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Abstract
The formulation of constrained system dynamics using coordinate projection onto a sub-
space locally tangent to the constraint manifold is revisited using the QR factorization of the
constraint Jacobian matrix to extract a suitable subspace and integrating the evolution of the
QR factorization along with that of the constraint Jacobian matrix, as the solution evolves.
A true continuation algorithm is thus proposed to track the evolution of the subspace of in-
dependent coordinates. It does not visibly affect the quality of the solution but avoids the
artificial algorithmic irregularities or discontinuities in the generalized velocities that could
otherwise result from arbitrary reparameterizations of the coordinate set. The characteristics
of the proposed subspace evolution approach are exemplified by solving simple single- and
multi-degree-of-freedom problems.

Keywords Minimal coordinate set · Coordinate projection · Automatic coordinate
reduction · QR factorization

1 Introduction

In mechanical system dynamics, unconstrained dynamics problems are usually formulated
as a set of second-order ordinary differential equations (ODE) that depend on a correspond-
ing set of coordinates. A convenient approximation to describe the interaction between the
parts of the system is often their idealization at a purely kinematic level, as algebraic rela-
tionships between the coordinates of those parts. The addition of these algebraic equations
turns the problem into a system of differential-algebraic equations (DAE). The original coor-
dinates are no longer independent; the actual number of independent coordinates reduces to
that of the truly independent degrees of freedom. The enforcement of the constraints results
in constraint reaction generalized forces, usually formulated as Lagrange multipliers. They
represent the (unknown) internal forces whose value is whatever is required to guarantee the
constraints’ enforcement. A review of the possible approaches can be found in [1].
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The constrained dynamics problem can be solved either directly, as a system of DAEs,
where the original coordinates, augmented by the Lagrange multipliers, represent the un-
knowns in the so-called redundant coordinate set (RCS) formulation or, through manipu-
lations that will be detailed in a later section, it can be transformed into the corresponding
underlying ODE problem, reducing the set of coordinates to the truly independent (La-
grangian) ones, following the so-called minimal coordinate set (MCS) formulation. For a
review of the possible approaches, see for example [2]. This paper focuses on this latter
approach.

It is worth noticing that a third approach is possible, i.e., to somehow embed the con-
straints in the unconstrained problem, formally preserving its original structure and un-
knowns. See for example the so-called augmented Lagrangian approach [3] or the force
projection method [4], as discussed in [5]. In this case, the problem formally reduces as
well to ODE, with all the related implications, opportunities, and limitations in terms of ap-
proaches for its numerical integration: explicit methods can be used, subjected to conditional
stability limitations.

It is recognized that the reduction of the original coordinates into the MCS may be a
challenging task and that their nature is local, i.e., there may not exist a generally valid
choice, which works for all configurations of the system [6]. Such a choice being local,
when the coordinates need to be redefined with respect to a new configuration, discontinu-
ities are expected in the generalized coordinates (specifically, in their derivatives), although
such discontinuities are not related to any physical discontinuity in the kinematics or dy-
namics of the system. Indeed, the motion with respect to the original coordinates is not
expected to show any discontinuity, the latter being mere artifacts of a redefinition of the
local coordinates across time steps.

As originally discussed in [7], this work presents a well-known and effective method for
selecting a subspace of independent coordinates that is intrinsically tangent to the constraint
manifold at a specific configuration, based on the QR factorization of the constraint Jaco-
bian matrix, and discusses how to operate the redefinition of the coordinates’ subspace in a
continuous manner, whenever possible, to eliminate those unnecessary, formal discontinu-
ities.

What this work does not is advocate any superiority of the MCS over other approaches,
nor any superiority of the proposed coordinate selection algorithm over others, especially in
terms of performances. Being at its core a mere recombination of the coordinates, it does
not substantially impact the effectiveness nor the efficiency of the solution, the required or
allowed time step, nor the computational time, with the possible exception of the additional
operations needed by the proposed coordinate selection, which likely add some minimal
computational burden.

2 Problem description

2.1 Constrained dynamics problem formulation

A generic constrained system dynamics problem is formulated by adding m (holonomic
in the present case, without excessive loss of generality, and ideal) independent kinematic
constraints as the set of algebraic equations

c(x, t) = 0 (1)
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with c ∈ R
m, to a set of n ordinary differential equations (n ≥ m, but usually n > m) that

express the dynamics of an unconstrained system of n coordinates x ∈R
n,

Mẍ = f (2)

subjected to a set of generalized forces f ∈ R
n, energetically conjugated to a virtual per-

turbation of the coordinates δx, where M ∈ R
n×n is the symmetric, positive-definite mass

matrix. These equations are modified by the addition of the constraint reactions fc = −cT
/xλ

as follows:

Mẍ + cT
/xλ = f, (3)

where c/x = A ∈ R
m×n is the partial derivative of the constraint equations c with respect to

the coordinates x, namely the constraint Jacobian matrix, which is expected to be full-rank
thanks to the previously assumed independence of the constraints, and λ ∈ R

m is the vector
of the corresponding Lagrange multipliers.

The rank of the constraint Jacobian matrix could reduce in case singular configurations
are reached. This condition would be critical irrespective of the formulation in use, and thus
it is not specific to the present discussion. For this reason, it is not explicitly treated.

2.2 Minimal coordinate set approach

The minimal coordinate set approach consists in defining a suitable subspace T ∈ R
n×(n−m)

of the space spanned by the coordinates x that is tangent to the constraint manifold, namely
TT AT ≡ 0 ∈R

(n−m)×m, such that

ẋ = Tq̇ + β ′ (4a)

ẍ = Tq̈ + β ′′, (4b)

where q ∈ R
n−m are local, truly independent coordinates, with β ′ and β ′′ defined accord-

ingly, the former being nonzero only in case of rheonomous constraints such that

c/xẋ + c/t = 0 → c/x
(
Tq̇ + β ′) + c/t = 0 → c/xβ

′ = −c/t (5)

as c/xT = AT ≡ 0 holds, and analogously

c/xẍ + (ċ)/x ẋ + (ċ)/t = 0 → c/xβ
′′ = − (ċ)/x ẋ − (ċ)/t . (6)

Suitable expressions of β ′ and β ′′ are determined later.
The constrained dynamics problem, projected in such a subspace, yields

TT MTq̈ +���TT AT λ = TT
(
f − Mβ ′′) . (7)

The solution is sought by first integrating Eq. (7) to obtain the generalized velocities q̇; then,
Eq. (4a) is integrated to obtain an estimate of x, which needs to be subsequently refined by
enforcing the constraint at the position level, Eq. (1).

The cancellation of the term TT AT in Eq. (7) is guaranteed by the constraint ideality
assumption. When this is not the case, e.g., in the presence of friction, the Lagrange mul-
tipliers need to be computed from local equilibria. This problem is common to all MCS
formulations and not specific to the present discussion.
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2.3 QR factorization for optimal minimal coordinate set selection

Among the several approaches proposed in the literature [8], a suitable choice for matrix
T is obtained through the QR factorization [9] of the transpose of the constraint Jacobian
matrix

AT = QR = [
Q1 Q2

][
R1

0

]
= Q1R1, (8)

where matrix Q ∈ R
n×n is orthogonal and submatrix R1 ∈ R

m×m is upper triangular. Sub-
matrix Q2 ∈ R

n×(n−m), although not uniquely determined, represents an optimal choice for
T, as discussed in the following.

The velocities can then be expressed as

ẋ = Q2q̇ + Q1p′ (9)

with Q1p′ = β ′, such that

0 = Aẋ + c/t

= RT
1 QT

1

(
Q2q̇ + Q1p′) + c/t

= RT
1 p′ + c/t , (10)

which yields

p′ = −R−T
1 c/t , (11)

whereas the accelerations can be expressed as

ẍ = Q2q̈ + Q1p′′ (12)

with Q1p′′ = β ′′, such that

0 = Aẍ + (ċ)/x ẋ + (ċ)/t

= RT
1 QT

1

(
Q2q̈ + Q1p′′) + (ċ)/x ẋ + (ċ)/t

= RT
1 p′′ + (ċ)/x ẋ + (ċ)/t , (13)

which yields

p′′ = −R−T
1

[
(ċ)/x ẋ + (ċ)/t

]
. (14)

Notice that the inversion of matrix R1 is straightforward since it is triangular and nonsingular
when the constraints are independent; thus, only a back substitution is needed.

According to Eqs. (7) and (9), the problem becomes

QT
2 MQ2q̈ = QT

2

(
f − Mβ ′′) (15a)

ẋ = Q2q̇ + Q1p′, (15b)

a form that resembles the one originally devised by Maggi [10, 11] and subsequently repro-
posed by Kane [12], nowadays known as Maggi–Kane equations.
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Its integration from time tk to tk+1 yields

x(0)

k+1 = Q2k
qk+1 + Q1k

p(0), (16)

where the superscript (·)(0) indicates an estimate of the final value, pending verification that
it complies with the constraint of Eq. (1). The final value of the unknown p results from the
iterative solution of

c(xk+1, tk+1) = 0, (17)

namely

c
(

x(i)

k+1, tk+1

)
+ (

c/x
)(i)

k+1
Q1k

�p = 0, (18)

i.e.,

�p = −
((

c/x
)(i)

k+1
Q1k

)−1
c
(

x(i)

k+1, tk+1

)
(19a)

p += �p, (19b)

where
(
c/x

)(i)

k+1
is the constraint Jacobian matrix at time tk+1 during the ith constraint en-

forcement iteration, evaluated as a function of x(i)

k+1. Operator += signifies the incremental
update of the left-hand side by way of the right-hand side.

2.4 Other choices for subspace selection

Other methods have been conceived to determine a suitable subspace of the unconstrained
coordinates space that is intrinsically tangent to the constraint manifold. Two of them are
reported here for completeness. The continuation algorithm proposed in Sect. 2.5 could be
easily adapted to them.

Singular value decomposition (SVD) The singular value decomposition [13] decomposes a
matrix AT into three matrices:

AT = U�VT = [
U1 U2

]
[

�1

0

]
VT = U1�1VT , (20)

where matrices U and V are orthonormal (namely UT U ≡ I, VT V ≡ I), whereas submatrix
�1 is square and diagonal and contains the singular values of A on the main diagonal.
Submatrix U2 plays the role of the projection matrix T, as originally presented in [14].

Zero-eigenvalue theorem Consider the spectral representation of matrix AT A,

AT A = U�UT = [
U1 U2

]
[

�1 0
0 0

][
UT

1
UT

2

]
, (21)

where the eigenvalue and eigenvector matrices U and � have been partitioned to isolate
the blocks related to zero-valued eigenvalues from those of the nonzero ones. Submatrix U2

plays the role of the projection matrix T [15].
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Fig. 1 Subspace selection and
continuation process description

2.5 Tangent subspace selection and continuation

Submatrices Q1 and R1 are uniquely determined1 once matrix A is known. Submatrix Q2,
instead, is only subjected to matrix Q’s general constraint of being orthogonal, namely
QT

2 Q2 ≡ I ∈ R
(n−m)×(n−m) and QT

2 Q1 ≡ 0 ∈ R
(n−m)×m, but otherwise undefined; the dashed

lines originating from the solution at point O in Fig. 1(a) represent a possible, arbitrary
choice of the directions represented by the columns of submatrix Q2 in a 3D point mass
pendulum problem. Specifically, it is defined in excess of post-multiplication by an arbi-
trary orthogonal matrix, P ∈ R

(n−m)×(n−m): Q̃2 = Q2P also complies with the orthogonality
requirement since Q̃T

2 Q̃2 = PT QT
2 Q2P = PT P ≡ I and Q̃T

2 Q1 = PT QT
2 Q1 = PT 0 = 0.

In fact, the QR factorization produces a “local” representation of the constraint Jacobian
matrix; as such, the generalized coordinates associated with the subspace T = Q2, which do
not have any specific physical meaning, represent a local reparameterization of the subspace
of the coordinates that is tangent to the constraint manifold; for example, local axes x and

1To this end, we need to choose the diagonal elements of R1 to be nonnegative, for example, a zero value
indicating indetermination.



A projection continuation approach for minimal coordinate set... 243

y originating from point O in Fig. 1(b). When the QR factorization is computed at different
time steps tk , if n − m > 1, then the columns of the resulting Q2k

are completely unrelated,
their resulting value being solely dictated by the internal intricacies of the QR factorization
algorithm.

This work proposes a simple and intuitive algorithm that tracks the evolution of the sub-
space spanned by Q2 using a form of differential “continuation” to preserve some sort of
spatial continuity of the generalized coordinates q by minimizing the amount of deviation of
the subspace that is intrinsically required to maintain Q2 tangent to the constraint manifold
across time steps; for example, the axes originating from point O ′ after the solution moved
there from point O in Fig. 1(c), without altering the quality of the solution.

Consider the time derivative of the transpose of the constraint Jacobian matrix in its QR
factorized form:

ȦT = Q̇R + QṘ. (22)

The derivative of matrix Q may be expressed as Q̇ = Q�, where the skew-symmetric nature
of matrix � ∈ R

n×n, namely �T = −�, descends from the orthogonality of matrix Q:

d

dt

(
QT Q

) = Q̇T Q + QT Q̇ = (
QT Q̇

)T + QT Q̇ = 0 → QT Q̇ = �. (23)

When the problem is integrated numerically, the solution from time step tk to time step
tk+1 is computed. The QR factorization at time tk yields submatrices Q1k

and R1k
. The gen-

eralized velocities at time tk are computed with reference to the subspace spanned by Q2k
.

After computing the solution at the new time step, the Jacobian matrix at time tk+1, Ak+1, is
known. As such, through the economy QR factorization of its transpose, submatrices Q1k+1

and R1k+1 are determined. Instead of computing also submatrix Q2k+1 through the full QR
factorization, the proposed continuation algorithm is used as illustrated in the following.
Consider

QT
1 ȦT R−1

1 = QT
1 Q̇1 + Ṙ1R−1

1 . (24)

Matrix Ṙ1R−1
1 is the product of two upper triangular matrices, thus it is itself an upper

triangular matrix. Matrix QT
1 Q̇1 = �1 ∈ R

m×m is skew-symmetric for the orthogonality of
matrix Q1; it can be seen as �1 = �1L

− �T
1L

, where �1L
= stril(�1) is the strictly lower

triangular part of matrix �1, which can be obtained as

�1L
= stril

(
QT

1 ȦT R−1
1

)
(25)

since stril
(
Ṙ1R−1

1

) ≡ 0 by definition, Ṙ1R−1
1 being upper triangular. From Eq. (23), one can

show that the derivative of matrix Q,

Q̇ = [
Q̇1 Q̇2

] = [
Q1 Q2

][
�1 −R−T

1 ȦQ2

QT
2 ȦT R−1

1 ���2

]

= [
Q1 Q2

][
�1 −�T

21
�21 0

]
= Q� (26)

is entirely known (the top right block of the rightmost matrix � contains matrix −�T
21 in-

stead of matrix �12 since �12 ≡ −�T
21 owing to the skew-symmetry of �). In fact, the
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bottom right block of matrix � should contain an unknown skew-symmetric contribution
QT

2 Q̇2 = �2 ∈ R
(n−m)×(n−m). Such a matrix is arbitrarily set to zero, which corresponds to

requiring that the subspace Q2 is modified as little as possible; specifically,

Q̇2 = −Q1�
T
21 = −A+ȦQ2. (27)

�2 may be interpreted as the angular velocity of subspace Q2, the rate of reorientation with
respect to itself, whereas �21 expresses the rate of reorientation with respect to Q1 that is
required to remain orthogonal to it during its evolution.

Thus, the subspace Q2 can be integrated starting from an arbitrary value, provided it is
orthogonal to the initial value of Q1 (the value resulting from Matlab’s implementation of
the QR factorization was used in the numerical examples of Sect. 3), taking appropriate
measures (e.g., using Munthe–Kaas’ method [16]) to guarantee that the resulting matrix Q
preserves orthogonality and submatrix Q1 matches that resulting from the factorization of
the transpose of the constraint Jacobian matrix. For example, for � constant across a time
step of duration tk+1 − tk = h,

Qk+1 = Qke�h (28)

or

Q2k+1 = e−A+ȦhQ2k
, (29)

the latter being only a first-order approximation of the former since the intrinsic skew-
symmetric structure of the exponent matrix � is lost.

Submatrix Q2k+1 resulting from the proposed integration, e.g., from Eq. (28), may need to
be corrected to guarantee its orthogonality with respect to submatrix Q1k+1 obtained from the
economy QR factorization of AT

k+1; a Gram–Schmidt reorthogonalization [9] may be used.

3 Results

Simple examples are analyzed to illustrate how the proposed method produces a more regu-
lar and intuitive choice of the projection subspace during the integration of the solution.

Single-degree-of-freedom problems represent a trivial case in the context of the present
discussion; in fact, the corresponding submatrix Q2 consists of a single column, which is
thus exactly determined, except for its sign.

3.1 Single-degree-of-freedom problems: planar pendulum

A simple, single-degree-of-freedom example is considered to exemplify how the continua-
tion algorithm avoids the occasional reversing of the sign of Q2 that occurs when the QR
factorization of matrix AT is blindly performed.

Consider the equations of motion of a simple point mass pendulum of mass M and length
�, subjected to a uniform gravity field g along the negative z direction:

Mẍ + 2xλ = 0 (30a)

Mz̈ + 2zλ + Mg = 0 (30b)

x2 + z2 − �2 = 0, (30c)

where x and z are the horizontal and vertical components of the point mass position, the
unconstrained coordinates in the present context, and λ is the Lagrange multiplier associated
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with the constraint of Eq. (30c). The corresponding constraint Jacobian matrix is

A = [
2x 2z

]
. (31)

The QR factorization of its transpose can be written as

AT =
[

2x

2z

]
=

[
Q11 Q12

Q21 Q22

][
R1

0

]

=
[− cos θ − sin θ

sin θ − cos θ

][
R1

0

]

, (32)

where matrix Q is structurally orthonormal and defined by the single parameter θ , with

θ = − tan−1

(
z

x

)

, R1 = 2� (33)

as a possible determination of the parameters θ and R1. Submatrices Q1 and Q2 can then be
written as

Q1 =
[

x/�

z/�

]
, Q2 =

[−z/�

x/�

]
. (34)

The velocity and acceleration vectors of the point mass are thus

{
ẋ

ż

}
=

[−z/�

x/�

]
q̇

{
ẍ

z̈

}
=

[−z/�

x/�

]
q̈ −

[
x/�

z/�

]
q̇2

�
. (35)

The projected equation of motion is

Mq̈ = −x

�
Mg. (36)

One may observe that redefining q̇ = �θ̇ the velocity vector can be written as

{
ẋ

ż

}
= −�

[
sin θ

cos θ

]
θ̇ , (37)

which is integrable, yielding

{
x

z

}
= �

[
cos θ

− sin θ

]
. (38)

It is worth recalling that when solving for θ and R1 from Eq. (32), AT = QR yields

[
2x

2z

]
=

[−R1 cos θ

R1 sin θ

]
. (39)

To extract R1, consider the norm of both sides

4
(
x2 + y2

) = R2
1

(
cos2 θ + sin2 θ

) → 4�2 = R2
1 (40)

or

R1 = ±2�, (41)
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where we arbitrarily chose R1 = +2�, but the choice with the negative sign is also legitimate.
To extract θ , consider the ratio of the second and first elements:

2z

2x
= − R1 sin θ

R1 cos θ
→ θ = − tan−1

(
z

x

)

+ π

2
(1 − sign(R1)) . (42)

The culprit lies in the fact that in Eq. (32) matrix Q could have been alternatively defined as

Q =
[− cos θ sin θ

sin θ cos θ

]
, (43)

i.e., changing the sign of its second column, submatrix Q2, at the only cost of no longer
representing a rotation matrix (since its determinant would now be −1 instead of +1), but
without impacting its ability to represent the transpose of the constraint Jacobian matrix as
Q1R1, nor that of Q2 to represent a suitable subspace tangent to the constraint manifold.

If an intermittent change of sign occurs between consecutive QR factorizations, the sign
of the derivative of the generalized coordinate q̇ also changes, resulting in unnecessary dis-
continuities, although harmless for what concerns the result in terms of physical variables.
Consider s1 = ±1 as the (arbitrary) sign of R1 and s2 = ±1 as the (arbitrary, independent
from s1) sign of submatrix Q2 such that s2

1 = s2
2 = 1. The QR factorization of AT then

becomes
[

2x

2z

]
=

[−s1 cos θ −s2 sin θ

s1 sin θ −s2 cos θ

][
s12�

0

]

. (44)

In this case, the proposed continuation algorithm yields the “angular velocity” submatrix

�21 = QT
2 ȦT R−1

1 = s2

[− sin θ − cos θ
][

2ẋ

2ż

]
s1

2�
. (45)

Considering, from Eq. (37),
{

ẋ

ż

}
= −�s2

[
sin θ

cos θ

]
θ̇ , (46)

one obtains

�21 = QT
2 ȦT R−1

1 = −s2

[− sin θ − cos θ
]

2�s2

[
sin θ

cos θ

]
θ̇

s1

2�
= s1θ̇ . (47)

As a consequence, matrix � from Eq. (23) by construction becomes

� = s1θ̇

[
0 −1
1 0

]
(48)

and the continued integration of matrix Q simply consists in choosing the sign of the new
vector Q2 such that it forms the smallest possible angle with the previous one without any
indetermination nor arbitrariness in the choice of s2 and regardless of the choice of s1.

3.2 Single-degree-of-freedom problems: three-dimensional slider crank

Here the proposed continuation scheme is applied to the simulation of the spatial slider-
crank mechanism shown in Fig. 2. This is a rigid multibody benchmark proposed by
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Fig. 2 Spatial slider-crank
mechanism

IFToMM’s Technical Committee for Multibody Dynamics2 [17] (https://www.iftomm-
multibody.org/) and analyzed for example in [18]. The mechanism consists of a rigid crank
AB of length 0.08 m, a connecting rod BC of length 0.3 m, and a rigid sliding block. The
crank, connected to the ground by revolute joint A, can rotate freely from the initial position,
corresponding to an angle θ = 0 rad with an initial angular velocity of 6 rad/s. The block is
constrained to the ground by a translational joint D that allows it to slide along the x axis.
A spherical joint at B and a universal joint at C connect the link to the crank and the slider,
respectively. A uniform gravity field of magnitude 9.81 m/s2 is assumed in the negative z di-
rection. No other load is applied to the system. The crank and sliding block masses are mc =
0.12 kg and ms = 2.0 kg, respectively. The mass moments of inertia of the two bodies are

Jc = 10−4

⎛

⎝
1 0 0
0 0.1 0
0 0 1

⎞

⎠ , Js = 10−4

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ;

the mass of the connecting rod is mr = 0.5 kg, and its mass moments of inertia are

Jr = 10−3

⎛

⎝
4 0 0
0 0.4 0
0 0 4

⎞

⎠ .

The problem is described by 21 coordinates, rn ∈ R
3 and en ∈ R

4 (n = 1,2,3), and 20
constraint equations, thus possesses one degree of freedom q1. During the simulation, a
time step size h = 0.00001 s is considered. The motion of the slider along the x direction is
compared to the result proposed by Ramin Masoudi in the mentioned website and to those
obtained with the traditional implementation of the QR projection method, also with h =
0.00001 s, which is shown in Fig. 3. The corresponding crank angle is shown in Fig. 4. The
resulting q1 and q̇1 are compared in Fig. 5 and Fig. 6 to those obtained with the traditional
implementation of the QR projection method. One can notice that the result of the traditional

2See https://www.iftomm-multibody.org/benchmark/problem/Spatial_rigid_slider-crank_mechanism/ for
further details.

https://www.iftomm-multibody.org/
https://www.iftomm-multibody.org/
https://www.iftomm-multibody.org/benchmark/problem/Spatial_rigid_slider-crank_mechanism/
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Fig. 3 Slider position

Fig. 4 Crank angle

Fig. 5 Slider crank generalized
coordinate q1

implementation differs from the proposed one only by occasional sign changes. Since the
two algorithms were initialized in the same manner, using Matlab’s QR factorization and the
same constraint Jacobian matrix, the initial value of q1 is negative in both solutions. With the
proposed implementation it remains such, whereas with the traditional one it occasionally
turns positive and then again negative, as dictated by the intricacies of the blind execution
of the QR factorization algorithm.
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Fig. 6 Slider crank generalized
velocity q̇1

3.3 Multi-degree-of-freedom problems: spatial pendulum

Consider a simple point mass spherical pendulum of mass M and length �, subjected to
a uniform gravity field g = 9.81 m/s2, directed along the negative z axis. Its equations of
motion are

⎡

⎣
M 0 0
0 M 0
0 0 M

⎤

⎦

⎧
⎨

⎩

ẍ

ÿ

z̈

⎫
⎬

⎭
+

⎡

⎣
2x

2y

2z

⎤

⎦λ =
⎧
⎨

⎩

0
0

−Mg

⎫
⎬

⎭
(49a)

x2 + y2 + z2 − �2 = 0 (49b)

The unconstrained problem has three degrees of freedom x, y, and z, and one constraint,
Eq. (49a); thus, the constrained problem has two degrees of freedom. Consequently, Q1 ∈
R

3×1 and Q2 ∈R
3×2. The constraint Jacobian matrix and its time derivative are

A = [
2x 2y 2z

]
(50)

Ȧ = [
2ẋ 2ẏ 2ż

]
. (51)

The QR factorization of AT in a given initial configuration (x, y, z) = (x0, y0, z0) yields

AT =
⎡

⎣
2x0

2y0

2z0

⎤

⎦ =
⎡

⎣
x0/� q12 q13

y0/� q22 q23

z0/� q32 q33

⎤

⎦

⎡

⎢
⎣

2�

0
0

⎤

⎥
⎦ = QR, (52)

where the six coefficients qij , i = 1,2,3, j = 2,3 are related by five orthogonality condi-
tions, leaving only one undetermined parameter.

Without loss of generality, let us assume that (x0, y0, z0) = (�,0,0), which complies with
the constraint equation; this yields

AT =
⎡

⎣
2�

0
0

⎤

⎦ =
⎡

⎣
1 0 0
0 cosα0 − sinα0

0 sinα0 cosα0

⎤

⎦

⎡

⎢
⎣

2�

0
0

⎤

⎥
⎦ = QR, (53)

where α0 is an arbitrary parameter. Clearly, when α0 = 0, the two vectors that span the
subspace of Q2 are the coordinate axes y and z.
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The projected equations of motion in the initial configuration are

[
M 0
0 M

]{
q̈1

q̈2

}
=

{ − sinα0

− cosα0

}
Mg. (54)

Without loss of generality, it is assumed that (ẋ0, ẏ0, ż0) = (0, v0,0), which complies
with the derivative of the constraint equation in the initial configuration

0 = Aẋ = [
2� 0 0

]
⎧
⎨

⎩

0
v0

0

⎫
⎬

⎭
; (55)

in this case, one obtains

�1L
= 0, (56)

as one would expect for a diagonal element of a skew-symmetric matrix, and

�21 =
[

0 cosα0 sinα0

0 − sinα0 cosα0

]
⎡

⎣
0

2v0

0

⎤

⎦ 1

2�
=

[
cosα0

− sinα0

]
v0

�
, (57)

thus

� = v0

�

⎡

⎣
0 − cosα0 sinα0

cosα0 0 0
− sinα0 0 0

⎤

⎦ (58)

and

�Q =
⎡

⎣
cos�θ − sin�θ cosα0 sin�θ sinα0

sin�θ cosα0 cos�θ cosα2
0 − cosα2

0 + 1 − sin(2α0) (cos�θ − 1) /2
− sin�θ sinα0 − sin(2α0) (cos�θ − 1) /2 cos�θ + cosα2

0 − cos�θ cosα2
0

⎤

⎦

(59)

with �θ = v0h/�, which, for α0 = 0, reduces to

�Q =
⎡

⎣
cos�θ − sin�θ 0
sin�θ cos�θ 0

0 0 1

⎤

⎦ (60)

namely, a finite rotation about the z axis by an angle �θ .
In the present example, the pendulum’s mass is M = 1.0 kg and its length is � = 0.08 m.

The initial position of the mass is r0 = [0.08,0,0]T m, and the initial condition on the ve-
locity is set as v0 = 0.7895 m/s.

The trajectory of the mass simulated using the explicit Runge–Kutta scheme proposed
by Dormand and Prince [19] and implemented in Matlab’s ode45 function with h = 0.001 s
is compared to that resulting from the integration of the original DAE governing equations
with the free general-purpose multibody solver MBDyn3 [20] using a second-order accurate

3https://www.mbdyn.org/.

https://www.mbdyn.org/
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Fig. 7 Trajectory of the spatial
pendulum’s center of mass:
traditional and proposed QR
approach results are compared to
those obtained from DAE
integration using MBDyn

implicit linear multistep integration method with algorithmic dissipation (asymptotic spec-
tral radius ρ∞ = 0.6) [21, 22] and a projection method based on the QR factorization of the
transpose of the Jacobian matrix performed at each time step, without any knowledge of its
evolution, using ode45 with a time step h = 0.000005 s to act as a reference solution, as
shown in Fig. 7. The resulting minimal set generalized coordinates q1 and q2 and the pro-
jected generalized velocities q̇1 and q̇2 (q̇i = Q2(:, i)T ẋ) are compared to the results obtained
from what is here termed “traditional QR method” (i.e., without subspace continuation), as
shown in Fig. 8 and Fig. 9, respectively. The same time step is used for integration with
both the traditional and proposed coordinate selections not only for fairness of comparison,
but also because the latter merely consists of a recombination of the coordinates’ subspace,
without any impact on the characteristics of the equations that are integrated. One may ob-
serve that the coordinates qi resulting from the proposed method are much more regular than
those resulting from the traditional QR factorization. Specifically, those resulting from the
proposed method appear to be continuous and differentiable, whereas those resulting from
the traditional QR factorization show discontinuities in their first derivatives q̇i .

This is well explained by the continuity and regularity of the evolution of each column of
matrix Q2 for the proposed method, compared to the discontinuity of those resulting from
the traditional QR factorization, as depicted in Fig. 10.

Furthermore, from Fig. 10 one can observe that for t = 0 the first column of matrix Q2

corresponds to [0,1,0]T , i.e., the unit vector along the y axis, whereas the second column
of matrix Q2 corresponds to [0,0,1]T , i.e., the unit vector along the z axis, i.e., the QR
algorithm chose α0 = 0 in Eq. (53) when initializing the subspace Q2. Indeed, considering
the initial velocity of the mass, one can observe that q̇1(0) ≡ v0 and q̇2(0) ≡ 0, which is
consistent with the given initial conditions.

3.4 Multi-degree-of-freedom problems: spin top

Consider an axisymmetric spin top whose tip is constrained to be at unit distance from the
origin of the global coordinate system, i.e., lying on a sphere of unit radius centered in the
origin. This problem was recently proposed by Haug [6]. The tip of the spin top is 1 m far
away from its center of mass. The problem is sketched in Fig. 11. The inertia properties of
the spin top are m = 30 kg and J = diag(90,90,30) kg · m2. The initial position of the spin
top is r0 = [0,−1,0]T m. The local coordinate system x ′-y ′-z′ is initially coincident with the
global coordinate system x-y-z. A uniform gravity field of magnitude 9.81 m/s2 is assumed
in the negative z direction. In this model, the Euler parameters e are used to describe the
rotation of the spin top; their initial value is e0 = [1,0,0,0]T . The initial velocity is ṙ0 =
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Fig. 8 Spatial pendulum minimal coordinates qi (i = 1,2): comparison of traditional and proposed QR fac-
torization method

Fig. 9 Spatial pendulum projected velocities q̇i (i = 1,2): comparison of traditional and proposed QR fac-
torization method

0 m/s and the initial angular velocity is ω0 = [0.1,0.1,0.3]T rad/s. The initial derivative
of the Euler parameters ė0 is computed from 1/2 · E(e0)ω0. The constrained equations of
motion of the spin top are

mr̈ + cT
r λ = f (61a)

4ET JEë + 8ĖT JEω + cT
e λ + 2eT μ = 2ET t (61b)

c(t, r, e) = 0 (61c)

eT e − 1 = 0, (61d)

where f and t are the applied force and torque at the mass center, respectively. Since only
gravity is applied, f = (0,0,−9.81m) and t = 0 with

E =
⎛

⎝
−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0

⎞

⎠ ,

c denotes the constraint equation, λ and μ are the Lagrange multipliers corresponding to
the constraint equation c, Eq. (61c) and the Euler parameter normalization, Eq. (61d), re-
spectively. The absolute position of the tip is rT = r + Au0, where u0 = [0,0,−1]T m and
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Fig. 10 Q2(:, i) (i = 1,2) from the proposed (top) and the traditional QR method (bottom)

Fig. 11 Spin top

Fig. 12 Trajectory of the spin
top’s center of mass: traditional
and proposed QR approach
results are compared to those
obtained from DAE integration
using MBDyn
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Fig. 13 Spin top minimal coordinates qi (i = 1, . . . ,5): comparison of traditional and proposed QR factor-
ization method

A = ĒET is the orientation matrix with

Ē =
⎛

⎝
−e1 e0 −e3 e2

−e2 e3 e0 −e1

−e3 −e2 e1 e0

⎞

⎠ .

Therefore, the constraint equation can be expressed as

c = rT
T rT − 1 = rT r + 2rT Au0 (62)
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Fig. 14 Spin top projected velocities q̇i (i = 1, . . . ,5): comparison of traditional and proposed QR factoriza-
tion method

since uT
0 u0 ≡ 1. The problem is described by seven coordinates, r ∈ R

3 and e ∈ R
4, and

two constraint equations, Eqs. (62) and (61d), thus possesses five degrees of freedom, qi

(i = 1, . . . ,5).
The trajectory of the centroid resulting from the simulation using the previously men-

tioned method with h = 0.0001 s is compared in Fig. 12 to those obtained by integrating
the original DAE system using MBDyn and by using the traditional QR method, also with
h = 0.0001 s. The projection motion of qi (i = 1, . . . ,5) is compared to the results of the
traditional QR method without any projection in Fig. 13, whereas that of q̇i (i = 1, . . . ,5)
is compared to the results of the traditional QR method without any projection in Fig. 14.
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Again, one can notice the much greater regularity of the coordinates and their derivatives as
they result from the proposed method.

4 Conclusions

This paper presented a continuation algorithm for the redefinition of the subspace of minimal
coordinates that is tangent to the constraint manifold. It is based on the full QR factorization
of the constraint Jacobian matrix to initialize the subspace through the portion of the space
defined by the orthogonal matrix Q that is orthogonal to the constraint Jacobian matrix. The
economy QR factorization is then used to exactly factor the subspace in which the constraint
Jacobian matrix lies, while the evolution of the tangent subspace is tracked by integrating
the time derivative of matrix Q, eventually re-orthogonalizing the result to eliminate possi-
ble drift from the integrated tangent subspace. Numerical examples show that the analysis
results are unchanged, but the generalized velocities no longer show the discontinuities that
occasionally characterize them when the tangent subspace is recomputed without consider-
ing its value at the previous time step.
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