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Abstract
Flexible multibody formulations allow the dynamic analysis of mechanisms with slender
or thin-walled structures that deform during their operation. However, the majority of the
existing flexible multibody methodologies are formulated assuming finite element models
featuring 6 nodal degrees of freedom, specifically 3 translations and 3 rotations. This work
initially revises the existing flexible multibody methodology in which the modeling of the
flexibility is independent of the modeling of the baseline multibody system while ensuring
the coupling between the rigid and flexible components. The flexible multibody methodol-
ogy includes the use of suitable reference conditions, the component mode synthesis, and
the virtual bodies methodology. Commonly, solid elements found in finite element software
exclusively have three nodal translation degrees of freedom, featuring no explicit angular
degrees of freedom. In this work, we propose the enhancement of the existing formula-
tion for a rigid-flexible joint to support the use of virtual bodies rigidly connected to the
nodes of solid elements. The computational implementation of the methodology is demon-
strated using a benchmark case. The methodology developed in this work is further applied
to study the dynamics of a locomotive with a flexible bogie frame. Although not influencing
the overall vehicle dynamics, the bogie flexible multibody model allows the evaluation of
the PSD of the accelerations in different points of the bogie that are sensitive to structural
defects. The comparison of the response of healthy and damaged bogie frames supports
the development of tools to monitor the condition of bogie frames during the operation.
This development will be explored in forthcoming works, thus expanding the use of flexible
multibody methodologies to new applications.

Keywords Structural flexibility · Solid finite elements · Multibody systems · Virtual
bodies · Railway dynamics

1 Introduction

Multibody methodologies are valuable tools to analyze the kinematics and dynamics of
mechanical systems characterized by large displacements and rotations. These systems are
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commonly modeled as a combination of rigid bodies interconnected by force elements and
kinematic joints. However, when structural deformations are not negligible, as is the case
with slender and thin-walled structures subjected to high loads, the rigid-body formulations
do not describe the physics of the problem accurately. However, even if the structural de-
formations are not expected to affect the general dynamic response of multibody models
with bulky components, the identification of their structural behavior as a function of their
operation profile may be required for other types of analysis.

The floating frame of reference formulation is a common approach to describe the con-
figuration of a flexible body. Song and Haug [1] propose one of the first implementations of
the floating frame of reference formulation. In this method the position and orientation of a
local reference frame attached to the flexible body are described relative to a global reference
frame, whereas the body structural deformations are described relative to that local reference
frame. The finite element method is commonly used to describe the flexibility of the com-
ponents of multibody systems. If a complex multibody structure is modeled using the finite
element method, then the total number of nodal coordinates can be excessively high, thus
preventing the efficient solution of the equations of motion and the integration of the system
accelerations and velocities in a reasonable time. The component mode synthesis, originally
proposed in the context of multibody dynamics by Shabana and Wehage [2], allows rep-
resenting the deformations of the structure using a set of modes of vibration. As a result,
a smaller set of modal coordinates replaces the larger set of nodal coordinates, improving
the numerical efficiency of the simulation. Yoo and Haug [3] propose complementing the
modes of vibration with static correction modes to incorporate the local deformations in the
regions where kinematic joints and applied forces are present. Ambrósio and Gonçalves [4]
introduce a formulation for linear elastodynamics that uses a lumped mass formulation for
the flexible body, using the standard system matrices output from any finite elements soft-
ware while describing the deformation of the flexible body relative to a nodal fixed reference
frame. It is shown that the mass matrix becomes independent of the shape functions of the
finite elements used while maintaining the coupling between rigid and flexible motions. This
formulation is later extended by Neto et al. [5, 6] to study flexible multibody systems with
composite materials. Zwölfer and Gerstmayr [7] propose an approach that prevents the need
to solve the inertia shape integrals while also avoiding the lumped mass approach, involving
a nodal-based derivation of the equations of motion. There are other important formulations
in the context of flexible multibody dynamics, in particular, the absolute nodal coordinate
formulation proposed by Shabana et al. [8–10], which are not considered in this work as
no computational advantage over the floating frame formulation is observed for the type of
applications envisaged in this work, i.e., dealing with linear elastodynamics. For the same
reason, the use of alternative methods for the reduction of the number of nodal degrees of
freedom, such as substructuring [11] or the Craig–Bampton method [12] are also not con-
sidered.

The use of reference conditions is required to ensure the uniqueness of the flexible body
displacement field, i.e., to prevent the simultaneous description of the rigid-body displace-
ments by two sets of independent coordinates. Among the choices of reference conditions,
the nodal-fixed frame conditions, the mean axis conditions [13], and the principal axis con-
ditions [14, 15] are cited in this work. The use of nodal-fixed frame conditions involves
fixing one or more nodes of the flexible element mesh to the body local reference frame,
which in some cases may require the introduction of undesired constraints on the flexible
body deformation. This limitation prevents the use of the nodal-fixed frame conditions in
the applications foreseen in this work. Alternatively, neither the mean axis conditions nor
the principal axis conditions impose any constraint, by themselves, to the body deforma-
tion field. Although possible, the use of flexible bodies in which their elastodynamics is
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described by the node coordinates is not efficient computationally. Instead, of an extremely
large number of nodal coordinates, often tremendous when the flexible body is described
by hundreds of thousands or millions of modes, the use of coordinate reduction techniques
allows involving only a limited number of elastic coordinates. When using the component
mode synthesis, the modes of vibration associated with the lower natural frequencies are
the most common choice. However, the type and selection of deformation modes, being
these modes of vibration or static modes, is not only dependent on the selection of refer-
ence conditions, but also on the existing kinematic constraints and applied forces. The use
of nodal-fixed frame reference conditions would require that constrained modes, compatible
with the setting of the reference conditions, are used. However, when using mean or prin-
cipal axis reference conditions, the use of free–free modes of vibration is required. In any
case, to limit the number of vibration modes to represent properly the deformation field of
a loaded or constrained flexible body, it is necessary to complement the modes of vibration
with a set of static correction modes, obtained to account for local applications of forces or
kinematic constraints, as described by Yoo and Haug [3].

The efficient modeling of kinematic joints is often overlooked when modeling mechani-
cal systems with flexible bodies. Yoo and Haug [3] derive the kinematic constraint equations
for a spherical joint, a universal joint, and a revolute joint connecting flexible bodies. Sha-
bana [16] formulates a set of kinematic joints connecting flexible bodies using auxiliary local
reference frames attached to the flexible bodies. Korkealaakso et al. [17] derive three basic
constraints that can be used modularly to define kinematic joints between flexible bodies.
In these examples the methods already available in a multibody code involving exclusively
rigid bodies cannot be used, and completely new formulations are implemented to deal with
flexible bodies. In alternative, the virtual bodies methodology, originally proposed by Bae
et al. [18], allows the use of kinematic joints originally formulated to connect rigid bodies.
In this method, a massless body is rigidly attached to a node of the flexible body through
a single rigid-flexible joint. Gonçalves and Ambrósio [19] further develop the virtual bod-
ies methodology and apply it on the model of a road vehicle. The authors demonstrate the
convenience of avoiding the derivation of new kinematic joints while mitigating the costs
in terms of computational efficiency by using sparse matrix solvers to compute the solution
of the system of equations of motion of a flexible multibody system. However, neither the
original formulation of the virtual bodies methodology [18] nor its enhanced formulation
[19] focuses on the problem of meshes with only 3 nodal DoF. This work addresses this
issue and proposes a method to overcome the numerical difficulties.

The flexible multibody formulation developed in this work is applied in the context of
railway dynamics, which involves the complex interaction between the vehicle and track. In
the wheel–rail contact interface, normal and tangential contact forces develop and subject
both subsystems to forced vibrations. The dynamics of the railway vehicle are analyzed in
different frequency ranges depending on the phenomena of interest [20]. The low-frequency
range, limited to approximately 20–30 Hz, mostly concerns with the rigid-body motions,
which are relevant from the point of view of comfort [21, 22] and stability [23–25]. An
intermediate frequency range, up to the order of magnitude of 100 Hz, is associated with
vehicle and track wear and degradation [26] and may require models to represent the flexi-
bility of the track [27], the wheelset [28], or the bogie frame [29]. Higher-frequency ranges
are mostly related to noise. Therefore it is in the midrange frequencies that the formulation
proposed in this work finds its major field of application.

In this paper, we propose to further develop the formulation for the linear elastodynam-
ics proposed by Ambrósio and Gonçalves [4]. The formulation of two reference conditions,
i.e., mean axis and principal axis conditions, is considered for flexible models described
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by finite elements with only three displacement degrees of freedom per node, which is a
common feature of solid finite element meshes. In the context of the virtual bodies method-
ology, we propose and formulate a rigid-flexible joint taking into account the fact that the
nodes of solid elements do not have angular degrees of freedom. The formulation proposed
in this work is first implemented and tested in the general purpose in-house multibody soft-
ware MUBODyn [30], which includes a large collection of kinematic joints, force elements,
imperfect kinematic joints [31], and a library of normal and friction contact force models
[32, 33]. MUBODyn is also capable to simulate the wheel–rail contact [34–37], thus en-
abling the study of the effect of the structural flexibility of a bogie frame of a locomotive in
the context of vehicle dynamics. The dynamic analysis of structural components with dam-
age demonstrates the need for the methodologies proposed in this work and further expands
the range of applications of flexible multibody dynamics.

2 Multibody dynamics

2.1 Equations of motion of a multibody system

We use the Cartesian coordinates as the basis for the proposed multibody formulation.
The position of a body i relative to the global reference frame is expressed by the vec-
tor ri = [

x y z
]T
i

, whereas the vector pi = [
e0 e1 e2 e3

]T
i

describes the rigid-body
orientation using Euler parameters. The equations of motion and the constraint equations are
expressed using the angular velocities ω′

i and accelerations ω̇′
i of the rigid body. This option

simplifies the mathematical formulations of the various features included in the program and
reduces the number of unknowns in the full system of equations of motion. However, the
angular velocities ω′

i in the three-dimensional space are not exact differentials and cannot
be integrated. Instead, the angular velocities ω′

i are first transformed into time derivatives of
the Euler parameters ṗi , which can be integrated to obtain the Euler parameters pi [38].

The bodies of a multibody system can be interconnected by perfect kinematic joints,
imperfect kinematic joints, and force elements. Perfect kinematic joints [38] are described
by algebraic equations, expressed in terms of the coordinates of the rigid bodies by defining
the Jacobian matrix �q and the vector of the right-hand side of the acceleration equations γ .
The Lagrange multiplier method is used to add these constraints to the system of equations
of motion through the addition of the vector of Lagrange multipliers λ to the vector of
unknowns. Imperfect kinematic joints impose kinematic limitations on the relative motion,
which can be modeled using contact penalty force formulations, as pursued in this work, thus
contributing to the general force vector g. Alternatively, the internal contact in imperfect
joints can be described via unilateral constraint formulations, which define the Lagrange
multipliers λ, thus defined by kinematic constraints. Similarly, the force elements contribute
to the force vector g by developing forces due to the relative motion between the bodies.
The resulting system of the equations of motion of a multibody system is expressed by

[
M �T

q

�q 0

]{
q̈
λ

}
=
{

g
γ

}
, (1)

where the vector of the system accelerations is

q̈ = [
r̈T

1 ω̇′T
1 · · · r̈T

i ω̇′T
i · · · ]T . (2)
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Fig. 1 Direct integration algorithm of the multibody simulation

A multibody simulation algorithm is depicted in Fig. 1. The algorithm for the solution
and integration of the equations of motion is as follows: (i) set the initial time t0, the vector
q#

0 of the initial positions of the bodies, and the vector q̇ of the initial velocities of the
bodies; (ii) assemble the mass matrix M, the Jacobian matrix associated with the constraint
equations �q, the force vector g, and the vector of the right-hand side of the acceleration
constraint equations γ ; (iii) solve the equations of motion to determine the vectors of the
accelerations q̈ and Lagrange multipliers λ; (iv) determine the vector of the accelerations
and velocities ḣt = [

q̇ q̈
]T
t

; (v) integrate the vector ḣt to obtain the vector of the positions

and velocities in the next time step ht+�t = [
q q̇

]T
t+�t

by using an appropriate ordinary
differential equations solver; (vi) update the time variable t=t+�t ; (vii) stop simulation if
t>tend, or else go to step (ii).

The time integration of vector ḣt is performed using the Gear algorithm [39], which has
variable time step and variable order. The Baumgarte stabilization method [40] controls the
constraint violations.

2.2 Equations of motion of a flexible body

The formulation for flexible bodies proposed by Ambrósio and Gonçalves [4] and later
revisited by Neto et al. [5, 6] in the context of flexible multibody systems with composite
materials is first reviewed and, subsequently, updated to deal with finite elements with nodes
with only three displacement degrees of freedom. In this formulation the position of a node
k in a flexible body i is expressed in the global reference frame by

dk = ri + Aib′
k, (3)

where ri is the position of body i in the global reference frame, as depicted in Fig. 2, and Ai

is the transformation matrix from local to global coordinates. The position of node k in the
local reference frame of body i is given by

b′
k = x′

k + δ′
k, (4)

where x′
k is the undeformed position of node k. Assuming that node k is characterized by

three translational degrees of freedom and no rotational degrees of freedom, as is common
in solid finite elements, the nodal displacements of node k are described by the vector δ′

k .
The differentiation of Eq. (3) renders the velocity of node k in the global reference frame,

written as

ḋk = ṙi + Aiω̃
′
ib

′
k + Ai δ̇

′
k, (5)
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Fig. 2 Representation of the
undeformed and deformed
configurations of the flexible
body

where ω̃′
i is the skew-symmetric matrix of the vector of the angular velocities:

ω′
i = [

ω′
ξ ω′

η ω′
ζ

]T
i

. (6)

The properties of the skew-symmetric matrix allow rewriting Eq. (5) as

ḋk = ṙi − Ai b̃′
kω

′
i + Ai δ̇

′
i . (7)

Equation (7) can be expressed using the vector qi of the velocities of flexible body i:

ḋk = [
I −Ai b̃′

k AiIT
k

]

⎧
⎪⎨

⎪⎩

ṙi

ω′
i

δ̇
′
i

⎫
⎪⎬

⎪⎭
= [

I −Ai b̃′
k AiIT

k

]
q̇i , (8)

where Ik is the identity operator, which is a 3×3n matrix defined as

Ik = [
0 . . . I(position.node.k) . . . 0

]T
. (9)

The vector q̇i is defined using the absolute velocity coordinates associated with the rigid-
body motion and the vector of nodal coordinates that describe the flexible body deformation
velocities:

δ̇
′
i =

[
δ̇

′T
1 · · · δ̇

′T
k · · · δ̇

′T
n

]T

. (10)

The kinetic energy of node k is

Tk = 1

2
mkḋT

k ḋk, (11)

where mk is the mass associated with the node, as in a finite element lumped mass formula-
tion. Accordingly, the total kinetic energy of body i is the sum of the contributions from all
the n nodes of the flexible body, given by

Ti = 1

2

n∑

k=1

mkḋT
k ḋk = 1

2
q̇T

i Mi q̇i , (12)
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where Mi is the mass matrix of the flexible body i. The matrix Mi is symmetric, and the
appropriate algebraic operations result in

Mi =
⎡

⎣
Mrr Mrφ Mrf

Mφr Mφφ Mφf

Mf r Mf φ Mff

⎤

⎦

i

=
⎡

⎢
⎣

∑
mkI −∑mkAi b̃′

k

∑
mkAiIT

k
∑

mkb̃′
kAT

i −∑mkb̃′
kb̃′

k

∑
mkb̃′

kIT
k

∑
mkIkAT

i −∑mkIkb̃′
k

∑
mkIkIT

k

⎤

⎥
⎦ . (13)

The structure of the matrix Mi is independent of the formulation of the finite elements used,
provided that the flexible component of the body inertia is described by a lumped mass
matrix, instead of a consistent mass matrix, as shown by Ambrósio and Gonçalves [4].

The total elastic deformation energy of the flexible body is given by

Ui = 1

2
qT

i Kiqi = 1

2
qT

i

[
0 0
0 Kff

]

i

qi , (14)

where Kff is the global stiffness matrix of the flexible body, which can be derived from the
description of the body flexibility using the finite element method.

The equations of motion are derived using the Lagrange equations

d

dt

(
∂Ti

∂q̇i

)
−
(

∂Ti

∂qi

)
+
(

∂Ui

∂qi

)
− gi = 0. (15)

Using the definitions of the kinetic and elastic deformation energies presented in Eqs. (12)
and (14) and replacing in Eq. (15) render the system of equations of motion of body i:

Mi q̈i = gi + si − Kiqi , (16)

where gi is the vector of external applied forces, with both rigid and flexible components,
and si is the vector of the quadratic velocity terms given by

si =

⎧
⎪⎪⎨

⎪⎪⎩

−∑mkAiω̃
′
iω̃

′
ib

′
k − 2

∑
mkAiω̃

′
i δ̇

′
k

−∑mkω̃
′
i b̃

′
kω̃

′
ib

′
k − 2

∑
mkb̃′

kω̃
′
i δ̇

′
k −∑

mkω̃
′
i b̃

′
kIT

k δ̇
′
k

−∑mkIkω̃
′
iω̃

′
i b̃

′
k − 2

∑
mkIkω̃

′
i δ̇

′
k

⎫
⎪⎪⎬

⎪⎪⎭
. (17)

The equations of motion of a constrained flexible multibody system result from using the
Lagrange multipliers method to include the kinematic constraints. The system of equations
of motion is

⎡

⎢
⎣

Mrr Mrf �T
qr

Mf r Mff �T
qf

�qr �qf 0

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

q̈r

δ̈
′

λ

⎫
⎪⎬

⎪⎭
=
⎧
⎨

⎩

gr

gf

γ

⎫
⎬

⎭
−
⎧
⎨

⎩

sr

sf

0

⎫
⎬

⎭
−
⎧
⎨

⎩

0
Kff δ′

0

⎫
⎬

⎭
, (18)

where �qr is the component of the Jacobian matrix associated with kinematic constraints
between rigid bodies, and �qf is the component of the Jacobian matrix involving flexible
bodies.

2.3 Reference conditions

The system of equations of motion described by Eq. (18) does not have a unique solution be-
cause the rigid-body motion is described by both the rigid and flexible displacement fields.
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The use of a set of reference conditions ensures the uniqueness of the flexible displacement
field by defining a local reference frame used to describe the deformations of the flexible
body. In turn, this reference frame is used to express the large spatial displacements and
rotations of the body. In this section, we present the formulation of two different floating
frame reference conditions assuming three translational nodal degrees of freedom, the prin-
cipal axis conditions and mean axis conditions. In contrast to nodal fixed conditions, floating
reference conditions allow the movement and rotation of the local reference frame relative
to any node of the flexible body. The use of the nodal fixed conditions, despite being the
most popular choice, presents notable disadvantages. First, the use of a node-fixed reference
frame defines the basis to represent the deformations of the flexible body, which may not
be compatible with the deformations sustained by the structure in a realistic scenario. Addi-
tionally, there are variable components of the mass matrix associated with the first moment
of inertia; they are null if the center of mass of the flexible body coincides with the origin of
the local reference frame, which is advantageous from a computational efficiency point of
view. However, there is in general no guarantee that the center of mass of the flexible body
is located in a material region of the body where finite element nodes are present, as, for
example, in the case of a hollow sphere or a hollow tube. Moreover, in the presence of finite
elements with only translation nodal degrees of freedom, it is not possible to fix the rotations
of a single node to the reference frame of the flexible body. The use of finite elements with
three degrees of freedom per node would require using three or more noncolinear nodes,
implying further constraints in the deformation field of the flexible body.

The reference conditions are added to equations of motion of the flexible multibody
system using the Lagrange multiplier technique, according to:

⎡

⎢⎢
⎢
⎣

Mrr Mrφ Mrf 0
Mφr Mφφ Mφf 0

Mf r Mf φ Mff

(
�

(rc)
qf

)T

0 0 �
(rc)
qf 0

⎤

⎥⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

r̈
ω̇′

δ̈
′

λ(rc)

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

gr

gφ

gf

γ (rc)

⎫
⎪⎪⎬

⎪⎪⎭
+

⎧
⎪⎪⎨

⎪⎪⎩

sr

sφ

sf

0

⎫
⎪⎪⎬

⎪⎪⎭
+

⎧
⎪⎪⎨

⎪⎪⎩

0
0

Kff δ′

0

⎫
⎪⎪⎬

⎪⎪⎭
, (19)

where �
(rc)
qf is the Jacobian matrix associated with the selected reference conditions (rc),

λ(rc) is the vector of the Lagrange multipliers for the reference conditions, and γ (rc) is the
vector of the right-hand side of acceleration constraint equations of the reference conditions.
Note that other strategies exist regarding the imposition of the reference conditions without
using explicitly kinematic constraints, in particular, when applying fixed-node references.
However, the explicit use of constraints for reference conditions is preferred in this work
not only due to their generality but also because they allow us to keep the choice of elastic
coordinates relatively independent from the selection of reference conditions.

2.3.1 Principal axis conditions

Under the principal axis conditions, the position of the local frame of a flexible body co-
incides with the instantaneous center of mass of the deformed configuration of the body.
Additionally, the axes of the local reference frame are oriented parallelly to the principal
axes of inertia of the flexible body in the deformed configuration [14]. The formulation of
the principal axis conditions adopted in this work is analogous to that proposed by Nikravesh
and Lin [15].
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The three equations expressing that the position of the local reference frame is in the
instantaneous center of mass of the deformed configuration of the body are

n∑

k=1

mkb′
k = 0. (20)

As a result, under the assumption of small and linear elastic deformations, the term asso-
ciated with the first moment of inertia −∑mkAi b̃′

k in the flexible body mass matrix Mi

becomes negligible.
The axes of the reference frame are parallel to the principal axes of the flexible body if

the products of inertia of the flexible body in the deformed condition are null. This condition
is given by

jξη = jξζ = jηζ = 0. (21)

The instantaneous inertia tensor is given by the symmetric matrix that includes the moments
and products of inertia:

J =
⎡

⎣
jξξ jξη jξζ

jηξ jηη jηζ

jζξ jζη jζζ

⎤

⎦ . (22)

Assuming the use of finite elements with nodes with three translation degrees of freedom,
the inertia tensor is given by

J =
k∑

n=1

mkb̃′T
k b′

k =
n∑

k=1

mk

⎡

⎣
0 bkζ −bkη

−bkζ 0 bkξ

bkη −bkξ 0

⎤

⎦

⎡

⎣
0 −bkζ bkη

bkζ 0 −bkξ

−bkη bkξ 0

⎤

⎦ . (23)

After the adequate mathematical operations, the entries of the matrix J are

J =
n∑

k=1

mk

⎡

⎢
⎣

b2
kζ + b2

kη −bkξ bkη −bkξ bkζ

−bkηbkξ b2
kξ + b2

kζ −bkηbkζ

−bkζ bkξ −bkζ bkη b2
kξ + b2

kη

⎤

⎥
⎦ . (24)

The products of inertia of the flexible body are identified as

jξη = −
n∑

i=1

mkbkξbkη,

jξζ = −
n∑

i=1

mkbkξbkζ ,

jηζ = −
n∑

i=1

mkbkηbkζ .

(25)
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The six position constraint equations associated with the principal axis conditions are com-
binations of Eqs. (20), (21), and (25), resulting in

�(pa) =
n∑

k=1

mk

⎧
⎪⎪⎨

⎪⎪⎩

b′
k

bkξ bkη

bkξ bkζ

bkηbkζ

⎫
⎪⎪⎬

⎪⎪⎭
= 0. (26)

The six velocity constraint equations resulting from the principal axis conditions are defined
by

�̇
(pa) =

n∑

k=1

mk

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ̇
′
k

bkξ δ̇
′
kη + bkηδ̇

′
kξ

bkξ δ̇
′
kζ + bkζ δ̇

′
kξ

bkη δ̇
′
kζ + bkζ δ̇

′
kη

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= 0, (27)

which is expressed in a compact form as

�̇
(pa) = �(pa)

qf
δ̇

′
i − ν(pa) = 0, (28)

where the right-hand side vector of the velocity constraint equations ν(pa) is null, and �(pa)
qf

is the Jacobian matrix of the principal axis conditions, which can be divided into two com-
ponents. The translational component is a 3×3n matrix, which includes contributions from
all the n nodes, is given by

�(pa,tr)
qf

=
n∑

k=1

mkIk (29)

and the angular component of the Jacobian matrix, for which the contribution from each
node is

�(pa,rot)
qk

= mk

⎡

⎣
bkη bkξ 0
bkζ 0 bkξ

0 bkζ bkη

⎤

⎦ . (30)

The full Jacobian matrix of the principal axis conditions is a 6×3n matrix given by

�(pa)
qk

=
[

�(pa,δ)
qf

�(pa,θ)
qf

]

=
[ ∑n

k=1 mkIk
∑n

k=1 �(pa,θ)
qk

Ik

]

. (31)

The six acceleration constraint equations result from the time differentiation of Eq. (27) and
are expressed by

�̈
(pa) = �(pa)

qf
δ̈

′
i − γ (pa) = 0, (32)
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where γ (pa) is the right-hand side vector of the acceleration constraint equations given by

γ (pa) =
n∑

k=1

mk

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

−2δ̇′
kξ δ̇

′
kη

−2δ̇′
kξ δ̇

′
kζ

−2δ̇′
kηδ̇

′
kζ

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (33)

The use of the principal axis conditions is limited to flexible bodies with a unique set of
principal axes. If at least two principal moments of inertia are equal, then there is no unique
set of principal axes, and the formulation presents a singularity. Consequently, the system of
equations of motion has no unique solution.

2.3.2 Mean axis conditions

Under the mean axis conditions, the local frame of a flexible body is positioned and ori-
ented in such a way that the kinetic deformation energy is minimized relative to an observer
attached to the local reference frame [13]. The mean axis conditions are defined by the sta-
tionarity of the kinetic deformation energy. Assuming the use of finite elements featuring
nodes with three translational degrees of freedom, the total kinetic deformation energy of
the flexible body is

Ti = 1

2

n∑

k=1

mk δ̇
T

k δ̇k = 1

2

n∑

k=1

mk

(
ḋk − ṙi + Ai b̃′

kω
′
i

)T (
ḋk − ṙi + Ai b̃′

kω
′
i

)
. (34)

The partial derivatives of the deformation kinetic energy relative to the translational and
angular velocity vectors are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Ti

∂ ṙi

= −
n∑

k=1

mkAi δ̇
′
k,

∂Ti

∂ω′
i

=
n∑

k=1

mkb̃′
k δ̇

′
k.

(35)

The stationarity of the kinetic deformation energy implies that Eq. (35) is null. Bearing in
mind that the matrix Ai is not singular, the velocity constraint equations of the mean axis
conditions are defined by

�̇
(ma) =

n∑

k=1

mk

{
δ̇

′
k

b̃′
k δ̇

′
k

}

= 0, (36)

which can be expressed by

�̇
(ma) = �(ma)

qf
δ̇

′
i = 0. (37)

The Jacobian matrix associated with the mean axis conditions in terms of the nodal transla-
tions is

�(ma)
qf

=
[ ∑n

k=1 mkIk
∑n

k=1 mkb̃′
kIk

]

. (38)
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The six acceleration constraint equations are determined by the time differentiation of
Eq. (37) and are given by

�̈
(ma) = �(ma)

qf
δ̈

′
i = 0. (39)

It is worth noting that the Jacobian matrix in Eq. (38) comprises the terms of the mass matrix
Mi associated with the inertial coupling between the rigid- and flexible-body motions shown
in Eq. (13). The inspection of Eq. (36) reveals that under the mean axis conditions the rigid
and flexible motions of the flexible body are decoupled, allowing the simplification of the
mass matrix Mi through the elimination of the inertia coupling terms.

2.4 Virtual bodies methodology

The in-house multibody software MUBODyn used in this work features an extensive library
of perfect and imperfect kinematic joints, originally formulated to connect rigid bodies in
any conventional mechanical system. However, the connection between rigid and flexible
bodies, as well as between flexible bodies, requires the formulation of new kinematic joints
using the variables associated with the vector of nodal deformations of the flexible body δ′

and its time derivates. Alternatively, the virtual bodies methodology allows the use of the
original library of kinematic joints for flexible bodies with the support of a single rigid-
flexible kinematic joint that rigidly connects a flexible body to a massless virtual body on a
fixed location [18]. Kinematic joints connecting two flexible bodies, or a rigid and a flexible
body, are defined between the respective virtual bodies and the original kinematic joints. It
is clear that the use of virtual bodies increases the number of rigid-body coordinates and,
consequently, the dimension of the system of equations of motion. Additionally, because
virtual bodies are massless rigid bodies, they contribute to the ill-conditioning of the mass
matrix Mi . However, the use of sparse matrix solvers allows mitigating the numerical dif-
ficulties and achieving computational efficiency when solving the system of equations of
motion, as shown by Gonçalves and Ambrósio [19]. Therefore the virtual bodies methodol-
ogy becomes a practical solution to make the most of existing libraries of kinematic joints
by avoiding the laborious task of developing new kinematic joints specifically for flexible
bodies while maintaining acceptable computational efficiency and algorithm robustness.

2.4.1 Formulation of a rigid–flexible joint

The virtual bodies methodology allows defining standard kinematic joints between rigid
bodies instead of directly using the flexible body elastic coordinates. For this purpose, the
virtual body must be connected to one or more nodes of the flexible body through a rigid–
flexible joint. The formulation of the rigid–flexible joint requires the definition of six po-
sition constraint equations. In this work, we assume that the position of the local frame of
the virtual body j coincides with the deformed position of a node k of the flexible body
i. Additionally, the relative orientation of the virtual body and the reference frame fixed to
node k is invariant in time.

Translation component of the constraints The definition of the three position constraint
equations associated with the translations is equivalent to the description of a spherical joint
connecting a rigid body j and a node k of the flexible body i. The three position constraint
equations are

�(rf,tr) = rj − dk = rj − ri − Ai

(
x′

k + δ′
k

)= 0. (40)
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Fig. 3 Schematic representation of local coordinate systems of flexible body i and virtual body j for a rigid–
flexible joint

The velocity constraint equations are the time derivative of Eq. (40) given by

�̇
(rf,tr) = ṙj − ṙi + Ai b̃′

kω
′
i − AiIk δ̇

′
i . (41)

Therefore the Jacobian matrix associated with the translation component of the rigid–
flexible joint is

�(rf,tr)
qf

= [−I Ai b̃′
k I 0 −AiIk

]
, (42)

and the right-hand side vector of the velocities is null,

ν(rf,tr) = 0. (43)

The acceleration constraint equations are the time derivative of Eq. (41) expressed by

�̈
(rf,tr) = r̈j − r̈i − Aiω̃

′
iω̃

′
ib

′
k + Ai b̃′

kω̇
′
i − 2Aiω̃

′
iIk δ̇

′
i − AiIk δ̈

′
i . (44)

Consequently, the right-hand side vector of the accelerations is defined by

γ (rf,tr) = Aiω̃
′
i

(
−b̃′

kω
′
i + 2Ik δ̇

′
i

)
. (45)

Angular component of the constraints The constraint equations associated with the angu-
lar coordinates depend on the number of nodal degrees of freedom. The rigid–flexible joint
proposed by Gonçalves and Ambrósio [19] is formulated assuming the connection between
the virtual body and a node of the flexible structure with six nodal degrees of freedom, i.e.,
three infinitesimal displacements and three infinitesimal rotations. The three nodal rotations
define a reference frame attached to the node, and the relative orientation between the nodal
reference frame and the local frame of the virtual body is invariant in time. However, when
the nodal rotational degrees of freedom are not explicitly defined or do not exist, for exam-
ple, using conventional solid finite elements, the angular component of the constraint must
be defined differently. Assuming that the vicinity of node k is populated by other nodes,
it is possible to define a reference frame using the positions of two neighboring nodes m

and n and orthogonality conditions if nodes k, m, and n are not collinear, as depicted in
Fig. 3.
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The vector e′
i1 is the unit vector parallel to the vector that connects nodes k and m, in the

local reference frame of the flexible body, according to

e′
i1 = b′

km∥∥b′
km

∥
∥ = b′

m − b′
k∥∥b′

m − b′
k

∥
∥ . (46)

Likewise, the auxiliary vector a′
i is the unit vector parallel to the vector that connects nodes

k and n, in the local reference frame of the flexible body, given by

a′
i = b′

kn∥
∥b′

kn

∥
∥ = b′

n − b′
k∥

∥b′
n − b′

k

∥
∥ . (47)

The vector e′
i2 is the unit vector perpendicular to both e′

i1 and a′
i , in the local reference frame

of the flexible body, expressed by the cross product between e′
i1 and a′

i divided by the norm:

e′
i2 = ẽ′

i1a′
i∥∥ẽ′

i1a′
i

∥
∥ . (48)

The vectors e′
i1, e′

i2, and a′
i define a reference system that can be used to express the

position constraint equations of the rigid–flexible joint, stating that the relative orientation
of the reference frame of the virtual body j and the auxiliary reference system defined in
body i is invariant in time. The orientation of the local frame of the virtual body j is given
by the vectors that define the columns of the respective transformation matrix given by

Aj = [
ej1 ej2 ej3

]
. (49)

The invariance of the relative orientation of the reference frames is expressed by three of
the nine dot products between the unit vectors that are parallel to the axes of the reference
frames. The three dot products used for the position constraint equations considered are
arbitrarily selected as

�(rf,rot) =

⎧
⎪⎨

⎪⎩

eT
i1ej2 − β0

12

eT
i1ej3 − β0

13

eT
i2ej3 − β0

23

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

(
Aie′

i1

)T
Aj e′

j2 − β0
12

(
Aie′

i1

)T
Aj e′

j3 − β0
13

(
Aie′

i2

)T
Aj e′

j3 − β0
23

⎫
⎪⎪⎬

⎪⎪⎭
= 0, (50)

where β0
12, β0

13, and β0
23 are the cosines of the initial angles between the axes of the reference

frames.
The velocity constraint equations are the time derivative of Eq. (50) expressed by

�̇
(rf,rot) =

⎧
⎪⎪⎨

⎪⎪⎩

− (Aie′
i1

)T
Aj ẽ′

j2ω
′
j − (

Aj e′
j2

)T
Ai ẽ′

i1ω
′
i + (

Aj e′
j2

)T
Ai ė′

i1

− (Aie′
i1

)T
Aj ẽ′

j3ω
′
j − (

Aj e′
j3

)T
Ai ẽ′

i1ω
′
i + (

Aj e′
j3

)T
Ai ė′

i1

− (Aie′
i2

)T
Aj ẽ′

j3ω
′
j − (

Aj e′
j3

)T
Ai ẽ′

i2ω
′
i + (

Aj e′
j3

)T
Ai ė′

i2

⎫
⎪⎪⎬

⎪⎪⎭
= 0, (51)

where ė′
i1 and ė′

i2 must be expressed using the vector of nodal velocities δ̇
′
i . The vector ė′

i1 is
the time derivate of the unit vector e′

i1 and is given by

ė′
i1 = d

dt

(
b′

km∥∥b′
km

∥∥

)

= I − e′
i1e′T

i1∥∥b′
km

∥∥

(
δ̇

′
m − δ̇

′
k

)
. (52)
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Likewise, the vector ė′
i2 is the time derivate of the unit vector e′

i2:

ė′
i2 = d

dt

(
ẽ′
i1a′

i∥∥ẽ′
i1a′∥∥

)

= I − e′
i2e′T

i2∥∥ẽ′
i1a′∥∥

(
ẽ′
i1ȧ′

i − ã′
i ė

′
i1

)
. (53)

The time derivative of vector a′
i is given by

ȧ′
i = d

dt

(
b′

kn∥∥b′
kn

∥∥

)

= I − a′
ia

′T
i∥∥b′

kn

∥∥

(
δ̇

′
n − δ̇

′
k

)
. (54)

Substituting Eqs. (52) and (54) into Eq. (53) renders

ė′
i2 = I − e′

i2e′T
i2∥∥ẽ′

i1a′
i

∥∥

[

ẽ′
i1

I − a′
ia

′T
i∥∥b′

kn

∥∥

(
δ̇

′
n − δ̇

′
k

)
− ã′

i

I − e′
i1e′T

i1∥∥b′
km

∥∥

(
δ̇

′
m − δ̇

′
k

)
]

. (55)

The velocity constraint equations can be expressed in the form

�̇
(rf,rot) = �(rf,rot)

qf
q̇i − ν(rf,rot) = 0, (56)

where ν(rf,rot) is the right-hand side vector of the velocity constraint equations, which in-
cludes the terms independent of q̇i , the vector of the velocities of body i. The Jacobian
matrix associated with the angular component of the rigid-flexible joint is

�(rf,rot)
qf

=

⎡

⎢
⎢⎢
⎢
⎣

0T −(Aj e′
j2

)T
Ai ẽ′

i1 0T −(Aie′
i1

)T
Aj ẽ′

j2

(
Aj e′

j2

)T
Ai

I−e′
i1e′T

i1∥
∥b′

km

∥
∥

(
Im − Ik

)

0T −(Aj e′
j3

)T
Ai ẽ′

i1 0T −(Aie′
i1

)T
Aj ẽ′

j3

(
Aj e′

j3

)T
Ai

I−e′
i1e′T

i1∥
∥b′

km

∥
∥

(
Im − Ik

)

0T −(Aj e′
j3

)T
Ai ẽ′

i2 0T −(Aie′
i2

)T
Aj ẽ′

j3

(
Aj e′

j3

)T
Ai

I−e′
i2e′T

i2∥
∥ẽ′

i1a′
i

∥∥ D

⎤

⎥
⎥⎥
⎥
⎦

,

(57)

where the matrix D is given by

D = ẽ′
i1

I − a′
ia

′T
i∥∥b′

kn

∥∥ (In − Ik) − ã′
i

I − e′
i1e′T

i1∥∥b′
km

∥∥ (Im − Ik) . (58)

The right-hand side vector of the velocity constraint equations is

ν(rf,rot) = 0. (59)

The acceleration constraint equations are the time derivative of Eq. (51) and can be ex-
pressed in the form

�̈
(rf,rot) = �(rf,rot)

qf
q̈i − γ (rf,rot) = 0, (60)

where γ (rf,rot) is the right-hand side vector of the acceleration constraint equations that col-
lects the terms independent of the acceleration vector q̈i . The first term of the right-hand
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side vector of the acceleration constraint equations is

γ
(rf,rot)
1 = − (Aie′

i1

)T
Aj ω̃

′
j ω̃

′
j e′

j2 − 2
(
Aj ω̃

′
j e′

j2

)T
Ai

(
ω̃′

ie
′
i1 + ė′

i1

)−

− (Aj e′
j2

)T
Ai

[

ω̃′
iω̃

′
ie

′
i1 + 2ω̃′

i ė
′
i1 − 2ė′

i1e′T
i1 + e′

i1ė′T
i1∥∥b′

km

∥
∥

(
δ̇

′
m − δ̇

′
k

)
]

,
(61)

and, similarly, the second term of the right-hand side vector of the acceleration constraint
equations is

γ
(rf,rot)
2 = − (Aie′

i1

)T
Aj ω̃

′
j ω̃

′
j e′

j3 − 2
(
Aj ω̃

′
j e′

j3

)T
Ai

(
ω̃′

ie
′
i1 + ė′

i1

)−

− (Aj e′
j3

)T
Ai

[

ω̃′
iω̃

′
ie

′
i1 + 2ω̃′

i ė
′
i1 − 2ė′

i1e′T
i1 + e′

i1ė′T
i1∥∥b′

km

∥∥

(
δ̇

′
m − δ̇

′
k

)]

.
(62)

Finally, the third term of the right-hand side vector of the acceleration constraint equations
is

γ
(rf,rot)
3 = − (Aie′

i2

)T
Aj ω̃

′
j ω̃

′
j e′

j3 − 2
(
Aj ω̃

′
j e′

j3

)T
Ai

(
ω̃′

ie
′
i2 + ė′

i2

)−

− (Aj e′
j3

)T
Ai

{

ω̃′
iω̃

′
ie

′
i2 + 2ω̃′

i ė
′
i2 + 1

∥∥ẽ′
i1a′

i

∥∥
[− (2ė′

i2e′T
i2 + e′

i2ė′T
i2

) (
ẽ′
i1ȧ′

i − ã′
i ė

′
i1

)+

+ (I − e′
i2e′T

i2

)
(

2 ˙̃′ei1ȧ′
i − ẽ′

i1∥∥b′
kn

∥
∥
(
2ȧ′

ia
′T
i + a′

i ȧ
′T
i

)(
δ̇

′
n − δ̇

′
k

)
+

+ ã′
i∥∥b′

km

∥
∥
(
2ė′

i1e′T
i1 + e′

i1ė′T
i1

)(
δ̇

′
m − δ̇

′
k

)
)]}

.

(63)

The proposed formulation of the angular component of the rigid-flexible joint presents
singularity conditions that must be avoided to guarantee the stability of the computational
implementation. If the Jacobian matrix includes null rows, then the matrix of the system of
equations of motion is rank-deficient, and there is no solution. For instance, this is the case
if any of the following equations is true during the dynamics analysis:

eT
i1ai = 1, (64)

eT
j2ei1 = 1, (65)

eT
j3ei1 = 1, (66)

eT
j3ei2 = 1. (67)

Other singularity conditions exist, but it is not the aim of this section to present a compre-
hensive survey of all the possibilities.

2.4.2 Computational implementation of the rigid–flexible joint

The computational implementation of the rigid–flexible joint can be enhanced by a system-
atic methodology to define the joint data with minimum external input. The algorithm is
graphically depicted in Fig. 4 and must be performed at an initialization stage prior to the
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Fig. 4 Algorithm for the
initialization of the rigid–flexible
joint

simulation. Node k is the nearest node to the attachment point Pi . The candidates to node m

are iteratively evaluated, and node m is the second nearest node to point Pi , which ensures
that the singularity conditions described by Eqs. (65) and (66) are not fulfilled in the first
time step. Subsequently, the candidates to node n are iteratively assessed, and node n is the
third nearest node to point Pi , which guarantees that the singularity conditions expressed
by Eqs. (64) and (67) do not occur in the first time step of the analysis. The computa-
tional implementation of the algorithm requires the definition of a tolerance tol to assess the
collinearity conditions described by Eqs. (64)–(67).

2.5 Component mode synthesis

The analysis of the flexibility of complex structures requires the solution of large systems of
equations of motion and the integration of a significant number of nodal coordinates. One
of the standard methodologies to reduce the number of elastic coordinates is the compo-
nent mode synthesis [41]. In this approach the time-dependent variables are separated from
the geometry-dependent variables. The modes used in this methodology can be the natural
modes of vibration, static correction modes, or other modes of deformation. In this work, we
consider the natural modes of vibration associated with the lower natural frequencies under
the assumption that deformations are small and the material is linear elastic. The nodal dis-
placements are approximated by a weighted sum of the modes of vibration associated with
the natural frequencies of the structure:

δ′
i = Xw, (68)

where X is the geometry-dependent modal matrix, and w is the time-dependent vector of the
contributions of the m modes of vibrations, deemed as elastic coordinated. The time-variant
nodal coordinate vector δ′

i is thus transformed to the time-variant modal coordinate vector
w. The time-invariant modal matrix X is obtained by solving the generalized eigenvalue
problem described using the finite element model of the flexible body:

(
Kff − ω2

mMff

)
xm = 0. (69)
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The m columns of the matrix X are the constant vectors xm of the modes of vibration related
to the m natural frequencies ωm considered. Each row of the modal matrix X is associ-
ated with one of the nodal coordinates of the n nodes. The matrix X is time-invariant, and
therefore the nodal velocities and accelerations are

δ̇
′
i = Xẇ, (70)

δ̈
′
i = Xẅ. (71)

If the m columns of the matrix X associated with the vectors of the modes of vibration
are normalized with respect to the flexible component of the diagonalized mass matrix of
the flexible body Mff , then the modal orthogonality properties apply:

XT Mff X = I, (72)

XT Kff X = 	, (73)

where 	 is a diagonal matrix containing the squares of the natural frequencies ω2
m associated

with the modes of vibration.
The transformation from nodal to modal coordinates implies a modification of the system

of equations of motion. Replacing Eqs. (68) and (71) in Eq. (18) renders

⎡

⎢
⎣

Mrr Mrf X �T
qr

Mf r Mff X �T
qf

�qr �qf X 0

⎤

⎥
⎦

⎧
⎨

⎩

q̈r

ẅ
λ

⎫
⎬

⎭
=
⎧
⎨

⎩

gr

gf

γ

⎫
⎬

⎭
−
⎧
⎨

⎩

sr

sf

0

⎫
⎬

⎭
−
⎧
⎨

⎩

0
Kff Xw

0

⎫
⎬

⎭
. (74)

Premultiplying the second row of Eq. (74) by XT and using the orthogonality properties, the
system of equations of motion is expressed by

⎡

⎢
⎣

Mrr Mrf X �T
qr

XT Mf r I XT �T
qf

�qr �qf X 0

⎤

⎥
⎦

⎧
⎨

⎩

q̈r

ẅ
λ

⎫
⎬

⎭
=
⎧
⎨

⎩

gr

XT gf

γ

⎫
⎬

⎭
−
⎧
⎨

⎩

sr

XT sf

0

⎫
⎬

⎭
−
⎧
⎨

⎩

0
	w

0

⎫
⎬

⎭
. (75)

The number of flexible coordinates of the system is thus reduced from 3n to m. Prior to this
subsection, the infinitesimal nodal translation vector δ′

i and its time derivatives are expressed
using the nodal coordinates. Those equations can be modified to account for the transforma-
tion from nodal to modal coordinates in accordance with Eqs. (68), (70), and (71).

Generally, free–free modes, i.e., modes of vibration obtained considering a fully uncon-
strained finite element mesh for the flexible body, can be used with mean axis and principal
axis reference conditions. However, if nodal-fixed frame conditions are used, which is not
the case in this work, then the application of constrained modes of vibration compatible
with the reference conditions is necessary, as fewer modes are required to represent the
same displacement field. We also must reemphasize that the modes of vibration alone can-
not represent very localized deformations of the flexible body, such as those due to kinematic
constraints and the application of forces. The number of modes required would increase dra-
matically, thus reducing the computational efficiency. Instead, the set of nodes of vibration
is complemented by a set of static correction modes carefully generated to account for local
deformations. A methodology for the generation and use of such models is presented by Yoo
and Haug [3] and is not reviewed in this work.
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Fig. 5 Overview of the data flow of the flexible multibody methodology applied

Fig. 6 Schematic representation of the flexible slider-crank mechanism

Figure 5 provides an overview of the data flow required to apply the flexible multibody
methodology presented in Sect. 2. Using this strategy, the tasks of modeling the flexible
bodies and the mechanism are performed independently. For example, different models of
the flexible body can be used interchangeably without the need to modify the baseline rigid-
body model.

3 Demonstration using a flexible slider-crank mechanism

The flexible multibody formulation presented in this work is demonstrated with a slider-
crank mechanism, which is a conventional benchmark widely discussed and tested in the
literature [4, 42, 43]. The mechanism includes a rigid rotating crank, a rigid slider, and a
flexible connecting rod, as depicted in Fig. 6. The flexible rod has a circular cross-section.
Table 1 presents the geometrical and mechanical characteristics of the mechanism. Initially,
the flexible rod is oriented horizontally and is in the undeformed configuration.

Using a 3D CAD software, the flexible connecting rod is modeled in the undeformed
geometry, and the reference frame is positioned in its instantaneous center of mass. The
geometrical model is exported to a finite element software, and the rod is discretized using
structural 3D 10-node tetrahedral solid elements, in a total of 6283 nodes. A modal analysis
of the structure in free–free conditions is performed to obtain the flexible body modeling
data required by the multibody software MUBODyn: the vector of the squares of the natural
frequencies 	, the matrix of the modes of vibration X, and the diagonalized mass matrix of
the flexible body Mff . The six rigid-body modes, as well as the flexible modes of vibration
associated with the eight lowest natural frequencies, corresponding to four bending modes,
are all used to describe the deformations of the flexible connecting rod. The virtual bodies
methodology is used to connect the flexible rod with the spherical joint in one end and the
cylindrical joint in the opposite end, as illustrated in Fig. 6.
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Table 1 Slider-crank mechanism
data Mechanical Data Value Units

Crank Length 0.1524 m

Crank Angular Velocity 124.8 rad/s

Rod Length 0.3048 m

Rod Density 7800 kg/m3

Rod Young’s Modulus 206.8 GPa

Rod Cross-Section Area 3.16×10−5 m2

Slider Mass 0 kg

Fig. 7 Acceleration of the slider
considering a rigid model and the
flexible model

3.1 Mean axis conditions

The reference conditions considered in this simulation are the mean axis conditions. The
principal axis conditions are disregarded because they are not applicable to the connecting
rod, which has cylindrical symmetry. Figure 7 shows the longitudinal acceleration of the
slider over time, considering both a fully rigid model and the model with a flexible connect-
ing rod. As expected, the acceleration of the slider is unaffected by the flexibility of the rod,
because the deformations are small.

The quantity used to assess the computational implementation of the flexible multibody
formulation, by comparison with previous results from the literature, is the deflection of the
midpoint of the connecting rod. This deflection δ, shown in Fig. 8, is measured relative to
the undeformed position of the rod and is normalized by the length of the rod. Figure 8
shows that the maximum normalized value of the deflection in the initial moments of the
simulation is 0.0105, which is consistent with the results published in various sources in the
literature [4, 42, 43]. The results suggest the formulation of the mean axis conditions, and
the rigid–flexible joint considering three nodal degrees of freedom are correctly derived and
implemented in the computer code.

3.2 Principal axis conditions

The principal axis conditions can be used only if the set of principal axes of the flexible body
is unique, i.e., the principal inertias of the flexible body are all different. That is not the case
for the flexible connecting rod with a circular cross-section. Consequently, the benchmark
case is adapted to allow the verification of the implementation of the principal axis condi-
tions. This is achieved by replacing the circular cross-section by a rectangular cross-section
while ensuring that the cross-section area and the second moment of area relative to the y
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Fig. 8 Normalized deflection of
the midpoint of the flexible
connecting rod

Fig. 9 Normalized deflection of
the midpoint of the flexible
connecting rod considering a
rectangular cross-section for the
mean axis conditions (MAC) and
principal axis conditions (PAC)

axis, perpendicular to the plane of motion, remain the same as in the original benchmark
problem. This way the mass, inertias, and the bending stiffness in the X-Z plane of both
models are preserved.

Figure 9 depicts the normalized deflection of the midpoint of the connecting rod consid-
ering the rectangular cross-section and using the principal axis conditions and the mean axis
conditions. The results using the two types of reference conditions are virtually coincident
and match the results shown in Fig. 8 using the circular cross-section.

The results obtained show that both mean axis and principal axis conditions lead to equiv-
alent results. The computational time required to run the simulation is similar for both refer-
ence conditions. Consequently, computational efficiency is not a factor to select one of the
reference conditions over the other. In any case, it must be emphasized that the principal axis
conditions have the drawback of not being applicable to bodies with more than one possible
set of principal axes. Still, the principal axis conditions guarantee that the origin of the local
reference frame of the flexible body is always coincident with the body center of mass.

4 Dynamics of a locomotive with flexible bogie frame on a realistic
track

The work presented contributes to the broader aim of defining a strategy to monitor the
structural condition of the bogie frame of a locomotive. The bogie frame is the only flexible
body of the multibody model of the railway vehicle, which is described using approximately
45000 structural 3D 10-node tetrahedral solid finite elements. The vehicle is simulated in
realistic operation conditions to obtain the dynamic response of the locomotive with an
emphasis on the bogie frame. In this section, we present the flexible multibody methodology
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Fig. 10 Schematic representation of the locomotive and different elements [44]

applied, a verification of the baseline vehicle model, and a demonstration of how the flexible
multibody methodologies can be used for purposes other than those traditionally associated
with standard vehicle dynamics.

4.1 Multibody model of the locomotive

The vehicle is a meter-gauge diesel-electric locomotive depicted in Fig. 10. The vehicle
body is supported by two bolsters through cylindrical pivots. The primary suspension of the
locomotive connects the axle boxes with the bogie frame through vertical helicoidal springs
and hornguides that provide lateral and longitudinal clearance between the axle boxes and
bogie frame, as well as friction damping. The secondary suspension connects each bogie
frame with the respective bolster with sets of rubber springs. Each bogie rests on three
powered axles driven by independent electric traction motors.

Two multibody models of the locomotive are developed to run the simulations. One
model is composed by rigid bodies, whereas in the other the rigid front bogie frame is
replaced by a flexible bogie frame. The locomotive models used in this work are an adapted
version of the rigid-body model presented by Millan et al. [44]. The adaptation consists of
a simplification of the models of the primary suspension, which connects the bogie frame
and the axle boxes. The relevant modifications are the replacement of the imperfect cylin-
drical joints, which model the clearances and friction damping phenomena by vertical linear
dampers in parallel with the existing vertical linear springs. Additionally, pairs of horizontal
springs are introduced connecting each axle box with the bogie frame to increase the lat-
eral and longitudinal stiffness of the suspension. These simplifications are implemented to
reduce the computational burden of combining a flexible model with the highly nonlinear
impact and friction phenomena modeled by the imperfect kinematic joints, as the objective
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Fig. 11 Overview of the first flexible mode of vibration of the bogie frame

of this work is to demonstrate the realistic application of the improvements of the flexible
multibody formulation presented. Nevertheless, the imperfect cylindrical joints can be in-
cluded in the flexible model with the support of the rigid–flexible joint. In the locomotive,
each of the three traction motors is suspended through one flexible connection with the bo-
gie frame and a support over the respective wheelset. In the multibody models, however,
each motor is simply connected to the bogie frame by a rigid kinematic joint. The virtual
bodies methodology is employed to rigidly connect each motor to the bogie frame using the
rigid–flexible joint presented in Sect. 2.4.1.

The bogie frame is modeled by a 3D CAD software in the undeformed geometry, and the
local reference frame is initially positioned in its instantaneous center of mass. The geom-
etry model is exported to an FE software and is discretized using solid elements. A modal
analysis of the bogie frame under free–free conditions provides the vector of the squares
of the natural frequencies 	, the matrix of the modes of vibration X, and the diagonal-
ized mass matrix of the flexible body Mff . The flexible modes of vibration associated with
the 30 lowest natural frequencies describe the deformations of the bogie frame. The lowest
nonrigid natural frequency is 31.1 Hz, and the associated mode of vibration is depicted in
Fig. 11. The highest natural frequency considered is 377.2 Hz. The mean axis conditions
are considered in the analysis developed. No static correction mode is used in this model as
the bogie frame is quite stiff, thus not experiencing notable local deformations in particular
points.

4.2 Wheel–rail contact methodology

The vehicle–track interaction is represented by forces developed on the wheel–rail contact
surfaces, which are computed in MUBODyn according to the wheel–rail contact method-
ology described in Fig. 12 and further detailed in [35–37]. The inputs for the wheel–rail
contact model are the kinematic quantities of the wheelsets, whereas the force vectors and
respective points of application are the outputs. The contact detection problem involves
the identification of the contact pairs between the wheel and rail, requiring the parameter-
ization of the wheel and rail profiles. The calculation of the contact forces from the vir-
tual interferences of the bodies considers the Hertz elastic contact theory [45]. The normal
contact force is determined according to a modified Kelvin–Voigt model [46], which is a
Hertzian model with dissipation. The elliptical contact patch is computed, as well as the
longitudinal, lateral, and spin creepages, to determine the creep forces using the Polach
model [47]. The final step of the algorithm is the computation and application of the force



106 J. Pagaimo et al.

Fig. 12 Wheel–rail contact algorithm of MUBODyn [35]

vectors on the points of contact to represent the loads transmitted between each wheel–rail
contact pair. The normal component of the force vector is normal to the contacting surface,
whereas the longitudinal and lateral components of the force vector are tangential to the
contacting surface.

4.3 Dynamic analysis and selected results

The scenario simulated is the locomotive running with a constant speed of 70 km/h in a
straight track with realistic track irregularities. There are no wagons coupled to the loco-
motive, and the effects of traction and braking are neglected. The maximum time step used
in the simulations is 0.2 milliseconds, and the sample rate is 5000 Hz. The outputs of the
dynamic simulation are the positions, velocities, and accelerations of the various bodies of
the vehicle model in the time domain, which are further post-processed to obtain relevant
quantities for the dynamic analysis, such as power spectral densities (PSDs) of selected
accelerations. The outputs also encompass the internal and external forces, including the
wheel–rail contact forces that result from the vehicle–track interaction.

Figures 13–15 feature a selection of raw results from the simulation without any type
of filtering or postprocessing. Figure 13 shows the lateral and vertical wheel–rail contact
forces of the left wheel of the leading wheelset. Overall, the results from the rigid and
flexible models are similar, apart from some differences in the peak values of the lateral
contact force. Figure 14 shows the lateral displacement and acceleration of the center of
mass (CM) of the leading wheelset for the rigid and flexible models. Again, the results
essentially coincide. It is clear in Fig. 14 that the wheelset undergoes a cyclic motion in
the lateral direction with a frequency of approximately 1.25 Hz, which is explained by the
stable hunting motion that is characteristic of a railway vehicle operating on a track with
track irregularities.

Figure 15 shows the lateral position and lateral acceleration of point P identified in
Fig. 11. Point P is located where the front right vertical spring of the primary suspension is
attached to the bogie frame. It is worth recalling that the front bogie frame is the only body
where flexibility is considered in the flexible model. The impact of the structural flexibility
in the lateral position of point P is limited. In contrast, there are relevant differences of the
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Fig. 13 Lateral and vertical contact forces on the left wheel of the leading wheelset

Fig. 14 Kinematics of the CM of the leading wheelset: (left) lateral displacement and (right) lateral acceler-
ation w.r.t. the local reference frame of the wheelset

Fig. 15 Kinematics of point P of the bogie frame: (left) lateral position w.r.t global reference frame; and
(right) lateral acceleration w.r.t. the local frame of the bogie frame

lateral acceleration of point P , which are the result of the structural flexibility of the bogie
frame. However, the extent of the differences in the accelerations is different throughout the
frequency domain.



108 J. Pagaimo et al.

Fig. 16 PSD estimate of the lateral acceleration of point P in the local reference frame of the bogie

Figure 16 shows the PSD estimate of the lateral acceleration of point P from the two
models, considering a time signal with a duration of approximately 25 s. Both responses
exhibit a notable peak associated with the stable hunting motion of the bogie frame at a
frequency of approximately 1.25 Hz. The two curves are similarly shaped inside the low-
frequency range, commonly limited at 20 Hz, suggesting that both models represent the
rigid-body motion of the vehicle with the same accuracy. Above the 20 Hz threshold, the
curve associated with the flexible model exhibits peaks at approximately 27 Hz, 34 Hz,
42 Hz, 48 Hz, 62 Hz, 71 Hz, and 113 Hz, whereas the curve associated with the rigid-body
model shows no significant peaks in this range. This result demonstrates that the flexible
modes of vibration present a measurable contribution to the accelerations of point P if
the structural deformations are of interest. On a global overview, these results show that
the structural flexibility of the bogie frame has a negligible effect on the low-frequency
dynamics of the vehicle. This conclusion is not surprising, since the low-frequency dynamics
of the vehicle concern primarily the rigid-body modes of vibration.

The analysis of Fig. 16 highlights the significant differences in the response of the bogie
frame resulting from the use of rigid or flexible models. This discussion is followed by a
preliminary analysis of the sensitivity of the accelerations measured in the bogie frame to
the presence of structural defects. A second model of the flexible bogie frame is developed,
featuring an artificial crack defined in the vertical cross-section plane of the connection
between the transversal beam and the right lateral side frame identified by point Q in Fig. 11.
The crack is represented by an incision that totals 40% of the cross-section area of the
welded connection. Figure 17 shows the PSD estimate of the lateral acceleration of point P
considering the two models. The PSD estimates reveal visible differences above a frequency
of approximately 35 Hz. These results suggest that the measured accelerations measured
in strategic locations of the bogie frame can be used to detect structural defects, provided
that there is an algorithm that can reliably identify the deviations between the nominal and
abnormal responses. The enhancements for the flexible multibody methodology presented
in this work are the basis to investigate such methods in the future.

5 Conclusions

This work presents the development and application of a flexible multibody methodology
that allows separating the tasks of modeling the multibody system and developing the finite
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Fig. 17 PSD estimate of the lateral acceleration of point P in the local reference frame, considering flexible
models of the bogie frame in the nominal condition and damaged condition

element models of the flexible bodies. This feature is enabled by the definition of various
terms of the equations of motion of the flexible multibody system independently of the
shape functions of the elements used. The flexible multibody methodology used is originally
developed considering flexible bodies discretized by finite elements characterized by nodes
with six degrees of freedom, such as beam and shell elements. To overcome this limitation,
this work provides novel developments of the original formulation to allow the use of solid
elements, commonly associated with nodes with three displacement degrees of freedom
and without nodal rotations. Two types of floating frame reference conditions that do not
explicitly use nodal rotations are derived and adopted, the principal axis conditions and
the mean axis conditions. The virtual bodies methodology is applied to allow using the
kinematic joints originally formulated for rigid bodies. This work also contributes with an
alternative formulation of a rigid–flexible joint required to use the virtual bodies. This novel
formulation allows rigid attaching rigid bodies to nodes of a flexible body using exclusively
the three nodal translations of three neighboring nodes.

The revised flexible multibody methodology is implemented in the general multibody
code MUBODyn and demonstrated with the analysis of a benchmark problem consisting of
a slider-crank mechanism. The results from the simulation of a flexible slider-crank mod-
eled with solid finite elements are consistent with those found in the literature, modeled
with various numbers of beam elements. This is a demonstration of the validity of the for-
mulation developed and implemented. The flexible multibody methodology is also used to
study the dynamics of a locomotive with a flexible bogie frame running on a straight track
with realistic track irregularities. By comparison with a rigid-body model, the results show
that the structural flexibility of the bogie frame does not have a relevant influence on the
dynamic behavior of the railway vehicle in the low-frequency range, as expected. However,
if the response of the bogie frame above the low-frequency range is also of interest, then to
analyze the structural deformations, the flexible model must be used. The results presented
also include the accelerations measured on a particular location considering a bogie frame
model that comprises a structural defect. The comparison with the response of the bogie
frame in nominal conditions suggests that the accelerations measured on strategic locations
of the structure are sensitive to the presence of a crack. The developments in this work aim
to support the definition of a methodology to monitor the structural condition of the bogie
frame using sensor data. The dynamic simulations using the flexible models can contribute
to assess what quantities must be monitored online in different points of the structure to
detect bogie frame damage. This application is the focus of further work.
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