
r
˜Wr + mRT

r δmṘr . (21)

Combining (20) and (21) provides the matrix relationship

δr
˜Wr = δr ˙̃θ r + r

˜Wr δ
r θ̃ r − δr θ̃ r

r
˜Wr (22)

to which corresponds the vector equation

δrWr = δr θ̇ r + r
˜Wr δ

rθ r . (23)
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Table 2 Duality between velocities and time derivatives of the motion field

Velocity variable Motion-field derivative

Reference-frame translation mV mẋr + ω̃m
mxr

Reference-frame rotation r
˜Ωr

rWr = vect(r ˜Wr )

Elastic motion rVP ,e
r ėP + r

˜Ωr
reP ,

Finally, substituting (19) and (23) into (18) provides a quite simple expression for the vari-
ation of the angular-velocity vector (9)

δrΩ r = δr θ̇ r + (r
˜Wr + r ω̃m)δrθ r . (24)

The conclusion of this section is that the kinematic decomposition of the velocity field in
the material frame is not fundamentally affected by the introduction of the driving motion.
The only difference lies in adding to the material expression of the body-frame velocity field
r
˜Wr , the material expression r ω̃m of the driving angular velocity. This thus makes it possible

and easy to generalize the two-field formulation proposed in references [24, 25] to systems
undergoing uniform rotation with respect to the inertial frame.

The development of the two-field formulation relies upon the relaxation of kinematic
compatibility in time. Table 2 summarizes the duality that will be exploited between veloc-
ities and their counterpart resulting from time differentiation of the motion field.

3 Kinetic energy

The purpose of this section is two-fold: first, to provide an expression of kinetic energy
in which rigid-body motion and elastic motion are fully uncoupled; secondly, to introduce
the concept of duality that will allow us to assume an equal role in the formulation to the
kinematic variables describing the general motion (displacements and rotations) and the
associated velocities.

3.1 General expression

The instantaneous kinetic energy of the elastic body is computed from the relationships
(12)–(14) as

K = 1

2

∫

V

rVP
T rVP ρdV = K1 +K2 +K3

= 1

2

∫

V

(rVr + rΩ r
rXP )T (rVr + rΩ r

rXP ) ρdV

+ 1

2

∫

V

rVT
P,e

rVP,e ρdV +
∫

V

rVT
P,e(

rVr + rΩ r
rXP ) ρdV .

(25)

The first term, K1, represents the kinetic energy resulting from rigid motion. Assuming
that the center of mass of the undeformed body is taken as the origin of the material frame r

∫

V

rXP ρdV = 0, (26)
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it can be decoupled in the form

K1 = 1

2
mB

rVr
T rVr + 1

2
rΩ r

T J rΩ r , (27)

with mB and J being, respectively, the mass of the body and its tensor of inertia in rigid
configuration

mB =
∫

V

ρdV and J =
∫

V

r̃XP
r̃XP ρdV . (28)

The second term, K2, is the kinetic energy resulting from elastic deformation

K2 = 1

2

∫

V

rVT
P,e

rVP,e ρdV . (29)

This depends implicitly on the compound angular velocity (9) of the body frame.

3.2 Choice of body axes and decoupling

The third term, K3, is a coupling kinetic energy between rigid and elastic motions that can
be canceled as follows.

The choice of body axes is not unique since the splitting (12) between rigid and elastic
velocity is not unique. Indeed, the amplitudes of the rigid-motion velocities rVr and rΩ r are
not uniquely determined but depend on the choice of the instantaneous reference axes for
the deformed configuration. The choice can thus be made so as to cancel the coupling term
K3 in (25) following a procedure already described in [24, 25].

Let us thus assume, as proposed [29], that the choice of the reference axes for the de-
formed configuration is made so that the kinetic energy associated with elastic motion K2 is
minimum.

For that purpose, we develop (29) in the alternate form

K2 =1

2

∫

V

(rVP − rVP,rig)
T (rVP − rVP,rig) ρdV

=1

2

∫

V

(rVP − rVr − rΩ r
rXP )T (rVP − rVr − rΩ r

rXP ) ρdV

, (30)

in which the material velocity rVr has to be regarded as invariant to a change of reference.
Therefore, expressing the condition

min
(r Vr , rΩr )

1

2

∫

V

(rVP − rVr − rΩ r
rXP )T (rVP − rVr − rΩ r

rXP ) ρdV (31)

yields

−δrVr
T

∫

V

(rVP − rVr − rΩ r
rXP ) ρdV

− δrΩT
r

∫

V

r̃XP

T
(rVP − rVr − rΩ r

rXP ) ρdV = 0

(32)
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and we thus obtain the conditions

∫

V

rVP,e ρdV = 0

∫

V

r̃XP
rVP,e ρdV = 0 . (33)

These mean that the translation and rotation momentums resulting from elastic motion
around the rigid reference configuration vanish.

Owing to the definition (16) of the rigid-body modes, the conditions (33) also express
the orthogonality of the elastic velocity field to rigid-body motion

∫

V

U(rXP ) rVP,e ρdV = 0 . (34)

Reorganizing the last term in (25) yields

K3 =
∫

V

rVT
P,e (rVr − r̃XP

rΩ r ) ρdV =
[

rVr
rΩ r

]T ∫

V

U(rXP ) rVP,e ρdV = 0 . (35)

Under the assumption that the material axes and the principal axes of the undeformed body
coincide and invoking the invariance property rVr

T rVr = mVT mV, the system kinetic energy
K can be expressed in either one of the fully uncoupled forms

K = 1

2
mB

rVr
T rVr + 1

2
rΩ r

T JrΩ r + 1

2

∫

V

rVT
P,e

rVP,e ρdV (36)

= 1

2
mB

mVT mV + 1

2
rΩ r

T JrΩ r + 1

2

∫

V

rVT
P,e

rVP,e ρdV . (37)

3.3 Primal and dual forms of kinetic energy

The expression (37) of kinetic energy in terms of the velocities (mV, rΩ r ,
rVP,e) can be

regarded as the dual form of kinetic energy

K�(mV, rΩ r ,
rVP,e) = 1

2
mB

mVT mV + 1

2
rΩ r

T J rΩ r + 1

2

∫

V

rVT
P,e

rVP,e ρdV . (38)

This is indicated by the � superscript.
The primal form of kinetic energy results from the substitution of the kinematic relation-

ships (7), (9), and (14) into (37). This has for expression

K(mxr ,
mẋr ,

mRr ,
mṘr ,

reP ,, r ėP ) = 1

2
mB(mẋr + ω̃m

mxr )
T (mẋr + ω̃m

mxr )

+ 1

2
(rωm + rWr )

T J (rωm + rWr )

+ 1

2

∫

V

(

r ėP + (r ω̃m + r
˜Wr )

reP ,
)T (

r ėP + (r ω̃m + r
˜Wr )

reP ,
)

ρdV ,

(39)

with the definitions (5) and (10).
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4 Canonical form of kinetic energy

The canonical form of kinetic energy is an expression of kinetic energy in which the motion
and velocity fields play equal roles. Its variation will provide the inertia-force contribution
to the system equations of the two-field formulation.

4.1 General expression

To develop the canonical form of kinetic energy, let us introduce a transformation between
the primal and dual expressions of kinetic energy inspired from the classical concept of
Legendre transformation [30, p. 114]. This is based on the fact that the following forms of
kinetic energy are quantitatively equivalent:

K(mxr ,
mẋr ,

mRr ,
mṘr ,

reP ,, r ėP ) = K�(mV, rΩ r ,
rVP,e)

= 1

2

(

mB
mVT

(mẋr + ω̃m
mxr ) + rΩ r

T J (rωm + rWr )
)

+ 1

2

∫

V

rVP,e
T
(r ėP + (r ω̃m + r

˜Wr )
reP ,) ρdV .

(40)

Combining the relationships (40) and (38) allows construction of the canonical form of
kinetic energy

K�� = mB
mVT

(mẋr + ω̃m
mxr ) + rΩ r

T J (rωm + rWr )

+
∫

V

rVP,e
T
(r ėP + (r ω̃m + r

˜Wr )
reP ,) ρdV

− 1

2
mB

mVT mV − 1

2
rΩ r

T J rΩ r − 1

2

∫

V

rVP,e
T rVP,e ρdV .

(41)

Equation (41) is a two-field expression of kinetic energy in which displacement / rotation
and velocity fields play equal roles. As a result, second-order derivation in time will be
avoided in the development of the motion equations.

In order to derive the latter via Hamilton’s principle, a variation of the integral of the
kinetic energy over an interval [t1, t2] must be computed. Substituting into it the canonical
form (41)

δ

∫ t2

t1

K�� dt = δ

∫ t2

t1

(

mB
mVT

(mẋr + ω̃m
mxr )

+ rΩ r
T J (rωm + rWr )

+
∫

V

rVP,e
T
(r ėP + (r ω̃m + r

˜Wr )
reP ,) ρdV

−1

2
(mB

mVT mV + rΩ r
T JrΩ r +

∫

V

rVP,e
T rVP,e ρdV )

)

dt ,

(42)

allows development of the inertia contribution to the set of equations governing the motion
of the rotating flexible body.
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4.2 Compatibility in time

On the one hand, performing the velocity variations δmV, δrΩ r and δrVP,e restores the
kinematic conditions in time

– Translation velocity of the reference frame

mV − mẋr − ω̃m
mxr = 0. (43)

– Rotation velocity of the reference frame

rΩ r − rωm − rWr =
rΩ r − mRT

r ωm − vect(mRT
r

mṘr ) = 0.
(44)

– Elastic velocity

rVP,e − r ėP − (r ω̃m + r
˜Wr )

reP , =
rVP,e − r ėP − (mRT

r ω̃m
mRr + mRT

r
mṘr )

reP , = 0.
(45)

4.3 Equilibrium

On the other hand, extracting the inertia-force expressions from (42) requires integrating by
parts in time whenever appropriate.

In order to compute the rotation contribution, we will make use of the relationships (17)
and (24) relating the variation to the rotation operator mRr and its time derivative mṘr to the
angular variation δrθ r . and its derivative δr θ̇ r .

By performing the displacement variations δmxr , δrθ r ., and δreP , we calculate succes-
sively the inertia forces corresponding to:

– Equilibrium in translation:

−mB( ˙mV + ω̃m
mV). (46)

– Equilibrium in rotation: both the rigid-body rotary inertia and the elastic inertia contribute,
thus introducing coupling between rigid and elastic motion. The evaluation of the terms
of elastic origin is performed as was done in [24]. The final result is

−JrΩ̇ r − (r
˜Wr + r ω̃m)(JrΩ r +

∫

V

˜reP ,rVP,e ρdV )

−
∫

V

(r ẽP
rV̇P,e − r ṼP,e

r ėP ) ρdV .

(47)

– Elastic equilibrium: Since the elastic virtual displacement occurs inside the volume inte-
gral, this last term has to be kept in variational form

−
∫

V

δreP ,
T
(r V̇P,e + (r

˜Wr + r ω̃m)rVP,e) ρdV . (48)

In conclusion, we observe that the first-order set of equations governing the dynamics of
a flexible body undergoing uniform rotation keeps globally the same structure in the rotating
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frame as in the case of motion from rest in an inertial reference. The only difference lies in
the addition of a convection term involving the driving angular velocity rωm measured in
the body frame. The kinematic conditions to be fulfilled are simply modified through the
addition of the driving angular velocity.

The single-field, second-order form of the motion equations could a posteriori be ob-
tained through substitution of the time-compatibility equations (43)–(45) into the equilib-
rium equations (46)–(48). It is needless to stress the fact that adopting a two-field description
of the system dynamics clearly leads to considerable simplification in the problem formula-
tion.

5 Strain energy

Elastic forces in the body are derived from the assumption of the existence of an internal
potential energy Vint . The latter results from the integration over the body of the strain-
energy density W

Vint =
∫

V

W(εij ) dV, (49)

where the strain tensor εij is derived from the elastic displacements. The strain–displacement
relationship is assumed to be linear

εP = D reP , (50)

where D is the linear strain operator. Assuming also linear material behavior with E being
a symmetric, positive-definite matrix of the elastic coefficients, the internal potential energy
is described by the quadratic expression

Vint = 1

2

∫

V

(D reP )T E(D reP )dV . (51)

The stiffness contribution to elastic equilibrium is thus

∫

S

δreP
T nT E(D reP )dS −

∫

V

δreP
T DT (E(D reP )))dV, (52)

with S being the undeformed body surface and n the outer normal to it.

6 Finite-element discretization

The finite-element discretization is achieved in the material frame and based on a simul-
taneous interpolation of the motion and velocity fields. Special attention is given to the
discretization of inertia forces of gyroscopic origin. As will be seen, in the specific case of
3D solid modeling, obtaining the discretized expression of the gyroscopic forces is greatly
simplified using the Si matrices that can be derived from a mass kernel of the model.
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6.1 Choice of shape functions

Let us make the natural choice to discretize the elastic displacement and velocity fields using
the same set of shape functions in the form 4,5

re(X) =
⎡

⎣

e1

e2

e3

⎤

⎦ =
⎡

⎣

N1(X) 0 0

0 N2(X) 0

0 0 N3(X)

⎤

⎦

⎡

⎣

q1

q2

q3

⎤

⎦ = N(X)Lq (53)

and

rVe(X) =
⎡

⎣

V1

V2

V3

⎤

⎦ =
⎡

⎣

N1(X) 0 0

0 N2(X) 0

0 0 N3(X)

⎤

⎦

⎡

⎣

r1

r2

r3

⎤

⎦ = N(X)Lr, (54)

where qi , ri , Ni (X) i = 1,2,3 denote the generalized elastic displacement and velocity de-
grees of freedom and the matrix of shape functions in direction i, N(X) is the shape function
matrix

N(X) =
⎡

⎣

N1(X) 0 0

0 N2(X) 0

0 0 N3(X)

⎤

⎦ (55)

and L is a Boolean operator that reorders the degrees of freedom into the node-by-node set
q

⎡

⎣

q1

q2

q3

⎤

⎦ = Lq, (56)

which verifies the identity

LLT = I . (57)

6.2 Discretization of strain energy

Substituting the discretized form of elastic displacements (53) into the strain energy (51)
provides the discrete form of strain energy

Vint = 1

2
qT Kq, (58)

with the linear stiffness matrix

K =
∫

V

LT (D N(X))T E (D N(X))LdV . (59)

4At this stage, the notation can be somewhat simplified by omitting the subscript P to denote the material
point in the volume. From now on the subscript P will rather be used to denote a given node of the finite-
element mesh.
5Using the same set of shape functions to discretize the displacement and velocity fields is not a necessary
condition. The two-field approach can easily generalized to discretization of displacements and velocities
using different sets of shape functions [31].
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This is by construction symmetric, and the elastic forces associated with rigid-body motion
U vanish

KU = 0 . (60)

Assuming in all generality a discretization in terms of elastic translations and rotations at
nodes of the finite-element mesh, the generalized displacements at a given node P can be
computed in the following manner

qP =
[

εP

κP

]

=
[

mRT
r (mxP − mxr ) − rXP

p(mRT
r

mRP )

]

, (61)

where

– εP is a discrete set of translation displacements computed from (1),
– p(mRT

r
mRP ) is a set of 3 parameters (e.g., rotation parameters) measuring the relative

rotation mRT
r

mRP .

In the case of finite-element modeling using 3D solid elements, only the translation dis-
placements εP are generally defined at nodes. The angular dofs κP have to be used to build
finite-element models for 2D media such as beams and shells.

6.3 Discretization of inertia forces

A key issue in developing the expression of the elastic contribution to inertia forces is to
discretize the terms of gyroscopic origin appearing in equations (47) and (48). Their evalua-
tion is greatly simplified by assuming that the same shape functions are adopted in all three
directions in space

N1(X) = N2(X) = N3(X) = N�(X) (62)

as is generally the case when building 3D solid-element models .6 If the shape functions
adopted for the discretization of the strain energy do not fulfill that condition, it is still
possible to discretize the inertia forces in a nonconsistent manner with shape functions ful-
filling the condition (62). All the matrices resulting from the discretization of the elastic
inertia terms in (41) can then be developed in terms of the one-dimensional mass kernel

M� =
∫

V

N�(X)T N�(X)ρdV . (63)

The different matrices resulting from the discretization of the virtual work expression
(48) associated with elastic inertia forces are developed next.

6.3.1 Elastic mass matrix M

Discretizing the first part provides the expression of the elastic-mass matrix:

δqT fe,1 = −
∫

V

δreT rV̇e ρdV = −δqT Mṙ, (64)

6The condition (62) is also verified by the shape functions used to build a geometrically exact nonlinear beam
element with same degree of interpolation in extension, bending, and torsion.
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with, owing to (63), the elastic-mass matrix

M = LT

⎡

⎣

M� 0 0

0 M� 0

0 0 M�

⎤

⎦L . (65)

The essential condition (34) expressing orthogonality of elastic velocities to rigid-body
modes is discretized in the form

UT Mr = 0. (66)

Therefore, the shape functions (55) of the discretization must be selected so as to fulfill
this condition. An efficient way to fulfill condition (66) is to apply to the set of equations
Herting’s reduction method [26] as proposed in [24] and achieved in Sect. 7 since it makes
use of a combined set of attachment and free-free elastic modes orthogonal to rigid-body
motion to describe the elastic deformation.

6.3.2 Gyroscopic matrix G

In order to discretize the second term of (48), let us first simplify the notation by defining
the skew-symmetric matrix of “computed” angular velocities

α̃ = r
˜Wr + r ω̃m. (67)

The gyroscopic contribution is computed in the form

δqT fe,2 = −
∫

V

δ reT α̃ rVe ρdV

= −δqT LT

∫

V

N(X)α̃N(X) ρdV Lṙ

(68)

and, assuming isotropy of the mass matrix (Equation (65))

δqT fe,2 = −δqT LT

⎡

⎣

0 −α3M� α2M�

α3M� 0 −α1M�

−α2M� −α1M� 0

⎤

⎦Lṙ

= −δqT LT

⎡

⎣

0 −α3I α2I
α3I 0 −α1I

−α2I −α1I 0

⎤

⎦

⎡

⎣

M� 0 0

0 M� 0

0 0 M�

⎤

⎦Lṙ .

(69)

Taking into account the identity (57), the result (68) can finally be reorganized in the form

δqT fe,2 = −δqT A(α)Mṙ = −δqT G(α)ṙ, (70)

where the gyroscopic matrix G(α) appears to result very simply from the product

G(α) = A(α)M, (71)

with the skew-symmetric block-diagonal matrix

A(α) =
⎡

⎢

⎣

α̃ . . . 0
...

. . .
...

0 . . . α̃

⎤

⎥

⎦
. (72)
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Let us note that the gyroscopic matrix can easily be precomputed when expressing it in the
linear form

G(α) =
∑

i

αiGi with Gi = A(1̃i )M, (73)

with 1i being the unit vector along direction i.
We also note that matrices M and A(α̃) commute due to the skew-symmetry of matrix G

and the symmetry of matrix M

G(α) = A(α)M = −(A(α)M)T

= −M(A(α))T

= +MA(α) .

(74)

6.3.3 Gyroscopic coupling terms and Si matrices

Developing the elastic contribution to the dynamic equilibrium of the center of mass (Equa-
tion (47)) requires computing the discrete form of the volume integral

s(re, rVe) =
∫

V

r ẽ rVe ρdV = S(q)r . (75)

Equation (75) is a 3-component vector that can be decomposed in the form

s(re, rVe) =
∫

V

⎡

⎣

−eT
3 V2 + eT

2 V3

−eT
1 V3 + eT

3 V1

−eT
2 V1 + eT

1 V2

⎤

⎦ρdV . (76)

The vector components rei and rVei are discretized in the form

ei = Ni (X)LiqVi = Ni (X)Lir i = 1,2,3, (77)

where Li is the submatrix of the Boolean operator L that extracts from vector q its compo-
nents along direction i

L =
⎡

⎣

L1

L2

L3

⎤

⎦ . (78)

Assuming again isotropy of the shape functions, we obtain

s(re, rVe) =
⎡

⎣

qT (−LT
3 M�L2 + LT

2 M�L3)r
qT (−LT

1 M�L3 + LT
3 M�L1)r

qT (−LT
2 M�L1 + LT

1 M�L2)r

⎤

⎦ , (79)

a result that we write formally in the compact form

S(q)r =
⎡

⎣

qT S1r
qT S2r
qT S3r

⎤

⎦ = −S(r)q, (80)
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with the skew-symmetric Si matrices

Si = εijkLT
j M�Lk . (81)

The use of the Si matrices makes easy the computation of gyroscopic forces of elastic origin,
and also simplifies the computation of the gyroscopic matrix G as shown hereafter.

6.3.4 Alternative method to compute the gyroscopic matrix G

From a practical point of view, it might be convenient to express the gyroscopic matrix G
in terms of the same matrices (81). For that purpose, let us start again from the virtual work
expression (68). It can be transformed as follows

δqT fe,2 = −
∫

V

δreT α̃ rVe ρdV

= +αT

∫

V

δr ẽ rVe ρdV

, (82)

or, owing to (75) and (80)

δqT fe,2 = −δqT G(α)r = αT S(δq)r

=
∑

i

αiδqT Sir

= δqT (
∑

i

αiSi )r.

(83)

According to its definition (70), the final expression of the gyroscopic matrix is thus

G(α) = −
∑

i

αiSi . (84)

6.3.5 Discretized form of elastic inertia forces

The discretized form of elastic inertia forces results from Equation (48)

−
∫

V

(

δreT rV̇e − (rWr + mRT
r ωm)T

˜δrerVe

)

ρdV . (85)

We obtain immediately the discrete form

−Mṙ − G(rωm + rWr )r, (86)

where G(α) can be precomputed in the form (84).

6.3.6 Discretized form of inertia forces on the center of mass

Owing to Equations (79) and (80) the inertia forces (47) on the center of mass can be ex-
pressed in the form

−JrΩ̇ r − (r
˜Wr + r ω̃m)(JrΩ r + S(q)r) − S(q)ṙ + S(r)q̇, (87)

with S(q)r) and S(r)q) computed from (80).
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6.4 Discretized form of compatibility in time

The discretized form of the compatibility-in-time equation (45) results from the variational
equation extracted from (42)

∫

V

δrVe
T
(r ė + α)re − rVe) ρdV = 0 with α = rωm + rWr , (88)

or
∫

V

δrVe
T

(

(r ė − rVe) − αT δrṼe
re

)

ρdV = 0 . (89)

We thus obtain

δrT M(q̇ − r) − αT S(δr)q = 0, (90)

or, owing to (83)

Mq̇ + G(rωm + rWr )q − Mr = 0 . (91)

Finally, multiplying by M−1 and making use of (74) provides the discretized time-
compatibility relationship

q̇ + A(rωm + rWr )q − r = 0, (92)

where A(α) can be precomputed in the form

A(α) =
∑

i

αiA(1i ) . (93)

6.5 Summary

Table 3 summarizes the floating-frame equations obtained for the flexible body undergoing
a uniform angular velocity ωm. The equilibrium part represents the contribution of the body
to the equilibrium equations of the assembled global system. The translation motion of the
center of mass is expressed in the rotating frame, while its rotational motion is expressed
in the material frame. Worthwhile noticing is the fact that the rotation equilibrium about
the center of mass is modified by the elastic deformation of the body: the additional terms
involving the Si matrices (Equation (81)) represent in fact the change of inertia tensor due
to elastic deformation.

The last column of Table 3 provides the steady equations of the system. They can be
used to study the stationary response of the system in the rotating frame, as is the case for a
rotating system subject to mass unbalance.

Application of the essential orthogonality condition will be discussed in Sect. 7.

7 Superelement implementation

The superelement implementation of the floating system of equations of Table 3 can be
achieved by selecting a modal-reduction basis Y that equally applies to displacements and
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Table 3 Floating-frame equations of a flexible body undergoing uniform rotation ωm

Equation type dynamic case steady case

Center of mass

- Time compatibility mV − mẋr − ω̃m
mxr = 0 mV − ω̃m

mxr = 0
rΩr − rωm − rWr = 0 rΩr − rωm = 0

- Equilibrium −mB (ṁV + ω̃m
mV) −mB ω̃m

mV

−Jr Ω̇r − (r ˜Wr + r ω̃m)(JrΩr ) + r) −r ω̃m(JrΩr + S(q)r)

−(r ˜Wr + r ω̃m)S(q) + d
dt

(S(r)q)

Elastic model

- Time compatibility r − q̇ − A(rωm + rWr )q = 0 r − A(rωm)q = 0

- Equilibrium −Kq − Mṙ − G(rωm + rWr )r −Kq − G(rωm)r

- Essential condition UT Mr = 0

Definitions rωm = mRT
r ωm and rWr = vect(mRT

r
mṘr )

velocities7 [24, 25]

q = Yqr = Yr, (94)

q and r being the reduced sets of generalized displacements and velocities.
The choice of the modal basis Y is not arbitrary since it has to fulfill the following

requirements:

1. The orthogonality condition (66) of the elastic velocity field r to rigid-body modes is an
essential condition to be satisfied by the modal-reduction basis. The widely used Com-
ponent Mode Synthesis (CMS) method [19] cannot be used in this case since it generates
a modal-reduction basis composed of static boundary modes and vibration modes result-
ing from fixation conditions on the boundary. Indeed, by construction, the latter are not
orthogonal to rigid-body modes. Therefore, the CMS method does not fulfill the essential
condition (66) and is not applicable in the present case.

2. The modal-reduction method adopted should be able to provide a statically correct so-
lution on the boundary B of the reduced model to allow for a correct transmission of
reaction forces resulting from interaction between bodies of global system. This can be
achieved using a set of attachment modes, filtered from their rigid-body contribution in
order to fulfill the essential condition (66).

3. The boundary displacements qB should be a subset of the reduced set q to facilitate
kinematic connections on the boundary shared by adjacent bodies.

As demonstrated in [24, 25], conditions 1 and 2 are fulfilled by choosing a modal-reduction
scheme of type

q = Yq = [

FB Ψ
]

[

pB

η

]

, (95)

where FB is a set of free attachment modes defined on the boundary B , pB the associated
nodal intensities, Ψ a set of free-free vibration modes, and η the associated modal intensities.

7This supposes, as assumed before, that the same set of shape functions is adopted to discretize the displace-
ment and velocity fields.
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The modal-reduction scheme (95) as initially proposed in [32] is, however, not appropriate
as such due its hybrid nature, the pB being unknowns of force type.

A displacement to displacement relationship can be constructed from (95) using a trans-
formation proposed in [26, 27]. Equation (95) can then be recast in terms of the conjugated
boundary nodal displacements qB in the form

q =
[

I 0

FIBF−1
BB Ψ I − FIBF−1

BBΨ B

][

qB

η

]

. (96)

The matrices FBB , FIB , Ψ B , and Ψ I involved in the transformation result from a splitting
of the matrices FB and Ψ into boundary and internal contributions.

Not all discrete canonical equations are affected by the modal reduction. The modified
ones are:

– Equation (87) describing the contribution to rotational equilibrium of the center of mass,
rewritten in the form:

−JrΩ̇ r − (r
˜Wr + r ω̃m)(JrΩ r + S(Yq)Yr) + d

dt
(S(Yq)Yr) . (97)

Owing to Equation (80) the third term of (97) can be expressed as follows:

S(Yq)Yr =
⎡

⎣

qT YT S1Yr
qT YT S2Yr
qT YT S3Yr

⎤

⎦ =
⎡

⎣

qT S1r
qT S2r
qT S3r

⎤

⎦ = S(q)r, (98)

with the reduced skew-symmetric matrices

Si = YT SiY . (99)

The final form of the reduced contribution to rotational equilibrium of the floating center
of mass is thus

−JrΩ̇ r − (r
˜Wr + r ω̃m)(JrΩ r + S(q)r) + d

dt

(

S(q)r
)

. (100)

– The elastic momentum equation (91) that we first reduce in the form

YT MYq̇ + YT G(rωm + rWr )Yq − YT MYr = 0 . (101)

The first and last terms are expressed in terms of the reduced-mass matrix

M = YT MY, (102)

while, by making use of Equation (84), the reduced gyroscopic matrix of the second term
becomes

YT G(rωm + rWr )Yq = −
∑

i

(rωm + rWr )iYT SiY

= −
∑

i

(rωm + rWr )iSi = G(rωm + rWr )

(103)
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and therefore we can write (101) in the final form

Mq̇ + G(rωm + rWr )q − Mr = 0 , (104)

with the reduced gyroscopic matrix

G(rωm + rWr ) = −
∑

i

(rωm + rWr )iSi . (105)

From a computational standpoint it can be more efficient to rewrite it as a velocity
equation

q̇ + Aq − r = 0, (106)

with

A = M
−1

G(rωm + rWr ) , (107)

since the velocity dofs can then be eliminated at the superelement level, thus reducing the
number of unknowns of the global equation system.

– Finally, the contribution of the elastic continuum to dynamic equilibrium is reduced as

−YT KYq − YT MYṙ − −YT G(rωm + rWr )Yr (108)

and can obviously expressed as

−Kq − Mṙ − G(rωm + rWr )r, (109)

with the reduced stiffness matrix

K = YT KY . (110)

8 Vibration and stability of a single-disk rotating shaft

The first example is taken from reference [28]. It consists of a flexible shaft of length L

supported at its ends by bearings, as depicted in Fig. 2.
The shaft is connected to the ground at point R by means of a revolute joint and at point

T via a cylindrical joint. The angular speed of the shaft is a prescribed function of time,
	(t). A rigid disk is attached to the shaft at its midlength point M . The disk center of mass
is located a distance d above the reference axis of the shaft, thus creating an unbalance of
the system.

At t = 0, the shaft is at rest and deformed under the effect of the gravity acceleration
acting in the vertical direction. It is set in motion by prescribing its rotation at the revolute
joint, and lateral oscillations occur due to mass unbalance. As the shaft accelerates, it passes
through the first critical speed of the system (close to the first natural bending frequency) and
the operation goes from sub- to supercritical. As predicted by linear rotor dynamics theory,
the shaft becomes unstable when operating at the critical speed, and therefore the magni-
tudes of lateral oscillations and corresponding internal forces rise as the shaft is accelerated
through the critical speed.
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Fig. 2 Single-disk rotating shaft:
system layout [28]

Table 4 Single-disk rotating shaft: shaft sectional properties

Axial Shearing Shearing Torsional Bending Bending

EA kAG22 kAG33 GJ EI22 EI33

MN MN MN kN m2 kN m2 kN m2

313.4 60.5 60.5 272.7 354.5 354.5

The shaft has a length L = 6 m and is made of steel (density ρ = 7800 kg/m3, Young’s
modulus E = 210 GPa, and Poisson’s ratio ν = 0.3). The cross section is annular with
inner and outer radii ri = 0.045 and ro = 0.05 m, respectively. The shaft’s sectional stiffness
properties are summarized in Table 4.

The mass per unit length is m = 11.64 kg/m, the moments of inertia per unit length
are m22 = m33 = 13.17 g m2/m and the resulting polar moment of inertia per unit length
is m11 = 26.34 g m2/m. The circular disk at midlength is of mass md = 70.573 kg, radius
rd = 0.24 m, and thickness td = 0.05 m. Its inertial tensor computed with respect to the
center of mass is diagonal, diag(2.0325, 1.0163, 1.0163) g m2. Its center of mass is located
a distance d = 0.05 m above the shaft reference axis, thus generating a mass unbalance. The
gravity acceleration is g = 9.81 m/s2.

As in reference [28], the shaft rotation speed at the revolute joint is prescribed to be

	(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2A1ω[1 − cos( πt

T1
)], 0 ≤ t ≤ T1,

A1ω, T1 ≤ t ≤ T2,

A1ω + 1
2 (A2 − A1)ω[1 − cos(

π(t−T2)

T3−T2
)], T2 ≤ t ≤ T3,

A2ω, t > T3,

(111)

with the following parameter values: ω = 60 rad/s, A1 = 0.8, A2 = 1.2, T1 = 0.5 s, T2 = 1 s,
and T3 = 1.25 s.

The shaft has been modeled with 20 geometrically exact nonlinear beam elements with
independent linear interpolation of the displacement and velocity fields. Their inertia terms
of gyroscopic origin are developed according the procedure described in Sect. 7.
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Fig. 3 Single-disk rotating shaft:
trajectory of the shaft center at
midlength as seen by an inertial
observer

Fig. 4 Single-disk rotating shaft:
trajectory of the shaft center at
midlength as seen by a rotating
observer

As in [28], the system response has been first computed over a time interval of 2.5 s with
a constant time step h = 1.0 ms. The generalized-α time integration scheme for first-order
systems as described in [33] has been used with a spectral radius ρ∞ = 0.8. As in [28], the
shaft dynamic response is illustrated by the trajectory of its midspan point as viewed by
inertial and rotating observers. The plots of Figs. 3 and 4 are in complete agreement with
those of the reference.

The first eigenfrequency of the system at rest is ω1 = 9.08 Hz (57.05 rad/s) and therefore
the velocity profile (111) is such that the system crosses its first critical velocity during run-
up. As a result, the average position of the shaft center at midlength as seen by the rotating
observer is moving from positive to negative position along the z-axis. Figure 5 displays the
first natural frequency of the system as observed by a rotating observer, computed as

ωrot = ωiner − 	. (112)

It decreases linearly from ω1 = 9.08 Hz (green dot on the figure) to 0 at the critical speed
	cr = 56.3 rad/s. It is observed that the first critical speed remains close to the first natural
frequency. This could be expected since the first vibration mode is perfectly symmetric with
respect to the shaft midnode. As a result, there is no gyroscopic stiffening effect due to a
change of orientation of the polar component of the disk moment of momentum.

Describing the system in the rotating frame gives deeper insight into its physical behavior.
In that case, however, one has to take into account the time-varying character of the gravity
force.
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Fig. 5 Single-disk rotating shaft:
fundamental vibration frequency
ω1 versus rotation speed 	 as
measured by a rotating observer.
(Color figure online)

Fig. 6 Single-disk rotating shaft:
vertical displacement at the
midnode as seen by a rotating
observer at 	 = 4.54 Hz,
exhibiting beating between two
signals close to 9.0 Hz

All dynamic simulations presented below were done at constant speed starting from ho-
mogeneous initial conditions. They thus include a transient part of the response due to sud-
den application of both gravity and unbalance forces.

Gravity is responsible for a forcing vibration at frequency 	, as seen by the rotation
observer, which means that resonance would occur at the rotating velocities

	i = 0.5ωiner,i . (113)

In the present case, the first resonance due to gravity occurs at 	1 � 4.54 rad/s. Figure 6
displays the vertical displacement at the midnode at 	 = 4.54 rad/s as seen by a rotating ob-
server. The response is computed over a period of 1.5 s with a time step of 1.E-04 s. and with
spectral radius ρ∞ = 0.8. It can be interpreted as a beating between two signals (the free-
vibration response and the forced response due to gravity) with neighboring frequencies.

The system behavior has also been investigated by computing the rotatory motion at
different speeds below and above the critical speed 	cr = 56.3 rad/s. Figure 7 displays the
trajectories in the rotating frame of the disk center of mass at 30, 50, 70, and 90 rad/s. All
simulations were made with the same parameters as before. Two main observations can be
made:
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Fig. 7 Single-disk rotating shaft:
disk CM trajectories as seen by a
rotating observer at 	 = 30, 50,
70, and 90 rad/s. (Color figure
online)

– In all cases, the disk center of mass (CM) trajectory is confined in a circle of increasing
amplitude when approaching the critical speed.

– The average position of the CM moves from positive to negative z when passing the
critical speed, and tends to move back to the rotation axis at sufficiently high speed.

Finally, the steady-state behavior of the system in the rotating frame can also be in-
vestigated as long as the gravity effect is omitted. This results, as stated before, from the
assumption that the only inertia forces in the system are those generated by steady rotation
motion. The main advantage of the steady-state analysis is that it provides much informa-
tion on system behavior at negligible computation cost since it consists of a series of static
analyses.

The steady-state response of the system to unbalance has been investigated from 0.0 to
400.0 rad/s. Figure 8 displays the steady deflections along the material axis z of the disk
CM node and the shaft midnode as seen by a rotating observer. Only one critical velocity
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Fig. 8 Single-disk rotating shaft:
steady vertical displacements of
the disk CM node and shaft
midnode as seen by a rotating
observer. (Color figure online)

Fig. 9 Single-disk rotating shaft:
eigenfrequency spectrum of the
system over the speed rotation
range 0.0 to 400.0 rad/s as
measured by a rotating observer.
(Color figure online)

is appearing in that velocity range. As already observed, beyond the first critical speed, the
CM disk node tends to stay in the vicinity of the rotation axis. Finally, Fig. 9 displays the
frequency spectrum as computed at each speed step included in the steady-state analysis. It
shows the occurrence of a second critical speed around 300 rad/s that did not appear on the
uz steady response to unbalance as displayed by Fig. 8. Indeed, this second critical speed
corresponds to an antisymmetrical vibration mode that could not be excited by the specific
unbalance introduced in the system.

9 Dynamic response of a twin-disk rotor system

The second example is the twin-disk rotor system described in [23]. It is an electromagnet-
ically levitated rotor consisting of an elastic shaft equipped with two relatively thick elastic
disks, as shown in Fig. 10. In reference [23], a floating-frame model of the system was built
starting from the finite-element mesh with 3D solid elements, as shown in Fig. 10.

The rotor axle is 0.2 m long and has a diameter of 0.008 m. Two discs of radius 0.016 m
and 0.02 m are attached at lengths l1 = 0.036 m and l2 = 0.172 m, respectively. Both discs
are of thickness 0.004 m. The smaller disc, depicted in green, and the rotor axle are made of
steel with a density ρ = 7850 kg/m3, a Young’s modulus E = 2.1E11 N/m2 and a Poisson
ratio ν = 0.3. The larger disc is made of aluminum, with a density ρ = 2700 kg/m3, a
Young’s modulus E = 7.2 E10 N/m2 and a Poisson ratio ν = 0.3. A point mass of 10.0
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Fig. 10 Twin-disk rotor system:
finite-element model [23]

E-5 kg is attached to the larger disc, as visualized in Fig. 2. Due to this unbalance mass,
an eccentric motion of the rotor can be observed, which will be compared in the different
analyses. The total mass of the rotor is approximately 0.116 kg. The active and passive
parts of the electromagnetic bearings are modeled by spring-dampers with spring stiffness
k = 1000 N/m and damping coefficient c = 2 N/(m/s).

Due to the slenderness of the rotor axle, we have chosen to model it with geometrically
exact nonlinear beam elements of first order, with a description of the gyroscopic forces due
to overall motion included. Independent interpolation of displacements and velocities has
been performed as described in Sect. 6, but using position and rotation degrees of freedom.
The beam model of the rotor shaft numbers 20 elements.

The first vibration frequencies of both disks are estimated to 14 663.0 Hz and 9238.40 Hz
in a clamped configuration at their center, and 17 446.0 Hz and 11 697.0 in a free-free
configuration. They are clearly out of the range of investigation of rotor speed, and therefore
disk elasticity will be neglected in a first step. The effect of disk elasticity will be examined
later, and for that purpose the effect of a change in disk properties will also be investigated.

Table 5 provides a comparison of the vibration eigenspectra obtained from the solid-
element model of [23] and the current beam model. Two sets of values are provided in
each case, corresponding to free-free and on-bearing configurations. The frequency range
obtained for the whole system confirms that the effect of disk elasticity remains negligible
with regards to the rotation speed range in which the rotor behavior has to be investigated.

Finally, it is observed that the beam model provides systematically lower estimates of
eigenfrequencies than the solid one. A possible explanation could be that the solid model
needs to be further refined to properly capture the bending and shear properties of the shaft
as given by the beam model.

9.1 Linear vibration properties of the rotor system

In order to obtain a preliminary insight into the change in dynamic behavior of the system
with rotor speed, let us consider the linear eigenvalue problem that can be formulated in
the rotation frame. Without giving too much detail, owing to the fact that the stiffness and
damping properties of the bearings are isotropic, it can easily be established that the homo-
geneous equation governing the system dynamics in the absence of perturbation obeys the
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Table 5 Twin-disk rotor system: comparison of free-free and on-bearing eigenspectra computed from solid
and beam finite-element models

on-bearings free-free

mode type frequency (Hz) error (%) frequency (Hz) error (%)

solid beam solid beam

translation 21.6 20.67 4.5 0.0 0.0 –

translation 21.6 20.67 4.5 0.0 0.0 –

tilting 35.6 34.13 4.3 0.0 0.0 –

tilting 35.6 34.13 4.3 0.0 0.0 –

bending 868.0 853.1 1.7 866.9 850.6 1.8

bending 868.1 853.1 1.7 866.9 850.6 1.8

bending 2325.9 2273.7 2.2 2325.3 2273.1 2.2

bending 2326.1 2273.7 2.2 2325.6 2273.1 2.2

bending 4204.7 4029.9 4.1 4204.4 4029.6 4.1

bending 4205.5 4029.9 4.1 4205.1 4029.6 4.1

bending 6811.7 6503.6 4.5 6 811.5 6503.4 4.5

bending 6812.6 6503.6 4.5 6812.5 6503.4 4.5

Fig. 11 Twin-disk rotor system:
vibration frequencies observed in
a rotating frame versus rotation
speed: critical speeds occur at
19.6, 36.4, 918.8, and 2664.9 Hz.
(Color figure online)

general form

(

K + Kc(ω
2
m) + Kd(ωm)

)

q + (C + G(ωm)) q̇ + Mq̈ = 0, (114)

with the following definitions:

– K and M are the linear stiffness and mass matrices of the system at rest, resulting from
beam elasticity and inertia, and bearing elasticity.

– Kc(ω
2
m) and G(ωm) are the centrifugal stiffness and gyroscopic matrices, resulting from

beam and disk inertia in rotation. The latter are developed in Appendix A.
– C is the linear damping matrix from the bearings at rest. This is developed in Appendix B.
– Kd(ωm) is a “damping stiffness matrix”, resulting from the expression of the damping

forces in the bearings as seen by a rotating observer. This is also developed in Appendix B.
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The second-order eigenvalue problem (114) can be recast in the first-order form

[

K + Kc(ω
2
m) + Kd(ωm) C + G(ωm)

0 −I

][

q
v

]

+
[

0 M
I 0

][

q̇
v̇

]

= 0 (115)

and its eigenvalues obey the general form

λi = αi ± ωi, (116)

where ωi is the frequency of the vibration motion observed in the rotating frame, and αi is a
damping constant resulting from dissipation in the bearings. The damping constants vanish
when Kd(ωm) = C = 0 .

Figure 11 displays a Campbell plot of the system. It shows the existence of four critical
speeds over the rotation speed range 0–3500 Hz: two critical speeds at 19.6 and 36.4 Hz due
to rigid translation and tilting of the shaft over its bearings, and two critical speeds at 918.8
and 2664.9 Hz corresponding to bending deformation of the shaft. The latter result from the
existence of bending vibration frequencies at 853 and 2274 Hz. They are shifted upward due
to the stiffening effect generated by the centrifugal torque on the disks.

9.2 Steady-state motion

Provided that the rotor bearings have symmetric properties in the rotor transverse plane, the
system response at constant rotor speed to mass unbalance is a steady one. Therefore, it is
characterized by the fact that the elastic velocities q̇ and the global accelerations ṙ observed
in the rotating frame vanish

q̇ = 0 ṙ = 0 . (117)

The kinematic compatibility equations in time (43), (44), and (92) then reduce to the form

r = h(q,ωm) . (118)

Likewise, the set of equilibrium equations describes a nonlinear static equilibrium problem

finer (q, r,ωm) − fint (q) = 0 , (119)

where finer (q, r,ωm) is a distribution of inertia forces that depends on a steady global ve-
locity and elastic deformation. In the case of purely symmetric mass distribution, Equation
(119) reduces to finer (r,ωm) = 0 , meaning that the inertia forces are in self-equilibrium and
do not produce elastic deformation. In the case of mass unbalance, however, additional cen-
trifugal and gyroscopic forces occur that induce steady elastic deformation q solutions of
the stationary equation (119).

Sweeping over a specified speed range and computing the steady response from Equa-
tions (118) and (119) at each velocity step provides a fast characterization of system re-
sponse to unbalance, as shown in Fig. 12. As expected, the largest displacement amplitudes
occur on the bearings at the main critical frequency (918.8 Hz). Beyond the main critical
speed, stabilization of the system occurs. Therefore, the geometric center of the steel disk
tends to stay on the rotation axis since it coincides with the center of mass. Conversely, the
geometric center of the aluminum disk moves away from the rotation axis so that the disk
center of mass remains on the axis.
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Fig. 12 Twin-disk rotor system:
displacement amplitudes induced
by mass unbalance at midlength,
bearings, and disk centers. (Color
figure online)

Fig. 13 Twin-disk rotor system:
system eigenfrequencies
computed from steady responses
during velocity sweep. (Color
figure online)

The system eigenfrequencies have been recomputed from the nonlinear steady model
during the sweep over the velocity range, as displayed in Fig. 13. One can observe that they
match exactly the frequencies obtained before from the linear model (Fig. 11) since, the
mass unbalance being small, the system deflections remain small.

9.3 Dynamic response at fixed rotation velocity

Another way to investigate the system behavior is to observe in the rotating frame the dy-
namic response of the system under mass unbalance at different rotation speeds. The prin-
ciple of the analysis is thus to compute the dynamic response at given ωm starting from ho-
mogeneous initial conditions, and select a time-integration window wide enough to observe
stabilization of the response. In practice, the time window has been set to 0.1 s. Figure 14
displays the responses in the rotating frame observed at 318 Hz and 923 hz. In the first case,
the response observed remains small and oscillatory after extinction of the transients. It can
be verified that the oscillation frequency matches the frequency predicted by the Campbell
plot of Fig. 13. In the second case, the driving velocity being close to the fundamental speed,
the oscillation frequency is close to 0. After extinction of the transients, one thus observes
in the rotating frame a quasisteady response. The mass unbalance being attached to the alu-
minum disk, the latter thus undergoes a significantly larger displacement than the disk of
steel.

Still another way to exploit the results provided by the successive dynamic responses
at constant speed consists in computing the Fast Fourier Transforms of the successive re-
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Fig. 14 Twin-disk rotor system: dynamic response in the rotating frame due to unbalance at constant speeds
(318 and 923 Hz). (Color figure online)

Fig. 15 Twin-disk rotor system: FFT of dynamic responses in the rotating frame due to unbalance at 318 Hz
(left) and 923 Hz (right). (Color figure online)

Fig. 16 Twin-disk rotor system: comparison between steady response amplitudes and FFT amplitudes at zero
frequency for uZ displacement at both disks. (Color figure online)

sponses. Figure 15 displays the FFTs corresponding to the dynamic responses of uZ dis-
placements at both disks. Their maximum value occurs at zero frequency, which corresponds
to the steady response in the rotation frame. They exhibit a much lower contribution around
the rotation speed at which the response is evaluated.

It is interesting to make a plot of these amplitudes versus rotation speed and compare
them to the amplitudes resulting from the computation of steady responses, as is done in
Fig. 16. As could be expected, there is a perfect agreement between both methods of in-
vestigation of system behavior. The main advantage of the steady-response approach is that
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Fig. 17 Velocity profile on
specified speed range

Fig. 18 Twin-disk rotor system: dynamic response during run-up form 0 to 1000 rad/s in 1.0 s. (Color figure
online)

it provides an extremely fast characterization of the response with regards to the higher
computational cost of dynamic responses.

9.4 Dynamic response over a specified velocity range

A nice feature of the proposed formalism to simulate the solution in a rotating frame at con-
stant velocity is that it allows investigation of the dynamic response over a specified velocity
range, as shown in Fig. 17. It is thus not needed to simulate a run-up from zero velocity to
examine the system properties in a given speed range. This has a double advantage: not only
is there significant saving of computational effort, but isolating the specified speed range
facilitates result interpretation.

In order to investigate a given speed range 	(t) ∈ [	1,	2] on a time interval [0, T ], the
effective excitation on the system is defined as an angular rotation-imposed motion in the
form

φ(t) =
∫ T

0
(	(t) − ωm)dt, (120)

with ωm = 	1. Figure 18 displays the dynamic response observed in the rotating frame at
both disk geometric centers during a run-up from 0 to 1000 rad/s in 1.0 s followed by a ro-
tation at constant speed during 0.5 s. The parameters of the generalized-α time-integration
method are h = 3.e-3 s and ρ∞ = 0.5. One observes a very fast stabilization of the re-
sponse after 1.0 s since the velocity is then kept constant to 1000 rad/s. Likewise, Fig. 19
displays the response observed at both disk geometric centers during a run-up from 5000
to 6500 rad/s in 1.5 s. The rotation speed is maintained at 5000 rad/s for 0.2 s in order
to start the run-up period with correct initial conditions. A second constant-velocity period
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Fig. 19 Twin-disk rotor system: dynamic response on the run-up speed interval 5000–6500 rad/s. (Color
figure online)

Fig. 20 3D finite-element
modeling of the disks. (Color
figure online)

starts at 1.7 s during which stabilization of the response takes place. The parameters of
the generalized-α time-integration method for this second simulation are h = 8.e-5 s and
ρ∞ = 0.5. The speed range has been chosen so as to include the main critical speed of the
system at 918 Hz. Due to the speed change over time, the maximum of the response occurs
after crossing of the critical speed at 0.95 s. Again, very rapid stabilization of the response
is observed in the zero-acceleration zone starting at 1.7 s.

9.5 Taking account of disk elastic behavior

Despite the high vibration frequency range of the disks (f1 = 14 663.0 Hz for the steel disk,
f1 = 9238.40 Hz for the aluminum disk in the clamped configuration), it has been decided
to represent the elastic disks by elastic superelement models developed according to the
methodology developed in Sect. 7. For that purpose, 3D finite-element models have been
defined as displayed in Fig. 20. The number of nodes of the initial model for both disks is
2915.

In order to exploit the model obtained from a standard finite-element analysis, different
transformations have to be performed on the (K, M) matrices obtained.

– First, a central node has to be defined to express the connection between the 3D disk
models and the shaft-beam model. For that purpose, it is assumed that the central inner
ring of both disks is rigid. In both disks, 265 nodes of the inner-ring region are assumed to
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Fig. 21 Twin-disk rotor system: comparison of rigid and elastic steady responses at disk steel (left) and
aluminum (right). (Color figure online)

participate in the connection. Therefore, 795 linear constraints are expressed to link these
nodes to a fictitious 6-dof node located at the center of the inner ring.

– Secondly, this constrained model is transformed into a superelement model following the
procedure described in Sect. 7. This includes the reference node defined at the floating
center of mass, the boundary node defined on the central ring for connection with the
beam model, a second boundary node at which the unbalance mass can be attached and 5
free-free vibration modes that enrich the vibration content of the model. The superelement
being constructed with independent interpolation of displacement and velocity fields, also
numbers 20 velocity degrees of freedom.

– Finally, the gyroscopic matrices S of the superelement are constructed and reduced con-
sistently to K and M as described in Sect. 7.

Figure 21 displays a comparison of the quasisteady responses obtained for both disks over
the rotating speed range (0, 3000) Hz. The blue lines represent the rigid response while the
red dots show the elastic ones. As was expected, taking into account the elastic behavior
of the disks has no effect on the system response. It has been verified that the dynamic
responses over different speed ranges match each other in the same manner.

9.6 Modified shaft exhibiting elastic deformation

In order to investigate the effect of disk elasticity on the system behavior and also validate
the superelement methodology developed for that purpose, the initial shaft model has been
modified to increase disk elasticity. In order to keep the system modification realistic it
has been assumed that both disks keep the same mass, but have their radius doubled and
thickness thus reduced by a 0.25 factor in order to lower their vibration frequency range.

In the rigid configuration it is expected that the main critical velocities will increase
compared to the nominal case since the polar moment of inertia of both disks is increased,
thus generating higher gyroscopic torques at the disk-attachment points.

The size of the 3D finite-element models had to be increased (16 530 nodes for the steel
disk, 25 530 for the aluminum disk) in order to generate models with elements having an
appropriate aspect ratio. The disk fundamental vibration frequencies in the free-free config-
uration are now 1217 Hz (steel disk) and 1279 Hz (aluminum disk), so that strong interaction
between shaft and disk deformation is now expected.

Figure 22 displays the first vibration mode of the steel disk occurring at 1217 Hz. The
reduction procedure to construct the disk superelement models is similar to the nominal
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Fig. 22 First vibration mode of the 2R radius steel disk at 1217 Hz. (Color figure online)

Fig. 23 Twin-disk rotor system with disks of 2R radius: comparison of vibration frequencies between the
rigid model (left) and the elastic one (right). (Color figure online)

case, the only difference being that the number of nodes participating in the constraint sets
that define the fictitious central nodes are now obtained from 570 nodes.

A detailed comparison has been made, as in the nominal case, between the rigid and
elastic models with disks of 2R size.

A very interesting piece of information results from the comparison of the steady re-
sponses to mass unbalance. As before, Campbell diagrams showing vibration frequencies in
the rotating frame versus rotation speed have been obtained. Figure 23 displays the vibration
spectra obtained successively with rigid and elastic disks of 2R radius.

On the one hand, it can be observed for the rigid case (left figure) that increasing the disk
inertias (masses being constant) shifts to the right both critical speeds due to shaft bending.
The first one now occurs at 1019 Hz (instead of 918 Hz) and the second one occurs above
3000 Hz (instead of � 2600 Hz before). This frequency increase results from the larger disk
inertias that generate higher stabilizing gyroscopic torques at disk-attachment nodes.

On the other hand, the elastic response (right figure) shows that there is now interac-
tion between shaft and disk deformation since vibration shaft and disk frequencies are now
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Fig. 24 Twin-disk rotor system with disks of 2R radius: comparison of steady responses to unbalance be-
tween the rigid model (left) and the elastic one (right). (Color figure online)

within the same range. Therefore, one observes a significant decrease in critical velocities
associated with bending: the first one decreases from 1019 to 931 Hz and the second one
occurs now at 2530 Hz.

A significant change in dynamic behavior resulting form disk elastic deformation can be
observed from the comparison of the steady responses to mass unbalance on Figure 24. On
the one hand, the shift in amplitude responses is consistent with the results of the eigenvalue
analysis. On the other hand, it is observed that disk elastic deformation has a beneficial
effect on amplitude response: there is not only a reduction of amplitude response at the
critical speeds, but also a drastic change of response amplitude between critical speeds.

10 Conclusion

The two-field, floating frame-of-reference approach to the dynamics of a flexible body has
been extended to the case of motion in a noninertial frame rotating at fixed angular velocity.
Independent finite-element discretization of displacements and velocities leads to a system
of second-order equations. It has been shown that in the case of 3D solid modeling in par-
ticular, all inertia terms can be easily and exactly evaluated using the concept of Si matrices
obtained from a 1D mass kernel. In the case of model reduction, the Si matrices of the ini-
tial model obey the same reduction scheme as the stiffness and mass matrices. The size of
the resulting mixed FE model can always be drastically reduced through elimination of the
velocity dofs at the element (superelement) level.

The proposed approach has been implemented in the JUDYN prototype code written
in the JULIA© language. Both examples presented have been selected and developed to
emphasize the main features of the proposed methodology, namely:

– the ability to develop easily and without any approximation the inertia terms of gyroscopic
origin of a flexible body thanks to the independent discretization of displacements/rota-
tions and velocities on the one hand, and on the use of the concept of Si matrices on the
other hand;

– the possibility to study the dynamic response of the system within a given speed range
without the need to start the simulation from zero speed;

– the capability to provide stationary responses in the rotating frame such as response to
mass unbalance as solutions of a static problem.
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Appendix A: Linearization of rigid-body inertia forces

The case of the rigid body is directly deduced from Equations (43), (44), (46), and (47)
governing the motion of the center of mass in the absence of elastic deformation.

Kinematic compatibility in time is thus described by the set of equations

mV − mẋr − ω̃m
mxr = 0 (A.1)

rΩ r − rωm − rWr = 0, (A.2)

while inertia behavior is described by the forces and torques

ftr = −mB ( ˙mV + ω̃m
mV) (A.3)

frot = −J rΩ̇ r − (r
˜Wr + r ω̃m)J rΩ r . (A.4)

In order to understand how the gyroscopic forces generated by a fast rotating rigid disk
influence the behavior of their support, it is of interest to perform the linearization of the
rotation field and express the inertia forces in second-order form.

For the translation part (A.3) we obtain

ftr = −mB( ˙mV + 2ω̃m ˙mxr + ω̃mω̃m
mxr ) . (A.5)

For the rotation part (A.4), assuming small rotations from the rotating frame to the body
frame

mRr � I +
⎡

⎣

0 −ψ3 ψ2

ψ3 0 −ψ1

−ψ2 ψ1 0

⎤

⎦ = I + ψ̃ with ψ =
⎡

⎣

ψ1

ψ2

ψ3

⎤

⎦ , (A.6)

we obtain

rωm � ωm + ω̃mψ . (A.7)

The angular-velocity vector from body to rotation frame is likewise linearized in the form

r̃W = mRT
r

mṘr �
⎡

⎣

0 −ψ̇3 ψ̇2

ψ̇3 0 −ψ̇1

−ψ̇2 ψ̇1 0

⎤

⎦ ↔ Ψ � ψ̇ . (A.8)

Substituting (A.7) and (A.8) into (A.2) provides the linearized expression of the kinematic
compatibility relationship as

rΩr − ωm − ω̃mψ − ψ̇ = 0 . (A.9)

Likewise, if the equations governing the rigid body are formulated in second-order form, the
angular acceleration is linearized as

rΩ̇ r � ψ̈ + ω̃mψ̇ . (A.10)

Finally, substituting (A.7), (A.8), and (A.10) into (A.4) provides the linearized form of the
rotation inertia torque

frot = −Jψ̈ − (Jω̃m + ω̃mJ − ˜Jωm)ψ̇ − (ω̃mJω̃m − ˜Jωmω̃m)ψ + O(ψ2)

= −Jψ̈ − G(ωm)ψ̇ − K(ω2
m)ψ .

(A.11)
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The matrices

G(ωm)Jω̃m + ω̃mJ − ˜Jωm (A.12)

K(ω2
m) = (ω̃mJω̃m − ˜Jωmω̃m) (A.13)

are, respectively, the gyroscopic matrix and the centrifugal stiffness matrices of the rigid
body. Their explicit form can easily be obtained when the body axes are the principal axes
of inertia:

J =
⎡

⎣

Jx 0 0
0 Jy 0
0 0 Jz

⎤

⎦ . (A.14)

We obtain the matrices

G(ωm) =
⎡

⎣

0 −ω3(Jx + Jy − Jz) ω2(Jx + Jz − Jy)

ω3(Jx + Jy − Jz) 0 −ω1(Jy + Jz − Jx)

−ω2(Jx + Jz − Jy) ω1(Jy + Jz − Jx) 0

⎤

⎦ (A.15)

and

K(ω2
m) =

⎡

⎣

(ω2
3 − ω2

2)(Jz − Jy) ω1ω2(Jz − Jy) ω1ω3(Jy − Jz)

ω1ω2(Jz − Jx) (ω2
1 − ω2

3)(Jx − Jz) ω2ω3(Jx − Jz)

ω1ω3(Jy − Jx) ω2ω3(Jx − Jy) (ω2
1 − ω2

2)(Jx − Jy)

⎤

⎦ . (A.16)

In the common case of a rigid body rotating at the uniform velocity ωm around the body axis
X

ωT
m = ωm

[

1 0 0
]

, (A.17)

they are further simplified as

G(ωm) =
⎡

⎣

0 0 0
0 0 −ωm(Jy + Jz − Jx)

0 ωm(Jy + Jz − Jx) 0

⎤

⎦ (A.18)

and

K(ω2
m) =

⎡

⎣

0 0 0
0 ω2

m(Jx − Jz) 0
0 0 ω2

m(Jx − Jy)

⎤

⎦ . (A.19)

It is immediately observed from (A.19) that the centrifugal forces on a rigid disk exert a
stiffening effect when its inertia properties are such that Jx > Jz and Jx > Jy .

Appendix B: Bearing modeling

Assuming that there is no crosscoupling between directions, a simple bearing model with
linear stiffness ki and viscous damping ci properties can be described in the inertial frame
by a constitutive law in the form

fbearing = diag(k1, k2, k3)xb + diag(c1, c2, c3)ẋb , (B.20)
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where xb is the position vector of the bearing central point. Its expression into the rotation
frame mRr with angular velocity ωm becomes

mfbearing = mRT
r fbearing

= mRT
r (diag(k1, k2, k3)

mRr
mxb

+ mRT
r diag(c1, c2, c3)

mRr
mẋb + mRT

r diag(c1, c2, c3)
mRr ω̃m

mxb.

(B.21)

It is immediately apparent that, in the absence of isotropic stiffness and damping properties,
the bearing will be characterized in the rotating frame by time-varying stiffness and damping
matrices

Kbearing(t) = mRT
r (diag(k1, k2, k3)

mRr + diag(c1, c2, c3)
mRr ω̃m)

Cbearing(t) = mRT
r diag(c1, c2, c3)

mRr .
(B.22)

Therefore, in the general case, there is no possible steady motion of the system.
The special case of bearings with transverse isotropic properties for a system rotating

about the Ox -axis (with angular velocity thus of the form ωT
m = [ωm 0 0]) can be described

by assuming stiffness and damping matrices of the system at rest as

K0 = kI0, C0 = cI0 with I0 = diag(1, 1, 0) . (B.23)

The bearing is then characterized in the rotating frame by the constant stiffness and damping
matrices

Kbearing = kI0 + cI0 ω̃m =
⎡

⎣

0 0 0
0 k −ωmc

0 ωmc k

⎤

⎦ (B.24)

Cbearing = cI0 =
⎡

⎣

0 0 0
0 c 0
0 0 c

⎤

⎦ . (B.25)

Equation (B.24) shows that, in the rotating frame, there is a skew-symmetric contribution of
the bearing viscous damping to the stiffness matrix.
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